Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Yunfei Ren, Danling Chen, Haijie Wang, Xiaohui Zhu, Bowen Bai. Grenvillian and early Paleozoic polyphase metamorphism recorded by eclogite and host garnet mica schist in the North Qaidam orogenic belt[J]. Geoscience Frontiers, 2021, 12(4): 101170. doi: 10.1016/j.gsf.2021.101170
Citation: Yunfei Ren, Danling Chen, Haijie Wang, Xiaohui Zhu, Bowen Bai. Grenvillian and early Paleozoic polyphase metamorphism recorded by eclogite and host garnet mica schist in the North Qaidam orogenic belt[J]. Geoscience Frontiers, 2021, 12(4): 101170. doi: 10.1016/j.gsf.2021.101170

Grenvillian and early Paleozoic polyphase metamorphism recorded by eclogite and host garnet mica schist in the North Qaidam orogenic belt

doi: 10.1016/j.gsf.2021.101170
Funds:

Final support for this study was jointly provided by the National Natural Science Foundation of China (Grant Nos. 41802056, 41972058, 42030307), the China Postdoctoral Science Foundation (Grant 2018M633554), the MOST Special Fund from the State Key Laboratory of Continental Dynamics (Grant 201210133), Young Talent fund of University Association for Science and Technology in Shaanxi, China (Grant 20200703) and China Geological Survey (Grant DD20190376). We thank Hao Cheng and Chunjing Wei for their constructive reviews on the manuscript.

  • Received Date: 2020-11-03
  • Rev Recd Date: 2021-01-18
  • Publish Date: 2021-07-17
  • The North Qaidam orogenic belt (NQOB) is generally considered to be an early Paleozoic ultrahigh pressure metamorphic belt, but increasing reports of the Neoproterozoic magmatic and metamorphic events indicate that the NQOB probably also experienced the assembly of the Rodinia. However, the Neoproterozoic evolution of the NQOB is not well constrained due to the sparse records and ambiguous nature of the Neoproterozoic metamorphism. In order to reveal the multi-orogenic history of the NQOB, an integrated study of petrology, phase equilibrium modelling and geochronology was conducted on an epidote eclogite and host garnet mica schist from the Yuka-Luofengpo terrane. New zircon and monazite U-Pb ages show that the protolith of the garnet mica schist was deposited during 994-920 Ma and experienced Neoproterozoic (920-915 Ma) and early Paleozoic (451-447 Ma) polyphase metamorphism together with the enclosed eclogite. Relic omphacite inclusions were first identified in garnet and early Paleozoic zircon domains from the garnet mica schist, which provide solid evidence for the early Paleozoic eclogite facies metamorphism of the mica schist. Similar early Paleozoic peak P-T conditions of >27.4 kbar/613-670℃ and 30.2-30.8 kbar/646-655℃ were obtained for the garnet mica schist and enclosed eclogite, respectively, indicating that eclogites and their host paragneisses in this region underwent continental deep subduction as a coherent metamorphic terrane in early Paleozoic. The peak P-T conditions of the Neoproterozoic metamorphism were roughly constrained at 7.7-12.0 kbar and 634-680℃ for the garnet mica schist, based on stability field of mineral inclusions in Neoproterozoic zircons domains in P-T pseudosection, the relic garnet core composition and Ti-in-zircon thermometer. The high thermal gradients (16-37℃/km) defined by presently our and previously reported P-T conditions indicate that the Neoproterozoic metamorphism likely occurred in continental collision setting at >945-890 Ma. Since the Grenvillian syn-orogenic granitic magmatism and metamorphism (ca. 1.0-0.9 Ga) in the NQOB are much younger than the Grenvillian orogeny in the central part of Rodinia, the Qaidam Block was probably located at the north margin of Rodinia in Neoproterozoic.

  • loading
  • [1]
    Agard, P., Vitale-Brovarone, A., 2013. Thermal regime of continental subduction:the record from exhumed HP-LT terranes (New Caledonia, Oman, Corsica). Tectonophysics 601, 206-215.
    [2]
    Ague, J.J., Carlson, W.D., 2013. Metamorphism as garnet sees it:the kinetics of nucleation and growth, equilibration, and diffusional relaxation. Elements 9 (6), 439-445.
    [3]
    Baxter, E.F., Caddick, M.J., Dragovic, B., 2017. Garnet:a rock-forming mineral petrochronometer. Rev. Mineral. Geochem. 83 (1), 469-533.
