Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Ali A. Khudeir, Jean-Louis Paquette, Kirsten Nicholson, Åke Johansson, Tyrone O. Rooney, Sadiq Hamid, Mohamed A. El-Fadly, Loretta Corcoran, Shawn J. Malone, Mohamed Ali Abu El-Rus. On the cratonization of the Arabian-Nubian Shield: Constraints from gneissic granitoids in south Eastern Desert, Egypt[J]. Geoscience Frontiers, 2021, 12(4): 101148. doi: 10.1016/j.gsf.2021.101148
Citation: Ali A. Khudeir, Jean-Louis Paquette, Kirsten Nicholson, Åke Johansson, Tyrone O. Rooney, Sadiq Hamid, Mohamed A. El-Fadly, Loretta Corcoran, Shawn J. Malone, Mohamed Ali Abu El-Rus. On the cratonization of the Arabian-Nubian Shield: Constraints from gneissic granitoids in south Eastern Desert, Egypt[J]. Geoscience Frontiers, 2021, 12(4): 101148. doi: 10.1016/j.gsf.2021.101148

On the cratonization of the Arabian-Nubian Shield: Constraints from gneissic granitoids in south Eastern Desert, Egypt

doi: 10.1016/j.gsf.2021.101148
Funds:

The present manuscript is the outcome of a joint research project between Assiut University, Université

Clermont-Auvergne, Ball State University, Swedish Museum of Natural History, Michigan State University and Notre Dame University. Field work was carried out with logistical and financial support from the Geology Department, Assiut University. Major and trace elements analyses were carried out with a grant from Science and Technology Development Fund (STDF), Egypt to Ali Abu El-Rus (contract no. 6107). U-Pb analyses of zircons were funded through a Ball-State University internal grant to K. Nicholson and S. Malone. Constructive comments by A. Abbo, H. Gamal El Dien, an anonymous reviewer, associate editor C. Spencer and editorial advisor M Santosh contributed to improving the original manuscript.

  • Received Date: 2020-08-25
  • Rev Recd Date: 2021-01-01
  • The Shaitian granite complex (SGC) spans more than 80 Ma of crustal growth in the Arabian-Nubian Shield in southeast Egypt. It is a voluminous composite intrusion (60 km2) comprising a host tonalite massif intruded by subordinate dyke-like masses of trondhjemite, granodiorite and monzogranite. The host tonalite, in turn, encloses several, fine-grained amphibolite enclaves. U-Pb zircon dating indicates a wide range of crystallization ages within the SGC (800 ±18 Ma for tonalites; 754 ±3.9 Ma for trondhjemite; 738 ±3.8 Ma for granodiorite; and 717 ±3.2 Ma for monzogranite), suggesting crystallization of independent magma pulses. The high positive εNdi (+6-+8) indicate that the melting sources were dominated by juvenile material without any significant input from older crust. Application of zircon saturation geothermometry indicates increasing temperatures during the generation of melts from 745 ±31℃ for tonalite to 810 ±25℃ for trondhjemite; 840 ±10℃ for granodiorite; and 868 ±10℃ for monzogranite. The pressure of partial melting is loosely constrained to be below the stability of residual garnet (<10 kbar) as inferred from the almost flat HREE pattern ((Gd/Lu)N=0.9-1.1), but >3 kbar for the stability of residual amphibole as inferred from the significantly lower NbN and TaN compared with LREEN and the sub-chondrite Nb/Ta ratios exhibited by the granitic phases. The inverse relation between the generation temperatures and the ages estimates of the granitoid lithologies argue against a significant role of fractional crystallization. The major and trace element contents indicate the emplacement of the SGC within a subduction zone setting. It lacks distinctive features for melt derived from a subducted slab (e.g. high Sr/Y and high (La/Yb)N ratios), and the relatively low MgO and Ni contents in all granite phases within the SGC suggest melting within the lower crust of an island arc overlying a mantle wedge. Comparison with melts produced during melting experiments indicates an amphibolite of basaltic composition is the best candidate as source for the tonalite, trondhjemite and granodiorite magmas whereas the monzogranite magma is most consistent with fusion of a tonalite protolith. Given the overlapping Sm-Nd isotope ratios as well as several trace element ratios between monzogranite and tonalite samples, it is reasonable to suggest that the renewed basaltic underplating may have caused partial melting of tonalite and the emplacement of monzogranite melt within the SGC. The emplacement of potassic granite (monzogranite) melts subsequent to the emplacement of Na-rich granites (tonalitetrondhjemite-granodiorite) most likely suggests major crustal thickening prior arc collision and amalgamation into the over thickened proto-crust of the Arabian-Nubian shield. Eventually, after complete consolidation, the whole SGC was subjected to regional deformation, most probably during accretion to the Saharan Metacraton (arc-continent collisions) in the late Cryogenian -Ediacaran times (650-542 Ma).

  • loading
  • [1]
    Abbo, A., Avigad, D., Gerdes, A., 2018. The lower crust of the Northern broken edge of Gondwana:Evidence for sediment subduction and syn-Variscan anorogenic imprint from zircon U-Pb-Hf in granulite xenoliths. Gondwana Res. 64, 84-96.
    [2]
    Abdel-Rahman, A.M., 2019. Geochemistry, age and origin of the Mons Claudianus TTG batholith (Egypt):Insight into the role of Pan-African magmatism in uniting plates of Gondwana. Geol. Mag. 156, 969-988.
    [3]
    Abdel-Rahman, A.M., 2020. Petrogenesis of a rare Ediacaran tonalite-trondhjemite-granodiorite suite, Egypt, and implications for Neoproterozoic Gondwana assembly.Geol. Mag https://doi.org/10.1017/S0016756820000795.
    [4]
    Abu El-Ela, F.F., Abu El-Rus, M.A., Mohamed, M.A., Gahlan, H.A., 2017. Cold plutonism in the Arabian-Nubian Shield:evidence from the Abu Diab garnet-bearing leucogranite, central Eastern Desert, Egypt. J. Geol. Soc. London 174, 1031-1047.
    [5]
    Abu El-Rus, M.A., 1991. Geological studies on Abu Ghalaga area, Eastern Desert, Egypt.M.S. thesis. Assiut University 255 pp.
    [6]
    Abu El-Rus, M.A., 2003. Trace element modelling of magma evolution in the FongenHyllingen Intrusion, Trondheim region. Norway J. Mineral. Petrol. Sci. 98, 47-76.
    [7]
    Abu El-Rus, M.A., Chazot, G., Vannucci, R., Paquette, J., 2018. Tracing the HIMU component within Pan-African lithosphere beneath northeast Africa:Evidence from Late Cretaceous Natash alkaline volcanics, Egypt. Lithos 300-301, 136-153.
    [8]
    Abu El-Rus, M.A., Mohamed, A.M., Lindh, A., 2017. Mueilha rare metals granite, Eastern Desert of Egypt:An example of a magmatic-hydrothermal system in the ArabianNubian Shield. Lithos 294-295, 362-382.
    [9]
    van Achterbergh, E., Ryan, C.G., Jackson, S.E., Griffin, W.L., 2001. Data reduction software for LA-ICP-MS. In:Sylvester, P. (Ed.), Laser ablation-ICPMS in the earth science. 29.Mineralogical Association of Canada, pp. 239-243.
    [10]
    Akaad, M.K., Noweir, A.M., 1980. Geology and lithostratigraphy of the Arabian Desert orogenic belt of Egypt between latitudes 25°35'N and 26°30'N. Inst. Appl. Geol. Bull.(King Abdulaziz Univ. Jeddah) 3, 127-135.
    [11]
    Al-Mishwat, A.T., Nasir, S.J., 2004. Composition of the lower crust of the Arabian Plate:A xenolith perspective. Lithos 72, 45-72.
    [12]
    Andresen, A., Abu El-Rus, M.A., Myhre, P.I., Boghdady, G.Y., Corfu, F., 2009. U-Pb TIMS age constraints on the evolution of the Neoproterozoic Meatiq Gneiss Dome, Eastern Desert. Egypt. Int. J Earth Sci. 98, 481-497.
    [13]
    Andresen, A., Augland, L., Boghdady, G., Lundmark, A., Elnady, O., Hassan, M., Abu El-Rus, M.A., 2010. Structural constraints on the evolution of the Meatiq gneiss dome(Egypt). East-African Orogen. J. Afr. Earth Sci. 57, 413-422.
    [14]
    Arndt, N., 2013. Formation and evolution of the continental crust. Geochem. Perspect.Lett. 2, 405-533.
    [15]
    Arth, J.G., Barker, F., Peterman, Z.E., Friedman, I., 1978. Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of south- west Finland and its implications for the origin of tonalite and trondhjemite magmas. J. Petrol. 19, 289-316.
    [16]
    Atherton, M.P., Petford, N., 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362, 144-146.
    [17]
    Ballouard, C.M., Poujol, M., Boulvais, P., Branquet, Y., Tartèse, R., Vigneresse, J.L., 2016. NbTa fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition. Geology 44, 231-234.
    [18]
    Barbarin, B., 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:Nature, origin, and relations with the hosts. Lithos 80, 155-177.
    [19]
    Barbey, P., Denèle, Y., Paquette, J.L., Berger, J., Ganne, J., Roques, D., 2018. The Marbat metamorphic core-complex Southern Arabian Peninsula:Reassessment of the evolution of a Tonian island-arc from petrological, geochemical and U-Pb zircon data. Precambrian Res. 305, 91-110.
    [20]
    Barker, F., 1979. Trondhjemite:Definition, environment and hypotheses of origin. In:Barker, F. (Ed.), Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam, pp. 1-12.
    [21]
    Barovich, K.M., Patchett, P.J., 1992. Behavior of isotopic systematics during deformation and metamorphism:A Hf, Nd and Sr isotopic study of mylonitized granite. Contrib.Mineral. Petrol. 109, 386-393.
    [22]
    Bau, M., 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib.Mineral. Petrol. 123, 323-333.
    [23]
    Bea, F., 2010. Crystallization dynamics of granite magma chambers in the absence of regional stress:Multiphysics modeling with natural examples. J. Petrol. 51, 1541-1569.
    [24]
    Bea, F., Pereira, M.D., Stroh, A., 1994. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem. Geol. 117, 291-312.
    [25]
    Beard, J.S., Lofgren, G.E., 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb. J. Petrol. 32, 465-501.
    [26]
    Bédard, J.H., 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithopsheric mantle. Geochem. Cosmochim. Acta. 70, 1188-1214.
    [27]
    Béeri-Shlevin, Y., Katzir, Y., Blichert-Toft, J., Kleinhanns, I.C., Whitehouse, M.J., 2010. NdSr-Hf-O isotope provinciality in the northernmost Arabian-Nubian Shield:Implications for crustal evolution. Contrib. Mineral. Petrol. 160, 181-201.
    [28]
    Boudier, F., Nicolas, A.J.S., Kienast, J.R., Mevel, C., 1988. The gneiss of Zabargad Island:Deep crust of a rift. Tectonophysics 150, 209-227.
    [29]
    Brown, G.C., 1986. Processes and problems in the continental lithosphere:Geological history and physical implications. In:Snelling, N.J. (Ed.), Geochronology and geological record. Geol. Soc. Lond. Mem 10, pp. 326-346.
    [30]
    Carroll, M.R., Wyllie, P.J., 1990. The system tonalite-H2O at 15 kbar and the genesis of calcalkaline magmas. Amer. Miner. 75, 345-357.
    [31]
    Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and geochemistry of Camiguin Island, southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting. Contrib. Mineral. Petrol. 134, 33-51.
    [32]
    Cawood, P.A., Hawkesworth, C.J., Dhuime, B., 2013. The continental record and the generation of continental crust. Geol. Soc. Am. Bull. 125, 14-32.
    [33]
    Champion, D., 2013. Neodymium depleted mantle model age map of Australia Explanatory notes and user guide. Geosci. Aus. Rec. 44, 209.
    [34]
    Coleman, D.S., Gray, W., Glazer, A.F., 2004. Rethinking the emplacement and evolution of zoned plutons:Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32, 433-436.
    [35]
    Collins, W.J., Richards, S.R., Healy, B.E., Ellison, P.I., 2000. Origin of heterogeneous mafic enclaves by two-stage hybridization in magma conduits (dykes) below and in granitic magma chambers. Trans. R. Soc. Edinburgh. Earth Sci. 91, 27-45.
    [36]
    Cox, G.M., Foden, J., Collins, A.S., 2019. Late Neoproterozoic adakitic magmatism of the eastern Arabian Nubian Shield. Geosci. Front. 10, 1981-1992.
    [37]
    Davies, J.H., Stevenson, D.J., 1992. Physical model of source region of subduction zone volcanics. J. Geophys. Res. 97, 2037-2070.
    [38]
    Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662-665.
    [39]
    Defant, M.J., Jackson, T.E., Drummond, M.S., De Boer, J.Z., Bellon, H., Feigenson, M.D., Maury, R.C., Stewart, R.H., 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica:An overview. J. Geol. Soc. London 149, 569-579.
    [40]
    Deyhimi, M., Kananiana, A., Mirnejad, H., Sepidbar, F., Vlastelic, I., Paquette, J.L., Barbarin, B., 2019. Zircon U-Pb geochronology, major-trace elements and Sr-Nd isotope geochemistry of Mashhad granodiorites (NE Iran) and their mafic microgranular enclaves:Evidence for magma mixing and mingling. Int. Geol. Rev. https://doi.org/10.1080/00206814.2019.1600435.
    [41]
    Dickin, A.P., 1995. Radiogenic Isotope Geology. Cambridge University Press, Cambridge 452 pp.
    [42]
    Dong, G., Luo, M., Mo, X., Zhao, Z., Dong, L., Yu, X., Wang, X., Li, X., Huang, X., Liu, Y., 2018.Petrogenesis and tectonic implications of early Paleozoic granitoids in East Kunlun belt Evidences from geochronology, geochemistry and isotopes. Geosci. Front. 9, 1383-1397.
    [43]
    Drummond, M.S., Defant, M.J., 1990. A model for trondhjemite ±tonalite ±dacite genesis and crustal growth via slab melting:Archean to modern comparisons. J. Geophys.Res. 95, 21503-21521.
    [44]
    El-Fadly, M.A., Hamid, S., Abu-El-Rus, M.A., Khudeir, A.A., 2018. An inquiry into the structural evolution of the Neoproterozoic Shait granite complex, South Eastern Desert, Egypt. J. Geol., Assiut Uni. 47, 1-16.
    [45]
    El-Gaby, S., 1975. Petrochemistry of some granites from Egypt. Neues Jahrb Mineral Abh 124, 147-189.
    [46]
    El-Gaby, S., El-Aref, M., 1977. Geological, petrochemical and geochemical studies on the Shait granite at Wadi Shait, Eastern Desert Egypt. Bull. Fac. Sci. Assiut Univ. 6, 307-339.
    [47]
    El-Gaby, S., List, F.K., Tehrani, R., 1988. Geology, evolution and metallogenesis of the PanAfrican Belt in Egypt. In:El Gaby, S., Greiling, R. (Eds.), The Pan-African belt of NE Africa and adjacent areas, tectonic evolution and economic aspects. Vieweg, Braunschweig, Wiesbaden, pp. 17-68.
    [48]
    Elisha, B., Katzir, Y., Kylander-Clark, A., Golan, T., Coble, M.A., 2019. The timing of migmatization in the northern Arabian-Nubian Shield:Evidence for a juvenile sedimentary component in collision-related batholiths. J. Metamorph. Geol. 37, 591-610.
    [49]
    Elisha, B., Kylander-Clark, A., Katzir, Y., 2017. Ediacaran (~620 Ma) high-grade regional metamorphism in the northern Arabian Nubian Shield:U-Th-Pb monazite ages of the Elat schist. Precambrian Res. 295, 172-186.
    [50]
    El-Kaluobi, B.A., El-Ramly, M.F., 1991. Nomenclature, origin and tectonic setup of the granite suite at Wadi Shait, South Eastern Desert, Egypt. Ann. Geol. Surv. Egypt XVII 1-17.
    [51]
    Eyal, M., Beéri-Shlevin, Y., Eyal, Y., Whitehouse, M.J., Litvinovsky, B., 2014. Three successive Proterozoic island arcs in the Northern Arabian-Nubian Shield:Evidence from SIMS U-Pb dating of zircon. Gondwana Res. 25, 338-357.
    [52]
    Eyal, Y., Eyal, M., Litvinovsky, B., Jahn, B.M., Calvo, R., Golan, T., 2019. The evolution of the Neoproterozoic Elat Metamorphic Complex, northernmost Arabian-Nubian Shield:Island arc to syncollisional stage and post-collisional magmatism. Precambrian Res. 320, 137-170.
    [53]
    Feeley, T.C., Hacker, M.D., 1995. Intracrustal derivation of Na-rich andesite and dacite magmas:an example from Volcán Ollagüe, Andean Central Volcanic Zone. J. Geol. 103, 213-225.
    [54]
    Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417, 837-840.
    [55]
    Foley, S.F., Barth, M.G., Jenner, G.A., 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochem. Cosmochim. Acta 64, 933-938.
    [56]
    Fowler, A.R., Khamees, H., Dowidar, H., 2007. El Sibai gneissic complex, Central Eastern Desert, Egypt:Folded nappes and syn-kinematic gneissic granitoid sheets-not a core complex. J. Afr. Earth Sci. 49, 119-135.
    [57]
    Fritz, H., Dallmeyer, D.R., Wallbrecher, E., Loizenbauer, J., Hoinkes, G., Neumayr, P., Khudeir, A.A., 2002. Neoproterozoic tectonothermal evolution of the Central Eastern Desert, Egypt:A slow velocity tectonic process of core complex exhumation. J. Afr.Earth Sci. 34 (3-4), 137-155.
    [58]
    Gamal EL Dien, H., Doucet, L.S., Li, Z.-X., Cox, G., Mitchell, R., 2019. Global geochemical fingerprinting of plume intensity suggests coupling with the supercontinent Cycle. Nat.Commun. 10, 5270. https://doi.org/10.1038/s41467-019-13300-4.
    [59]
    Goldstein, S.L., O'Nions, R.K., Hamilton, P.J., 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet Sci. Lett 70, 221-236.
    [60]
    Green, T.H., Pearson, N.J., 1987. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochem.Cosmochim. Acta 51, 55-62.
    [61]
    Halla, J., 2020. The TTG-amphibolite terrains of Arctic Fennoscandia:Infinite networks of amphibolite metatexite-diatexite transitions. Front. Earth Sci. 8, 252. https://doi.org/10.3389/feart.2020.00252.
    [62]
    Hargrove, U.S., Stern, R.J., Kimura, J.I., Manton, W.I., Johnson, P.R., 2006. How juvenile is the Arabian-Nubian Shield? Evidence from Nd isotopes and pre-Neoproterozoic inherited zircon in the Bi'r Umq suture zone, Saudi Arabia. Earth Planet Sci. Lett 252, 308-326.
    [63]
    Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical characteristics of collision zone magmatism. In:Coward, M.P., Ries, A.C. (Eds.), Collision Tectonics. Geol. Soc. Lond.Spec. Publ 19, pp. 67-81.
    [64]
    Hart, W.K., Wolde Gabriel, G., Walter, R.C., Mertzman, S.A., 1989. Basaltic volcanism in Ethiopia:Constraints on continental rifting and mantle interactions. J. Geophys. Res. 94, 7731-7748.
    [65]
    Hiess, J., Condon, D.J., McLean, N., Noble, S.R., 2012. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610-1614.
    [66]
    Hildreth, W., Wilson, C.J.N., 2007. Compositional zoning of the Bishop Tuff. J. Petrol. 48, 951-999.
    [67]
    Hofmann, A.W., Jochum, K.P., 1996. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project. J. Geophys. Res. 101, 11,831-11,839.
    [68]
    Holtz, F., Behrens, H., Dingwell, D.B., Johannes, W., 1995. H2O solubility in haplogranitic melts:Compositional, pressure, and temperature dependence. Am. Mineral 80, 94-108.
    [69]
    Huang, H., Polat, A., Fryer, B.J., 2013. Origin of Archean tonalite-trondhjemite-granodiorite (TTG) suites and granites in the Fiskenæsset region, southern West Greenland:Implications for continental growth. Gondwana Res. 23, 452-470.
    [70]
    Hurai, V., Paquette, J.L., Huraiová, M., Konečný, P., 2010. Age of deep crustal magmatic chambers in the intra-Carpathian back-arc basin inferred from LA-ICPMS U-Th-Pb dating of zircon and monazite from igneous xenoliths in alkali basalts. J. Volcanol.Geotherm. 198, 275-287.
    [71]
    Ibrahim, S., Cosgrove, J., 2001. Structural and tectonic evolution of the Umm Gheig/ElShush region, central Eastern Desert of Egypt. J. Afr. Earth Sci. 33, 199-209.
    [72]
    Irber, W., 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochem. Cosmochim.Acta 63, 89-508.
    [73]
    Irvine, T.N., Baragar, W.R.A., 1971. A guide to the classification of the common volcanic rocks. Can. J. Earth Sci. 8, 523-548.
    [74]
    Iwamori, H., 1997. Compression melting in subduction zones. Terra Nova 9, 9-13.
    [75]
    Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211, 47-69.
    [76]
    Jacobsen, S.B., Wasserburg, G.J., 1984. Sm-Nd isotopic evolution of chondrites and achondrites. II. Earth Planet Sci. Lett 67, 137-150.
    [77]
    Jahn, B.M., Gikson, A.Y., Peucat, J.J., Hickman, A.H., 1981. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia:Implications for the early crustal evolution. Geochem. Cosmochim. Acta 45, 1633-1652.
    [78]
    Jahn, B.M., Wu, F., Capdevila, R., Martineau, F., Zhao, Z., Wang, Y., 2001. Highly evolved juvenile granites with tetrad REE patterns:The Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos 59, 171-198.
    [79]
    James, R., Hamilton, D., 1969. Phase relations in the system NaAlSi3O8-KAlSi3O8-CaAl2Si2O8-SiO2 at 1 kilobar water vapour pressure. Contrib. Mineral. Petrol. 21, 111-141.
    [80]
    Jarrar, G.H., Theye, T., Yaseen, N., Whitehouse, M., Pease, V., Passchier, C., 2013. Geochemistry and P-T-t evolution of the Abu-Barqa Metamorphic Suite, SW Jordan, and implications for the tectonics of the northern Arabian-Nubian Shield. Precambrian Res. 239, 56-78.
    [81]
    Johansson, Å., 2014. From Rodinia to Gondwana with the ‘SAMBA’ model-A distant view from Baltica towards Amazonia and beyond. Precambrian Res. 244, 226-235. https://doi.org/10.1016/j.precamres.2013.10.012.
    [82]
    Johnson, P., Andresen, A., Collins, A., Fowler, A., Fritz, H., Ghebreab, W., Kusky, T., Stern, R., 2011. Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield:A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J. Afr. Earth Sci. 61 (3), 167-232.
    [83]
    Kay, S.M., Godoy, E., Kurtz, A., 2005. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol. Soc. Am. Bull. 117, 67-88.
    [84]
    Keller, L.M., Wunder, B., Rhede, D., Abart, R., 2006. Experiments on the kinetics of the gabbro to eclogite transformation at 18 kbars and 700-900℃., conference:DMG LXXXIV, at Hannover, Germany. Volume:Beih. Z. Eur. J. Mineral. 18, 70.
    [85]
    Khudeir, A.A., Abu, El-Rus M., Hoinkes, G., Mogessie, A., El-Gaby, S., 1996. Petrogenesis of the reversely zoned Akarem mafic-ultramafic intrusion, south Eastern Desert, Egypt.Proc. Geol. Sur. Egypt, Centurial Conference, pp. 447-464.
    [86]
    Khudeir, A.A., Abu El-Rus, M.A., El-Gaby, S., El-Nady, O., 2006a. Geochemical and geochronological studies on the infrastructural rocks of Meatiq and Hafafit Core Complexes, Eastern Desert, Egypt. Egypt. J. Geol. 50, 2006.
    [87]
    Khudeir, A.A., Bishara, W.W., El-Tahlawi, M.R., Abu El-Rus, M.A., Bogdadi, G.Y., 2006b. Wadi Beitan window in the south Eastern Desert of Egypt:Petrography, mineral chemistry and intensive properties of the Beitan gneisses. Proc. 7th Int. Conf.Geochem. 1, pp. 17-37.
    [88]
    Khudeir, A.A., Abu El-Rus, M.A., El-Gaby, S., El-Nady, O., Bishara, W.W., 2008. Sr-Nd isotopes and geochemistry of the infrastructural rocks in the Meatiq and Hafafit core complexes, Eastern Desert, Egypt:evidence for involvement of pre- Neoproterozoic crust in the growth of the Arabain-Nubian Shield. Isl. Arc 17, 90-108.
    [89]
    Klein, M., Stosch, H.G., Seck, H.A., 1997. Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts:An experimental study. Chem. Geol. 138, 257-271.
    [90]
    Klemme, S., Blundy, J.D., Wood, B.J., 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochem. Cosmochim. Acta 66, 3109-3123.
    [91]
    Greiling, R.O., Kröner, A., El-Ramly, M., Rashwan, A., 1988. Structural relationships between the southern and central parts of the Eastern Desert of Egypt:Details of a fold and thrust belt. In:El-Gaby, S., Greilling, R.O. (Eds.), The Pan-African belt of northeast Africa and adjacent areas. Vieweg and Sohn, Wiesbaden, pp. 121-146.
    [92]
    Kusky, T., Matsah, M., 2003. Neoproterozoic Dextral Faulting on the Najd Fault System, Saudi Arabia, preceded sinistral faulting and escape tectonics related to closure of the Mozambique Ocean. In:Yoshida, M., Windley, B.F., Dasgupta, S., Powell, C.(Eds.), Proterozoic East Gondwana:Supercontinent Assembly and Breakup. Geol.Soc. Lond. Spec. Publ 206, pp. 327-361.
    [93]
    Laurie, A., Stevens, G., Van Hunen, J., 2013. The end of continental growth by TTG magmatism. Terra Nova 25, 130-136.
    [94]
    Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanetin, B., 1968. A chemical classification of volcanic rocks based on the total alkalis-silica diagram. Petrol. 27, 745-750.
    [95]
    Leeman, W.P., Hawkesworth, C.J., 1986. Open magma systems:trace element and isotopic constraints. J. Geophys. Res. 91, 5901-5912.
    [96]
    Lemarchand, F., Villemant, B., Calas, G., 1987. Trace element distribution coefficients in alkaline series. Geochem. Cosmochim. Acta 51, 1071-1081.
    [97]
    Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V., 2008. Assembly, configuration, and break-up history of Rodinia:A synthesis. Precambrian Res. 60, 179-210.
    [98]
    Liew, T.C., McCulloch, M.T., 1985. Genesis of granitoid batholiths of Peninsular Malaysia and implications for models of crustal evolution:Evidence from a Nd-Sr isotopic and U-Pb, zircon study. Geochem. Cosmochim. Acta 49, 587-600.
    [99]
    Linnen, R.L., Keppler, H., 1997. Columbite solubility in granitic melts:Consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust Contrib. Mineral.Petrol. 128, 213-227.
    [100]
    Loizenbauer, J., Wallbrecher, E., Fritz, H., Neumayr, P., Khudeir, A., Kloetzli, U., 2001. Structural geology, single zircon ages and fluid inclusion studies of the Meatiq metamorphic core complex:Implications for Neoproterozoic tectonics in the Eastern Desert of Egypt. Precambrian Res. 110, 357-383.
    [101]
    Ludwig, K.R., 2001. User's manual for Isoplot/Ex Version 2.49, a geochronological toolkit for Microsoft Excel. BGC Spec. Publ. 55 pp.
    [102]
    Ludwig, K.R., 2003. User's manual for isoplot 3.00:A geochronological toolkit for Microsoft Excel. BGC Berkeley, CA, USA https://searchworks.stanford.edu/view/6739593.
    [103]
    Lugmair, G.W., Marti, K., 1978. Lunar initial 143Nd/144Nd:Differential evolution of the lunar crust and mantle. Earth Planet Sci. Lett 39, 349-367.
    [104]
    Maaløe, S., Wyllie, P.J., 1975. Water content of a granite magma deduced from the sequence of crystallization determined experimentally with water-undersaturated conditions. Contrib. Mineral. Petrol. 52, 175-191.
    [105]
    Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 101, 635-643.
    [106]
    Martin, H., 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction zone magmas. Geology 14, 753-756.
    [107]
    Martin, H., 1995. The Archean grey gneisses and the genesis of the continental crust. In:Condie, K.C. (Ed.), The Archean crustal evolution. Elsevier, Amsterdam, pp. 205-259.
    [108]
    Martin, H., 1999. Adakitic magmas:Modern analogues of Archaean granitoids. Lithos 46, 411-429.
    [109]
    Martin, H., Moyen, J.F., 2002. Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology 30, 319-322.
    [110]
    Martin, H., Moyen, J.F., Guitreau, M., Blichert-Toft, J., Le Pennec, J.L., 2014. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos 198-199, 1-13.
    [111]
    Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., Champion, D., 2005. An overview of adakite, tonalite-trondhjemite- granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution. Lithos 79, 1-24.
    [112]
    McCulloch, M.T., Chappell, B.W., 1982. Nd isotopic characteristics of S- and I-type granites.Earth and Planetary Science Letters 58, 51-64.
    [113]
    McDonough, W.F., Sun, S.S., 1995. The composition of the earth. Chem. Geol. 120, 223-253.
    [114]
    McGuire, A.V., Stern, B., 1993. Granulite xenoliths from western Saudi Arabia:The lower crust of the late Precambrian Arbian-Nubian Shield. Contrib. Mineral. Petrol. 114, 395-408.
    [115]
    McMillan, P.F., Holloway, J.R., 1987. Water solubility in aluminosilicate melts Contrib.Mineral. Petrol. 97, 320-332.
    [116]
    Middleburg, J.J., Van der Weijden, C.H., Woittiez, J.R.W., 1988. Chemical processes affecting mobility of major, minor and trace elements weathering of granitic rocks. Chem.Geol. 68, 253-273.
    [117]
    Milisenda, C.C., Liew, T.C., Hofmann, A.W., Köhle, H., 1994. Nd isotopic mapping of the Sri Lanka basement:Update, andadditional constraints from Sr isotopes. Precambrian Res. 66, 95-110.
    [118]
    Miller, C.F., Meschter-McDowell, S., Mapes, R.W., 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31, 529-532.
    [119]
    Moyen, J.-F., Laurent, O., Chelle-Michou, C., Couzinié, S., Vanderhaeghe, O., Zeh, A., Villaros, A., Gardien, V., 2017. Collision vs. subduction-related magmatism:Two contrasting ways of granite formation and implications for crustal growth. Lithos 277, 154-177.
    [120]
    Moyen, J.F., Stevens, G., 2006. Experimental constraints on TTG petrogenesis:Implications for Archean geodynamics. In:Benn, K., Mareschal, J.C., Condie, K.C. (Eds.), Archean geodynamics and environments. 164. AGU, pp. 149-175.
    [121]
    Müller, A., Thomas, R., Wiedenbeck, M., Seltmann, R., Breiter, K., 2006. Water content of granitic melts from Cornwall and Erzgebirge:A Raman spectroscopy study of melt inclusions. Eur. J. Mineral 18, 429-440.
    [122]
    Nash, W.P., Crecraft, H.R., 1985. Partition coefficients for trace elements in silicic magmas.Geochem. Cosmochim. Acta. 49, 2,309-2,322.
    [123]
    O'Conner, J.T., 1965. A classification for quartz-rich igneous rocks based on feldspar ratios.U.S. Geol. Surv. Prof. Pap. 525, 79-84.
    [124]
    Paoli, G., Dini, A., Petrelli, M., Rocchi, S., 2019. HFSE-REE Transfer Mechanisms During Metasomatism of a Late Miocene Peraluminous Granite Intruding a Carbonate Host(Campiglia Marittima, Tuscany). Minerals 9. https://doi.org/10.3390/min9110682.
    [125]
    Paquette, J.L., Médard, E., Francomme, J., Bachèlery, P., Hénot, J.M., 2019. LA-ICP-MS U/Pb zircon timescale constraints of the Pleistocene latest magmatic activity in the Sancy stratovolcano (French Massif Central). J. Volcanol. Geotherm. 374, 52-61.
    [126]
    Paquette, J.L., Piro, J.L., Devidal, J.L., Bosse, V., Didier, A., 2014. Sensitivity enhancement in LA-ICP-MS by N2 addition to carrier gas:application to radiometric dating of U-Thbearing minerals. Agilent ICP-MS J. 58, 4-5.
    [127]
    Patiňo Douce, A.E., 2005. Vapor-Absent Melting of Tonalite at 15-32 kbar. J. Petrol. 46, 275-290.
    [128]
    Peacock, S.M., Rushmer, T., Thompson, A.B., 1994. Partial melting of subducting oceanic crust. Earth Planet Sci. Lett 121, 227-244.
    [129]
    Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, 956-983.
    [130]
    Pearce, J.A., Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y, Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 69, 33-47.
    [131]
    Petford, N., Atherton, M., 1996. Na-rich partial melts from newly underplated basaltic drust:The Cordillera Blanca Batholith. Peru. J. Petrol. 37, 1491-1521.
    [132]
    Pisarevsky, S., Murphy, J., Cawood, P., Collins, A., 2008. Late Neoproterozoic and Early Cambrian palaeogeography:Models and problems. Geol. Soc. Lond. Spec. Publ. 294, 9-31.
    [133]
    Qian, Q., Hermann, J., 2013. Partial melting of lower crust at 10-15 kbar:Constraints on adakite and TTG formation. Contrib. Mineral. Petrol. 165, 1195-1224.
    [134]
    Rapp, R.P., Shimizu, N., Norman, M.D., 2003. Growth of early continental crust by partial melting of eclogite. