Citation: | Bastien Soens, Matthias van Ginneken, Stepan Chernonozhkin, Nicolas Slotte, Vinciane Debaille, Frank Vanhaecke, Herman Terryn, Philippe Claeys, Steven Goderis. Australasian microtektites across the Antarctic continent: Evidence from the Sør Rondane Mountain range (East Antarctica)[J]. Geoscience Frontiers, 2021, 12(4): 101153. doi: 10.1016/j.gsf.2021.101153 |
The ~790 ka Australasian (micro) tektite strewn field is one of the most recent and best-known examples of impact ejecta emplacement as the result of a large-scale cratering event across a considerable part of Earth's surface (>10% in area). The Australasian strewn field is characterized by a tri-lobe pattern consisting of a large central distribution lobe, and two smaller side lobes extending to the west and east. Here, we report on the discovery of microtektite-like particles in sedimentary traps, containing abundant micrometeorite material, in the Sør Rondane Mountain (SRM) range of East Antarctica. The thirty-three glassy particles display a characteristic pale yellow color and are predominantly spherical in shape, except for a single dumbbell-shaped particle. The vitreous spherules range in size from 220 to 570 μm, with an average diameter of ~370 μm. This compares relatively well with the size distribution (75-778 μm) of Australasian microtektites previously recovered from the Transantarctic Mountains (TAM) and located ca. 2500-3000 km from the SRM. In addition, the chemical composition of the SRM particles exhibits limited variation and is nearly identical to the ‘normal-type’ (i.e.,<6% MgO) TAM microtektites. The Sr and Nd isotope systematics for a single batch of SRM particles (n=26) strongly support their affiliation with TAM microtektites and the Australasian tektite strewn field in general. Furthermore, Sr isotope ratios and Nd model ages suggest that the target material of the SRM particles was composed of a plagioclase- or carbonate-rich lithology derived from a Paleo- or Mesoproterozoic crustal unit. The affiliation to the Australasian strewn field requires long-range transportation, with estimated great circle distances of ca. 11,600 km from the hypothetical source crater, provided transportation occurred along the central distribution lobe. This is in agreement with the observations made for the Australasian microtektites recovered from Victoria Land (ca. 11,000 km) and Larkman Nunatak (ca. 12,000 km), which, on average, decrease in size and alkali concentrations (e.g., Na and K) as their distance from the source crater increases. The values for the SRM particles are intermediate to those of the Victoria Land and Larkman Nunatak microtektites for both parameters, thus supporting this observation. We therefore interpret the SRM particles as ‘normal-type’ Australasian microtektites, which significantly extend the central distribution lobe of the Australasian strewn field westward. Australasian microtektite distribution thus occurred on a continent-wide scale across Antarctica and allows for the identification of new, potential recovery sites on the Antarctic continent as well as the southeastern part of the Indian Ocean. Similar to volcanic ash layers, the ~790 ka distal Australasian impact ejecta are thus a record of an instantaneous event that can be used for time-stratigraphic correlation across Antarctica.
[1] |
Ackerman, L., Skála, R., Křížová, Š., Žák, K., Magna, T., 2019. The quest for an extraterrestrial component in Muong Nong-type and splash-form Australasian tektites from Laos using highly siderophile elements and Re-Os isotope systematics. Geochim.Cosmochim. Acta 56, 483-492. https://doi.org/10.1016/j.gca.2019.03.009.
|
[2] |
Ackerman, L., Žák, K., Skála, R., Rejšek, J., Křížová, Š., Wimpenny, J., Magna, T., 2020. Sr-NdPb isotope systematics of Australasian tektites:Implications for the nature and composition of target materials and possible volatile loss of Pb. Geochim. Cosmochim.Acta 276, 135-150. https://doi.org/10.1016/j.gca.2020.02.025.
|
[3] |
Artemieva, N., Pierazzo, E., Stöffler, D., 2002. Numerical modeling of tektite origin in oblique impacts:implications to Ries-Moldavites strewn field. Bull. Czech Geol. Survey 77, 303-311.
|
[4] |
Barnes, V.E., 1964. Variation of petrographic and chemical characteristics of indochinite tektites within their strewn-field. Geochim. Cosmochim. Acta 28, 893-913. https://doi.org/10.1016/0016-7037(64)90038-9.
|
[5] |
Blum, J.D., Papanastassiou, D.A., Wasserburg, G.J., Koeberl, C., 1992. Neodymium and strontium isotopic study of Australasian tektites-New constraints on the provenance and age of the target materials. Geochim. Cosmochim. Acta 56, 483-492.https://doi.org/10.1016/0016-7037(92)90146-A.
|
[6] |
Cassidy, W.A., Glass, B.P., Heezen, B.C., 1969. Physical and chemical properties of Australasian microtektites. J. Geophys. Res. 74, 1008-1025. https://doi.org/10.1029/JB074i004p01008.
|
[7] |
Cavosie, A.J., Timms, N.E., Erickson, T.M., Koeberl, C., 2017. New clues from Earth's most elusive impact crater:evidence of reidite in Australasian tektites from Thailand. Geology 46, 203-206. https://doi.org/10.1130/G39711.1.
|
[8] |
Chauvel, C., Blichert-Toft, J., 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet. Sci. Lett. 190, 137-151. https://doi.org/10.1016/S0012-821X(01)00379-X.
|
[9] |
Compston, W., Chapman, D.R., 1969. Sr isotope patterns within the Southeast Australasian strewn-field. Geochim. Cosmochim. Acta 33, 1023-1036. https://doi.org/10.1016/0016-7037(69)90058-1.
|
[10] |
Cordier, C., Folco, L., Taylor, S., 2011. Vestoid cosmic spherules from the South Pole Water well and Transantarctic Mountains (Antarctica):a major and trace element study.Geochim. Cosmochim. Acta 75, 1199-1215. https://doi.org/10.1016/j.gca.2010.11.024.
|
[11] |
Cordier, C., Suavet, C., Folco, L., Rochette, P., Sonzogni, C., 2012. HED-like cosmic spherules from the Transantarctic Mountains, Antarctica:Major and trace element abundances and oxygen isotope compositions. Geochim. Cosmochim. Acta 77, 515-529. https://doi.org/10.1016/j.gca.2011.10.021.
|
[12] |
Curzio, P., Folco, L., Laurenzi, M.A., Mellini, M., Zeoli, A., 2008. A tephra chronostratigraphic framework for the Frontier Mountain blue-ice field (northern Victoria Land, Antarctica). Quat. Sci. Rev. 27, 602-620. https://doi.org/10.1016/j.quascirev.2007.11.017.
|
[13] |
Das Gupta, R., Banerjee, A., Goderis, S., Claeys, Ph., Vanhaecke, F., Chakrabarti, R., 2017. Evidence for a chondritic impactor, evaporation-condensation effects and melting of the Precambrian basement beneath the "target" Deccan basalts at Lonar crater, India.Geochim. Cosmochim. Acta 215, 51-75. https://doi.org/10.1016/j.gca.2017.07.022.
|
[14] |
Deutsch, A., Koeberl, C., 2006. Establishing the link between the Chesapeake Bay impact structure and the north American tektite strewn field:the Sr-Nd isotopic evidence.Meteorit. Planet. Sci. 41, 689-703. https://doi.org/10.1111/j.1945-5100.2006.tb00985.x.
|
[15] |
Faure, G., 1986. Principles of Isotope Geology. J. Wiley & Sons, Chichester, p. 589.
|
[16] |
Folco, L., 2020. Antarctica:a treasure-trove for planetary sciences. Australasian microtektites from East Antarctica. 51st Lunar and Planetary Science Conference.Houston, Texas.
|
[17] |
Folco, L., Rochette, P., Perchiazzi, N., D'Orazio, M., Laurenzi, M., Tiepolo, M., 2008.Microtektites from Victoria Land Transantarctic Mountains. Geology 36, 291-294.https://doi.org/10.1130/G24528A.1.
|
[18] |
Folco, L., D'Orazio, M., Tiepolo, M., Tonarini, S., Ottolini, L., Perchiazzi, N., Rochette, P., Glass, B.P., 2009. Transantarctic Mountain microtektites:geochemical affinity with Australasian microtektites. Geochim. Cosmochim. Acta 73, 3694-3722. https://doi.org/10.1016/j.gca.2009.03.021.
|
[19] |
Folco, L., Glass, B.P., D'Orazio, M., Rochette, P., 2010a. A common volatilization trend in Transantarctic Mountain and Australasian microtektites:implications for their formation model and parent crater location. Earth Planet. Sci. Lett. 293, 135-139.https://doi.org/10.1016/j.epsl.2010.02.037.
|
[20] |
Folco, L., Perchiazzi, N., D'Orazio, M., Frezzotti, M.L., Glass, B.P., Rochette, P., 2010b.
|
[21] |
Shocked quartz and other mineral inclusions in Australasian microtektites. Geology 38, 211-214. https://doi.org/10.1130/G30512.1.
|
[22] |
Folco, L., Bigazzi, G., D'Orazio, M., Balestrieri, M.L., 2011. Fission track age of Transantarctic Mountain microtektites. Geochim. Cosmochim. Acta 75, 2356-2360. https://doi.org/10.1016/j.gca.2011.02.014.
|
[23] |
Folco, L., D'Orazio, M., Gemelli, M., Rochette, P., 2016. Stretching out the Australasian microtektite strewn field in Victoria Land Transantarctic Mountains. Polar Sci. 10, 147-159. https://doi.org/10.1016/j.polar.2016.02.004.
|
[24] |
Folco, L., Glass, B.P., D'Orazio, M., Rochette, P., 2018. Impactor identification in Australasian microtektites based on Cr, Co and Ni ratios. Geochim. Cosmochim. Acta 222, 550-568. https://doi.org/10.1016/j.gca.2017.11.017.
|
[25] |
Genge, M.J., van Ginneken, M., Suttle, M.D., Harvey, R.P., 2018. Accumulation mechanisms of micrometeorites in an ancient supraglacial moraine at Larkman Nunatak, Antarctica. Meteorit. Planet. Sci. 53, 2051-2066. https://doi.org/10.1111/maps.13107.
|
[26] |
van Ginneken, M., Perchiazzi, N., Folco, L., Rochette, P., Bland, P.A., 2010. Meteoritic ablation debris from the Transantarctic Mountains:evidence for a Tunguska-like impact over Antarctica ca. 480 ka ago. Earth Planet. Sci. Lett. 293, 104-113. https://doi.org/10.1016/j.epsl.2010.02.028.
|
[27] |
van Ginneken, M., Genge, M.J., Harvey, R.P., 2018. A new type of highly-vaporized microtektite from the Transantarctic Mountains. Geochim. Cosmochim. Acta 228, 81-94. https://doi.org/10.1016/j.gca.2018.02.041.
|
[28] |
Glass, B.P., Fries, M., 2008. Micro-Raman spectroscopic study of fine-grained, shockmetamorphosed rock fragments from the Australasian microtektite layer. Meteorit.Planet. Sci. 43, 1487-1496. https://doi.org/10.1111/j.1945-5100.2008.tb01023.x.
|
[29] |
Glass, B.P., Koeberl, C, 2006. Australasian microtektites and associated impact ejecta in the South China Sea and Middle Pleistocene supereruption of Toba. Meteorit. Planet. Sci. 41, 305-326. https://doi.org/10.1111/j.1945-5100.2006.tb00211.x.
|
[30] |
Glass, B.P., Pizzuto, J.E., 1994. Geographic variation in Australasian microtektite concentrations:Implications concerning the location and size of the source crater. J. Geophys.Res. 99, 19075-19081. https://doi.org/10.1029/94JE01866.
|
[31] |
Glass, B.P., Simonson, B.M., 2013. Distal Impact Ejecta Layers. A record of large impact impacts in sedimentary deposits. Springer-Verlag, Berlin, p. 716.
|
[32] |
Glass, B.P., Wu, J., 1993. Coesite and shocked quartz discovered in Australasian and north American microtektite layers. Geology 21, 435-438. https://doi.org/10.1130/0091-7613(1993)021<0435:CASQDI>2.3.CO;2.
|
[33] |
Glass, B.P., Huber, H., Koeberl, C., 2004. Geochemistry of Cenozoic microtektites and clinopyroxene-bearing spherules. Geochim. Cosmochim. Acta 68, 3971-4006.https://doi.org/10.1016/j.gca.2004.02.026.
|
[34] |
Glass, B.P., Folco, L., Masotta, M., Campanale, F., 2020. Coesite in a Muong Nong-type tektite from Muong Phin, Laos:Description, formation, and survival. Meteorit. Planet. Sci. 55, 253-273. https://doi.org/10.1111/maps.13433.
|
[35] |
Goderis, S., Tagle, R., Fritz, J., Bartoschewitz, R., Artemieva, N., 2017. On the nature of the Ni-rich component in splash-form Australasian tektites. Geochim. Cosmochim. Acta 217, 28-50. https://doi.org/10.1016/j.gca.2017.08.013.
|
[36] |
Goderis, S., Soens, B., Huber, M.S., McKibbin, S., van Ginneken, M., Van Maldeghem, F., Debaille, V., Greenwood, R.C., Franchi, I.A., Cnudde, V., Van Malderen, S., Vanhaecke, F., Koeberl, C., Topa, D., Claeys, Ph., 2020. Cosmic spherules from Widerøfjellet, Sør Rondane Mountains (East Antarctica). Geochim. Cosmochim. Acta 270, 112-143.https://doi.org/10.1016/j.gca.2019.11.016.
|
[37] |
Jourdan, F., Nomade, S., Wingate, M.T.D., Eroglu, E., Deino, A., 2019. Ultraprecise age and formation temperature of the Australasian tektites constrained by 40Ar/39Ar analyses.Meteorit. Planet. Sci. 54, 2573-2591. https://doi.org/10.1111/maps.13305.
|
[38] |
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J.M., Chappellaz, J., Fischer, H., Gallet, J.C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J.P., Stenni, B., Stocker, T.F., Tison, J.L., Werner, M., Wolff, E.W., 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793-796. https://doi.org/10.1126/science.1141038.
|
[39] |
Koeberl, C., 1994. Tektite origin by hypervelocity asteroidal or cometary impact:target rocks, source craters, and mechanism. In:Dressler, B.O., Grieve, R.A., Sharpton, V.L.(Eds.), Large Meteorite Impacts and Planetary Evolution. vol. 293. Geological Society of America Special Paper, pp. 133-151. https://doi.org/10.1130/SPE293-p133.
|
[40] |
Lee, Y.T., Chen, J.C., Ho, K.S., Juang, W.S., 2004. Geochemical studies of tektites from East Asia. Geochem. J. 38, 1-17. https://doi.org/10.2343/geochemj.38.1.
|
[41] |
Liew, T.C., Hofmann, A.W., 1988. Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of Central Europe:indications from a Nd and Sr isotopic study. Contrib. Mineral. Petrol. 98, 129-138. https://doi.org/10.1007/BF00402106.
|
[42] |
Lodders, K., 2003. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220-1247. https://doi.org/10.1086/375492.
|
[43] |
Ma, P., Aggrey, K., Tonzola, C., Schnabel, C., de Nicola, P., Herzog, G.F., Wasson, J.T., Glass, B.P., Brown, L., Tera, F., Klein, J., 2004. Beryllium-10 in Australasian tektites:constraints on the location of the source crater. Geochim. Cosmochim. Acta 68, 3883-3896. https://doi.org/10.1016/j.gca.2004.03.026.
|
[44] |
Masotta, M., Peres, S., Folco, L., Mancini, L., Rochette, P., Glass, B.P., Campanale, F., Gueninchault, N., Radica, F., Singsoupho, S., Navarro, E., 2020. 3D X-ray tomographic analysis reveals how coesite is preserved in Muong Nong-type tektites. Sci. Rep. 10, 20608. https://doi.org/10.1038/s41598-020-76727-6.
|
[45] |
Melosh, H.J., 1989. Impact Cratering. A Geological Process. Oxford Monographs on Geology and Geophysics No. 11. Oxford University Press, Oxford, p. 245.
|
[46] |
Michard, A., Gurriet, P., Soudant, M., Albaréde, F., 1985. Nd isotopes in French Phanerozoic shales:external vs. internal aspects of crustal evolution. Geochim. Cosmochim. Acta 49, 601-610. https://doi.org/10.1016/0016-7037(85)90051-1.
|
[47] |
Montanari, A., Koeberl, C., 2000. Impact Stratigraphy. The Italian Record. Springer-Verlag, Berlin, p. 366.
|
[48] |
Perchiazzi, N., Folco, L., Mellini, M., 1999. Volcanic ash bands in the Frontier Mountains and Lichen Hills blue ice fields, northern Victoria Land. Antarct. Sci. 11, 353-361.https://doi.org/10.1017/S0954102099000449.
|
[49] |
Prasad, M.S., Mahale, V.P., Kodagali, V.N., 2007. New sites of Australasian microtektites in the Central Indian Ocean:implications for the location and size of source crater.J. Geophys. Res. 112, E06007. https://doi.org/10.1029/2006JE002857.
|
[50] |
Rochette, P., Folco, L., Suavet, C., van Ginneken, M., Gattacceca, J., Perchiazzi, N., Braucher, R., Harvey, R.P., 2008. Micrometeorites from the Transantarctic Mountains. Proc. Natl Acad. Sci. USA 105, 18206-18211. https://doi.org/10.1073/pnas.0806049105.
|
[51] |
Rochette, P., Braucher, R., Folco, L., Horng, C.S., Aumaître, G., Bourlès, D.L., Keddadouche, K., 2018. 10Be in Australasian microtektites compared to tektites:size and geographic controls. Geology 46, 803-806. https://doi.org/10.1130/G45038.1.
|
[52] |
Rochette, P., Braucher, R., Folco, L., Horng, C.S., Aumaître, G., Bourlès, D.L., Keddadouche, K., 2019. 10Be in Australasian microtektites compared to tektites:size and geographic controls. Geology 47, e460. https://doi.org/10.1130/G46156Y.1.
|
[53] |
Schwarz, W.H., Trieloff, M., Bollinger, K., Gantert, N., Fernandes, V.A., Meyer, H.-P., Povenmire, H., Jessberger, E.K., Guglielmino, M., Koeberl, C., 2016. Coeval ages of Australasian, central American and Western Canadian tektites reveal multiple impacts 790 ka ago. Geochim. Cosmochim. Acta 178, 307-319.
|
[54] |
Shaw, H.F., Wasserburg, G.J., 1982. Age and provenance of the target materials for tektites and possible impactites as inferred from Sm-Nd and Rb-Sr systematics. Earth Planet.Sci. Lett. 60, 155-177. https://doi.org/10.1016/0012-821X(82)90001-2.
|
[55] |
Sieh, K., Herrin, J., Jicha, B., Schonwalder, Angel D., Moore, J.D.P., Banerjee, P., Wiwegwin, W., Sihavong, V., Singer, B., Chualaowanich, T., Charusiri, P., 2020. Australasian impact crater buried under the Bolaven volcanic field, Southern Laos. Proc. Natl. Acad. Sci. U.S. A. 117, 1346-1353. https://doi.org/10.1073/pnas.1904368116.
|
[56] |
Soens, B., van Ginneken, M., Debaille, V., Vanhaecke, F., Claeys, Ph., Goderis, S., 2019.Microtektites from the Sør Rondane Mountains, East Antarctica:Towards an extension of the Australasian strewn field? 82nd Annual Meeting of the Meteoritical Society. Sapporo, Japan Suavet, C., Rochette, P., Kars, M., Gattacceca, J., Folco, L., Harvey, R.P., 2009. Statistical properties of the Transantarctic Mountains (TAM) micrometeorite collection. Polar Sci. 3, 100-109. https://doi.org/10.1016/j.polar.2009.06.003.
|
[57] |
Suganuma, Y., Miura, G.-H., Zondervan, A., Okuno, J., 2014. East Antarctic deglaciation and the link to global cooling during the Quaternary:evidence from glacial geomorphology and 10Be surface exposure dating of the Sør Rondane Mountains, Dronning Maud Land. Quat. Sci. Rev. 97, 102-120. https://doi.org/10.1016/j.quascirev.2014.05.007.
|
[58] |
Suttle, M.D., Folco, L., 2020. The extraterrestrial dust flux:Size distribution and mass contribution estimates inferred from the Transantarctic Mountains (TAM) micrometeorite collection. J. Geophys. Res. Planets 125. https://doi.org/10.1029/2019JE006241.
|
[59] |
Taylor, S., Herzog, G.F., Delaney, J.S., 2007. Crumbs from the crust of Vesta:Achondritic cosmic spherules from the south Pole water well. Meteorit. Planet. Sci. 42, 223-233. https://doi.org/10.1111/j.1945-5100.2007.tb00229.x.
|
[60] |
Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continental crust.Rev. Geophys. 33, 241-265. https://doi.org/10.1029/95RG00262.
|
[61] |
Walter, L.S., 1965. Coesite discovered in tektites. Science 147, 1029-1032. https://doi.org/10.1126/science.147.3661.1029.
|
[62] |
Wasserburg, G.J., Jacobsen, S.B., DePaolo, D.J., McCulloch, M.T., Wen, T., 1981. Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions.Geochim. Cosmochim. Acta 45, 2311-2324. https://doi.org/10.1016/0016-7037(81) 90085-5.
|
[63] |
Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J., Williams, G.A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J.S., Goolaerts, A., Friedman, R.M., Mahoney, J.B., 2006. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. 7, 1-30. https://doi.org/10.1029/2006GC001283.
|
[64] |
Whymark, A., 2018. Further geophysical data in the search for the Australasian tektite source crater location in the Song Hong-Yinggehai Basin, Gulf of Tonkin. 49th Lunar and Planetary Science Conference. Texas, Houston.
|