    [4]
    Brown, M., 2014. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geosci. Front. 5, 553-569.
    [5]
    Caddick, M.J., Kohn, M.J., 2013. Garnet:Witness to the evolution of destructive plate boundaries. Elements 9 (6), 427-432.
    [6]
    Cao, Y.-T., Liu, L., Chen, D.-L., Wang, C., Yang, W.-Q., Kang, L., Zhu, X.-H., 2017. Partial melting during exhumation of Paleozoic retrograde eclogite in North Qaidam, western China. J. Asian Earth Sci. 148, 223-240.
    [7]
    Cawood, P.A., Wang, Y., Xu, Y., Zhao, G.C., 2013. Locating South China in Rodinia and Gondwana:a fragment of grater India lithosphere? Geology 41, 903-906.
    [8]
    Cawood, P.A., Strachan, R.A., Pisarevsky, S.A., Gladkochub, D.P., Murphy, J.B., 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup:implications for models of supercontinent cycles. Earth Planet. Sci. Lett. 449, 118-126.
    [9]
    Chen, D.L., Sun, Y., Zhang, A.D., Luo, J.H., Wang, Y., 2005. Metamorphic evolution of the Yuka eclogite in the North Qaidam, NW China:evidences from the compositional zonation of garnet and reaction texture in the rock. Acta Petrol. Sin. 21 (4), 1038-1048(in Chinese with English abstract).
    [10]
    Chen, D.L., Liu, L., Sun, Y., Liou, J.G., 2009. Geochemistry and zircon U-Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China. J. Asian Earth Sci. 35 (3-4), 259-272.
    [11]
    Chen, X., Zheng, Y., Xu, R., Gu, P., Yu, J., Bai, J., Cai, P., Jiang, X., 2020. Subduction channel fluid-rock interaction:indications from rutile-quartz veins within eclogite from the Yuka terrane, North Qaidam orogen. Geosci. Front. 11 (2), 635-650.
    [12]
    Cheng, H., Zhou, Y., Du, K.-Y., Zhang, L.-M., Lu, T.-Y., 2018. Microsampling Lu-Hf geochronology on mm-sized garnet in eclogites constrains early garnet growth and timing of tectonometamorphism in the North Qilian orogenic belt. J. Metamorph. Geol. 36 (8), 987-1008.
    [13]
    Connolly, J.A.D., 2005. Computation of phase equilibria by linear programming:a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236 (1-2), 524-541.
    [14]
    Cottrell, E., Kelley, K.A., 2011. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet. Sci. Lett. 305 (3-4), 270-282.
    [15]
    Dachs, E., 2004. PET:petrological elementary tools for mathematica®:an update. Comput.Geosci. 30, 173-182.
    [16]
    Dalziel, I.W.D., 1991. Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair:evidence and implications for an Eocambrian supercontinent. Geology 19 (6), 598-601.
    [17]
    Du, J.X., Zhang, L.F., Bader, T., Chen, Z.Y., Lü, Z., 2014. Metamorphic evolution of relict lawsonite-bearing eclogites from the (U) HP metamorphic belt in the Chinese southwestern Tianshan. J. Metamorph. Geol. 32 (6), 575-598.
    [18]
    Erdman, M.E., Lee, C.-T.A., 2014. Oceanic- and continental-type metamorphic terranes:occurrence and exhumation mechanisms. Earth Sci. Rev. 139, 33-46.
    [19]
    Evans, T.P., 2004. A method for calculating effective bulk composition modification due to crystal fractionation in garnet-bearing schist:implications for isopleth thermobarometry. J. Metamorph. Geol. 22 (6), 547-557.
    [20]
    Faryad, S.W., Klápová, H., Nosál, L., 2010. Mechanism of formation of atoll garnet during high-pressure metamorphism. Mineral. Mag. 74 (1), 111-126.
    [21]
    Ferry, J.M., Watson, E.B., 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 154 (4), 429-437.
    [22]
    Fitzsimons, I.C.W., 2000. Grenville-age basement provinces in East Antarctica:evidence for three separate collisional orogens. Geology 28 (10), 879-882.
    [23]
    Foster, G., Gibson, H.D., Parrish, R., Horstwood, M., Fraser, J., Tindle, A., 2002. Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chem. Geol. 191 (1), 183-207.
    [24]
    Fu, J., Liang, X., Zhou, Y., Wang, C., Jiang, Y., Zhong, Y., 2015. Geochemistry, zircon U-Pb geochronology and Hf isotopes of granitic rocks in the Xitieshan area, North Qaidam, Northwest China:implications for neoproterozoic geodynamic evolutions of North Qaidam. Precambrian Res. 264, 11-29.
    [25]
    Fuhrman, M.L., Lindsley, D.H., 1988. Ternary-feldspar modeling and thermometry. Am.Mineral. 73 (3-4), 201-215.
    [26]
    Gaidies, F., Abart, R., De Capitani, C., Schuster, R., Connolly, J.A.D., Reusser, E., 2006. Characterization of polymetamorphism in the Austroalpine basement east of the Tauern window using garnet isopleth thermobarometry. J. Metamorph. Geol. 24 (6), 451-475.
    [27]
    Ge, R., Zhu, W., Wilde, S.A., He, J., Cui, X., Wang, X., Bihai, Z., 2014. Neoproterozoic to Paleozoic long-lived accretionary orogeny in the northern Tarim Craton. Tectonics 33(3), 302-329.
    [28]
    Ge, R., Zhu, W., Wilde, S.A., 2016. Mid-Neoproterozoic (ca. 830-800 Ma) metamorphic P-T paths link Tarim to the circum-Rodinia subduction-accretion system. Tectonics 35(6), 1465-1488. https://doi.org/10.1002/2016TC004177.
    [29]
    Gehrels, G.E., Yin, A., Wang, X.-F., 2003a. Magmatic history of the northeastern Tibetan Plateau. J. Geophys. Res. Solid Earth 108 (B9), 1978-2012.
    [30]
    Gehrels, G.E., Yin, A., Wang, X.-F., 2003b. Detrital-zircon geochronology of the northeastern Tibetan plateau. Geol. Soc. Am. Bull. 115 (7), 881-896.
    [31]
    Green, E.C.R., White, R.W., Diener, J.F.A., Powell, R., Holland, T.J.B., Palin, R.M., 2016.Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 34 (9), 845-869.
    [32]
    Groppo, C., Castelli, D., 2010. Prograde P-T evolution of a lawsonite eclogite from the monviso meta-ophiolite (Western Alps):dehydration and redox reactions during subduction of oceanic FeTi-oxide gabbro. J. Petrol. 51 (12), 2489-2514.
    [33]
    Guiraud, M., Powell, R., Rebay, G., 2001. H2O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages. J. Metamorph. Geol. 19 (4), 445-454.
    [34]
    Hayden, L.A., Watson, E.B., Wark, D.A., 2008. A thermobarometer for sphene (titanite).Contrib. Mineral. Petrol. 155 (4), 529-540.
    [35]
    Herwartz, D., Nagel, T.J., Münker, C., Scherer, E.E., Froitzheim, N., 2011. Tracing two orogenic cycles in one eclogite sample by Lu-Hf garnet chronometry. Nat. Geosci. 4(3), 178-183.
    [36]
    Hoffman, P.F., 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252 (5011), 1409-1412.
    [37]
    Holland, T.J.B., Powell, R., 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29 (3), 333-383.
    [38]
    Hu, Z., Zhang, W., Liu, Y., Gao, S., Li, M., Zong, K., Chen, H., Hu, S., 2015. "Wave" signalsmoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis:application to lead isotope analysis. Anal. Chem. 87 (2), 1152-1157.
    [39]
    Itano, K., Iizuka, T., Chang, Q., Kimura, J.-I., Maruyama, S., 2016. U-Pb chronology and geochemistry of detrital monazites from major African rivers:constraints on the timing and nature of the Pan-African Orogeny. Precambrian Res. 282, 139-156.
    [40]
    Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211 (1-2), 47-69.
    [41]
    Kelly, N.M., Clarke, G.L., Fanning, C.M., 2002. A two-stage evolution of the Neoproterozoic Rayner structural episode:new U-Pb sensitive high resolution ion microprobe constraints from the Oygarden Group, Kemp Land, East Antarctica. Precambrian Res. 116 (3-4), 307-330.
    [42]
    Kingsbury, J.A., WIller, C.F., Wooder, J.L., Harrison, T.M., 1993. Monazite paragnenesis and U-Pb systematics in rocks of the eastern Mojave Desert, California, USA:implications for thermochronometry. Chem. Geol. 110, 147-167.
    [43]
    Konrad-Schmolke, M., O'Brien, P.J., de Capitani, C., Carswell, D.A., 2008. Garnet growth at high- and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition. Lithos 103 (3-4), 309-332.
    [44]
    Krogh Ravna, E., 2000. The garnet-clinopyroxene Fe2+-Mg geothermometer:an updated calibration. J. Metamorph. Geol. 18 (2), 211-219.
    [45]
    Krogh Ravna, E.J., Terry, M.P., 2004. Geothermobarometry of UHP and HP eclogites and schists-an evaluation of equilibria among garnet-clinopyroxene-kyanite-phengite-coesite/quartz. J. Metamorph. Geol. 22 (6), 579-592.
    [46]
    Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles:report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can. Mineral. 35 (1), 219-246.
    [47]
    Li, Z.-X., Li, X.-H., Zhou, H., Kinny, P.D., 2002. Grenvillian continental collision in south China:new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology 30 (2), 163-166.
    [48]
    Li, Z.-X., Wartho, J.-A., Occhipinti, S., Zhang, C.-L., Li, X.-H., Wang, J., Bao, C., 2007. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia:New mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints. Precambrian Res. 159 (1), 79-94.
    [49]
    Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V., 2008. Assembly, configuration, and break-up history of Rodinia:a synthesis. Precambrian Res. 160 (1-2), 179-210.
    [50]
    Li, X.-H., Li, W.-X., Li, Z.-X., Lo, C.-H., Wang, J., Ye, M.-F., Yang, Y.-H., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China:constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Res. 174 (1), 117-128.
    [51]
    Lin, C.L., Sun, Y., Chen, D.L., Diwu, C.R., 2006. Geochemistry and zircon LA-ICPMS dating of Yuka River granitic gneisses, northern margin of Qaidam Basin. Geochimica 35 (5), 489-505 (in Chinese with English abstract).
    [52]
    Liu, Y., 2016. Guidebook for ICPMSDataCal. China Univerisity of Geosciences, Wuhan.
    [53]
    Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C., Chen, H., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 257 (1), 34-43.
    [54]
    Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K., Wang, D., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths.J. Petrol. 51 (1-2), 537-571.
    [55]
    Liu, X.C., Wu, Y.B., Gao, S., Liu, Q., Wang, H., Qin, Z.W., Li, Q.L., Li, X.H., Gong, H.J., 2012. First record and timing of UHP metamorphism from zircon in the Xitieshan terrane:Implications for the evolution of the entire North Qaidam metamorphic belt. Am. Mineral. 97 (7), 1083-1093.
    [56]
    Lu, S., Li, H., Zhang, C., Niu, G., 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Res. 160 (1-2), 94-107.
    [57]
    Lu, Z.L., Zhang, J.X., Mattinson, C., 2018. Tectonic erosion related to continental subduction:an example from the eastern North Qaidam Mountains, NW China.J. Metamorph. Geol. 36 (5), 653-666.
    [58]
    Ludwig, K., 2012. User's Manual for Isoplot Version 3.75-4.15:a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, p. 5.
    [59]
    Marmo, B.A., Clarke, G.L., Powell, R., 2002. Fractionation of bulk rock composition due to porphyroblast growth:effects on eclogite facies mineral equilibria, Pam Peninsula, New Caledonia. J. Metamorph. Geol. 20 (1), 151-165.
    [60]
    Massonne, H.-J., 2015. Derivation of P-T paths from high-pressure metagranites-examples from the Gran Paradiso Massif, western Alps. Lithos 226, 265-279.
    [61]
    Mattinson, C.G., Wooden, J.L., Liou, J.G., Bird, D.K., Wu, C.L., 2006. Geochronology and tectonic significance of Middle Proterozoic granitic orthogneiss, North Qaidam HP/UHP terrane, Western China. Mineral. Petrol. 88 (1-2), 227-241.
    [62]
    McMenamin, M.A.S., McMenamin, D.L.S., 1990. The Emergence of Animals:The Cambrian Breakthrough. Columbia University Press, New York.
    [63]
    Meng, F.C., Zhang, J.X., Yang, J.S., 2005. Subducted continental arc:geochemical and isotopic evidence of gneisses in the North Qaidam. Acta Geol. Sin. 79 (1), 46-55 (in Chinese with English abstract).
    [64]
    Menold, C.A., Manning, C.E., Yin, A., Tropper, P., Chen, X.H., Wang, X.F., 2009. Metamorphic evolution, mineral chemistry and thermobarometry of orthogneiss hosting ultrahighpressure eclogites in the North Qaidam metamorphic belt, Western China. J. Asian Earth Sci. 35 (3-4), 273-284.
    [65]
    Menold, C.A., Grove, M., Sievers, N.E., Manning, C.E., Yin, A., Young, E.D., Ziegler, K., 2016.Argon, oxygen, and boron isotopic evidence documenting 40ArE accumulation in phengite during water-rich high-pressure subduction metasomatism of continental crust. Earth Planet. Sci. Lett. 446, 56-67.
    [66]
    Merdith, A.S., Collins, A.S., Williams, S.E., Pisarevsky, S., Foden, J.D., Archibald, D.B., Blades, M.L., Alessio, B.L., Armistead, S., Plavsa, D., Clark, C., Müller, R.D., 2017. A full-plate global reconstruction of the Neoproterozoic. Gondwana Res. 50, 84-134.
    [67]
    Mezger, K., Cosca, M.A., 1999. The thermal history of the Eastern Ghats Belt (India) as revealed by U-Pb and 40Ar/39Ar dating of metamorphic and magmatic minerals:implications for the SWEAT correlation. Precambrian Res. 94 (3-4), 251-271.
    [68]
    Moores, E.M., 1991. Southwest U.S.-East Antarctic (SWEAT) connection:a hypothesis. Geology 19 (5), 425-428.
    [69]
    Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., Chenery, S.P., 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newslett. 21 (1), 115-144.
    [70]
    Peng, Y., Yu, S., Li, S., Zhang, J., Liu, Y., Li, Y., Santosh, M., 2019. Early Neoproterozoic magmatic imprints in the Altun-Qilian-Kunlun region of the Qinghai-Tibet Plateau:response to the assembly and breakup of Rodinia supercontinent. Earth Sci. Rev. 199, 102954.
    [71]
    Ren, Y., Chen, D., Hauzenberger, C., Liu, L., Liu, X., Zhu, X., 2016. Petrology and geochronology of ultrahigh-pressure granitic gneiss from South Dulan, North Qaidam belt, NW China. Int. Geol. Rev. 58 (2), 171-195.
    [72]
    Ren, Y.F., Chen, D.L., Kelsey, D.E., Gong, X.K., Liu, L., 2017. Petrology and geochemistry of the lawsonite (pseudomorph)-bearing eclogite in Yuka terrane, North Qaidam UHPM belt:an eclogite facies metamorphosed oceanic slice. Gondwana Res. 42, 220-242.
    [73]
    Ren, Y.F., Chen, D.L., Kelsey, D.E., Gong, X.K., Liu, L., Zhu, X.H., Yang, S.J., 2018. Metamorphic evolution of a newly identified Mesoproterozoic oceanic slice in the Yuka terrane and its implications for a multi-cyclic orogenic history of the North Qaidam UHPM belt.J. Metamorph. Geol. 36 (4), 463-488.
    [74]
    Ren, Y.F., Chen, D.L., Zhu, X.H., Ren, Z.L., Gong, X.K., Luo, F.H., 2019. Two orogenic cycles recorded by eclogites in the Yuka-Luofengpo terrane:implications for the Mesoproterozoic to early Paleozoic tectonic evolution of the North Qaidam orogenic belt, NW China. Precambrian Res. 333, 105449.
    [75]
    Rubatto, D., 2002. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism. Chem. Geol. 184 (1-2), 123-138.
    [76]
    Rubatto, D., 2017. Zircon:the metamorphic mineral. Rev. Mineral. Geochem. 83 (1), 261-295.
    [77]
    Rubatto, D., Hermann, J., 2007. Zircon behaviour in deeply subducted rocks. Elements 3(1), 31-35.
    [78]
    Rubatto, D., Burger, M., Lanari, P., Hattendorf, B., Schwarz, G., Neff, C., Keresztes Schmidt, P., Hermann, J., Vho, A., Günther, D., 2020. Identification of growth mechanisms in metamorphic garnet by high-resolution trace element mapping with LA-ICPTOFMS. Contrib. Mineral. Petrol. 175 (7), 61.
    [79]
    Schulz, B., 2017. Polymetamorphism in garnet micaschists of the Saualpe Eclogite Unit(Eastern Alps, Austria), resolved by automated SEM methods and EMP-Th-U-Pb monazite dating. J. Metamorph. Geol. 35, 141-163.
    [80]
    Song, S.G., Yang, J.S., Xu, Z.Q., Liou, J.G., Shi, R.D., 2003a. Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, NW China. J. Metamorph. Geol. 21 (6), 631-644.
    [81]
    Song, S.G., Yang, J.S., Liou, J.G., Wu, C., Shi, R., Xu, Z., 2003b. Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China. Lithos 70 (3-4), 195-211.
    [82]
    Song, S., Su, L., Li, X.-H., Zhang, G., Niu, Y., Zhang, L., 2010. Tracing the 850-Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China. Precambrian Res. 183 (4), 805-816.
    [83]
    Song, S., Su, L., Li, X., Niu, Y., Zhang, L., 2012. Grenville-age orogenesis in the QaidamQilian block:the link between South China and Tarim. Precambrian Res. 220-221, 9-22.
    [84]
    Song, S., Niu, Y., Su, L., Zhang, C., Zhang, L., 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling:the example of the North Qaidam UHPM belt, NW China. Earth Sci. Rev. 129, 59-84.
    [85]
    Sun, S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42 (1), 313-345.
    [86]
    Tsujimori, T., Ernst, W.G., 2014. Lawsonite blueschist and lawsonite eclogites as proxies for palaeo-subduction zone processes:a review. J. Metamorph. Geol. 32 (5), 437-454.
    [87]
    Wan, Y.S., Xu, Z.Q., Yang, J.S., Zhang, J.X., 2001. Ages and compositions of the Precambrian high-grade basement of the Qilian terrane and its adjacent areas. Acta Geol. Sin. -Engl. Ed. 75 (4), 375-384.
    [88]
    Wang, J.Q., Liu, X.M., 2016. Proficiency testing of the XRF method for mearsuring 10 major elements in different rock types. Rocks Miner. Anal. 35 (2), 145-151.
    [89]
    White, R.W., Powell, R., Holland, T.J.B., Worley, B.A., 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions:mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3.J. Metamorph. Geol. 18 (5), 497-511.
    [90]
    White, R.W., Powell, R., Holland, T.J.B., 2001. Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-iO2-H2O (NCKFMASH). J. Metamorph.Geol. 19 (2), 139-153.
    [91]
    White, R.W., Powell, R., Holland, T.J.B., Johnson, T.E., Green, E.C.R., 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 32 (3), 261-286.
    [92]
    Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. Am.Mineral. 95 (1), 185-187.
    [93]
    Wiedenbeck, M., AllÉ, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A.V., Roddick, J.C., Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newslett. 19 (1), 1-23.
    [94]
    Xia, L., Xia, Z., Xu, X., Li, X., Ma, Z., 2012. Mid-Late Neoproterozoic rift-related volcanic rocks in China:geological records of rifting and break-up of Rodinia. Geosci. Front. 3 (4), 375-399.
    [95]
    Xiong, Q., Zheng, J., Griffin, W.L., O'Reilly, S.Y., Pearson, N.J., 2012. Decoupling of U-Pb and Lu-Hf isotopes and trace elements in zircon from the UHP North Qaidam orogen, NE Tibet (China):Tracing the deep subduction of continental blocks. Lithos 155, 125-145.
    [96]
    Xu, Z.-Q., He, B.-Z., Zhang, C.-L., Zhang, J.-X., Wang, Z.-M., Cai, Z.-H., 2013. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China:new geochronological evidence from deep drilling samples. Precambrian Res. 235, 150-162.
    [97]
    Xu, X., Song, S., Allen, M.B., Ernst, R.E., Niu, Y., Su, L., 2016. An 850-820 Ma LIP dismembered during breakup of the Rodinia supercontinent and destroyed by Early Paleozoic continental subduction in the northern Tibetan Plateau, NW China. Precambrian Res. 282, 52-73.
    [98]
    Yakymchuk, C., Clark, C., White, R.W., 2017. Phase relations, reaction sequences and petrochronology. Rev. Mineral. Geochem. 83 (1), 13-53.
    [99]
    Yang, J., Xu, Z., Song, S., Zhang, J., Wu, C., Shi, R., Li, H., Brunel, M., 2001. Discovery of coesite in the North Qaidam Early Palaeozoic ultrahigh pressure (UHP) metamorphic belt, NW China. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth Planet. Sci. 333 (11), 719-724.
    [100]
    Yang, J., Liu, F., Wu, C., Xu, Z., Shi, R., Chen, S., Deloule, E., Wooden, J.L., 2005. Two ultrahigh-pressure metamorphic events recognized in the central orogenic belt of China:evidence from the U-Pb dating of coesite-bearing zircons. Int. Geol. Rev. 47(4), 327-343.
    [101]
    Yu, S., Zhang, J., del Real, P.G., Zhao, X., Hou, K., Gong, J., Li, Y., 2013a. The Grenvillian orogeny in the Altun-Qilian-North Qaidam mountain belts of northern Tibet Plateau:Constraints from geochemical and zircon U-Pb age and Hf isotopic study of magmatic rocks. J. Asian Earth Sci. 73, 372-395.
    [102]
    Yu, S., Zhang, J., Li, H., Hou, K., Mattinson, C.G., Gong, J., 2013b. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopic composition of eclogites and their host gneisses in the Dulan area, North Qaidam UHP terrane:new evidence for deep continental subduction. Gondwana Res. 23 (3), 901-919.
    [103]
    Yu, S., Zhang, J., Sun, D., Pablo García, D.R., Li, Y., Zhao, X., Hou, K., 2015. Petrology, geochemistry, zircon U-Pb dating and Lu-Hf isotope of granitic leucosomes within felsic gneiss from the North Qaidam UHP terrane:constraints on the timing and nature of partial melting. Lithos 218-219, 1-21.
    [104]
    Yuan, H.-L., Gao, S., Dai, M.-N., Zong, C.-L., Günther, D., Fontaine, G.H., Liu, X.-M., Diwu, C., 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICPMS. Chem. Geol. 247 (1-2), 100-118.
    [105]
    Zhang, G., Zhang, L., 2011. Rodingite from oceanic lithology of Shaliuhe terrane in North Qaidam UHPM belt and its geological implications. Earth Sci. Font. 18 (2), 151-157(in Chinese with English abstract).
    [106]
    Zhang, J.X., Wan, Y.S., Meng, F.C., Yang, J.S., Xu, Z.Q., 2003. Geochemistry, Sm-Nd and U-Pb isotope study of gneisses (schist) enclosing eclogites in the North Qaidam Mountain——Deeply subducted Precambrain metamorphic basement? Acta Petrol. Sin. 19(3), 443-451 (in Chinese with English abstract).
    [107]
    Zhang, J.X., Meng, F.C., Yang, J.S., 2004. Eclogitic metapelites in the western segment of the north Qaidam Mountains:evidence on "in situ" relationship between eclogite and its country rock. Sci. China Seri. D-Earth Sci. 47 (12), 1102-1112.
    [108]
    Zhang, J.X., Yang, J.S., Mattinson, C.G., Xu, Z.Q., Meng, F.C., Shi, R.D., 2005. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China:petrological and isotopic constraints. Lithos 84 (1-2), 51-76.
    [109]
    Zhang, J.X., Yang, J.S., Meng, F.C., Wan, Y.S., Li, H.M., Wu, C.L., 2006. U-Pb isotopic studies of eclogites and their host gneisses in the Xitieshan area of the North Qaidam mountains, western China:new evidence for an early Paleozoic HP-UHP metamorphic belt. J. Asian Earth Sci. 28, 143-150.
    [110]
    Zhang, G., Song, S., Zhang, L., Niu, Y., 2008a. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China:evidence from petrology, geochemistry and geochronology. Lithos 104 (1-4), 99-118.
    [111]
    Zhang, J.X., Mattinson, C.G., Meng, F.C., Wan, Y.S., Tung, K.A., 2008b. Polyphase tectonothermal history recorded in granulitized gneisses from the north Qaidam HP/UHP metamorphic terrane, western China:evidence from zircon U-Pb geochronology. Geol. Soc. Am. Bull. 120 (5-6), 732-749.
    [112]
    Zhang, G., Ellis, D.J., Christy, A.G., Zhang, L., Niu, Y., Song, S., 2009a. UHP metamorphic evolution of coesite-bearing eclogite from the Yuka terrane, North Qaidam UHPM belt, NW China. Eur. J. Mineral. 21 (6), 1287-1300.
    [113]
    Zhang, G., Zhang, L., Song, S., Niu, Y., 2009b. UHP metamorphic evolution and SHRIMP geochronology of a coesite-bearing meta-ophiolitic gabbro in the North Qaidam, NW China. J. Asian Earth Sci. 35 (3-4), 310-322.
    [114]
    Zhang, J.X., Mattinson, C.G., Yu, S.Y., Li, J.P., Meng, F.C., 2010. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China:spatially and temporally extensive UHP metamorphism during continental subduction. J. Metamorph. Geol. 28 (9), 955-978.
    [115]
    Zhang, C., Zhang, L., Roermund, H.V., Song, S., Zhang, G., 2011. Petrology and SHRIMP U-Pb dating of Xitieshan eclogite, North Qaidam UHP metamorphic belt, NW China.J. Asian Earth Sci. 42 (4), 752-767.
    [116]
    Zhang, C., van Roermund, H., Zhang, L., Spiers, C., 2012. A polyphase metamorphic evolution for the Xitieshan paragneiss of the north Qaidam UHP metamorphic belt, western China:in-situ EMP monazite- and U-Pb zircon SHRIMP dating. Lithos 136-139, 27-45.
    [117]
    Zhang, G., Zhang, L., Christy, A.G., 2013. From oceanic subduction to continental collision:an overview of HP-UHP metamorphic rocks in the North Qaidam UHP belt, NW China. J. Asian Earth Sci. 63, 98-111.
    [118]
    Zhang, G., Zhang, L., Christy, A.G., Song, S., Li, Q., 2014a. Differential exhumation and cooling history of North Qaidam UHP metamorphic rocks, NW China:constraints from zircon and rutile thermometry and U-Pb geochronology. Lithos 205, 15-27.
    [119]
    Zhang, J.X., Mattinson, C.G., Yu, S.Y., Li, Y.S., 2014b. Early Paleozoic HP/UHT granulite in the south Altyn Tagh, north Tibet, China:new constraints from rutile-zircon thermometry and U-Pb geochronology. Lithos 200-201, 241-257.
    [120]
    Zhang, G., Ireland, T., Zhang, L., Gao, Z., Song, S., 2016a. Zircon geochemistry of two contrasting types of eclogite:Implications for the tectonic evolution of the North Qaidam UHPM belt, northern Tibet. Gondwana Res. 35, 27-39.
    [121]
    Zhang, L., Chen, R.-X., Zheng, Y.-F., Li, W.-C., Hu, Z., Yang, Y., Tang, H., 2016b. The tectonic transition from oceanic subduction to continental subduction:zirconological constraints from two types of eclogites in the North Qaidam orogen, northern Tibet.Lithos 244, 122-139.
    [122]
    Zhang, J.X., Yu, S.Y., Mattinson, C.G., 2017a. Early Paleozoic polyphase metamorphism in northern Tibet, China. Gondwana Res. 41, 267-289.
    [123]
    Zhang, C., Bader, T., Zhang, L., van Roermund, H., 2017b. The multi-stage tectonic evolution of the Xitieshan terrane, North Qaidam orogen, western China:from Grenville-age orogeny to early-Paleozoic ultrahigh-pressure metamorphism. Gondwana Res. 41, 290-300.
    [124]
    Zhao, G.C., Wang, Y.J., Huang, B.C., Dong, Y.P., Li, S.Z., Zhang, G.W., Yu, S., 2018. Geological reconstructions of the East Asian blocks:from the breakup of Rodinia to the assembly of Pangea. Earth Sci. Rev. 186, 262-286.
    [125]
    Zhou, M.-F., Yan, D.-P., Kennedy, A.K., Li, Y., Ding, J., 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet. Sci. Lett. 196 (1), 51-67.
    [126]
    Zhou, G.S., Zhang, J.X., Li, Y.S., Yu, S.Y., Yu, X.X., Mao, X.H., Lu, Z.L., 2017. Refefinition of the polyphase tectonothermal events of the North Qaidam HP/UHP metamorphic terrane:evidence from zircon and monazite U-Pb geochronology of the Yuka HP metapelites. Acta Petrol. Sin. 33 (12), 3801-3814 (in Chinese with English abstract).
    [127]
    Zhou, G.S., Zhang, J.X., Yu, S.Y., Li, Y.S., Lu, Z.L., Mao, X.H., Teng, X., 2019. Metamorphic evolution of eclogites and associated metapelites from the Yuka terrane in the North Qaidam ultrahigh pressure metamorphic belt, NW China:constraints from phase equilibrium modeling. J. Asian Earth Sci. 173, 161-175.
    [128]
    Zong, K., Chen, J., Hu, Z., Liu, Y., Li, M., Fan, H., Meng, Y., 2015. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS. Sci. China Earth Sci. 58 (10), 1731-1740.
    [129]
    Zuza, A.V., Wu, C., Reith, R.C., Yin, A., Li, J., Zhang, J., Zhang, Y., Wu, L., Liu, W., 2018. Tectonic evolution of the Qilian Shan:an early Paleozoic orogen reactivated in the Cenozoic. Geol. Soc. Am. Bull. 130 (5-6), 881-925.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (457) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return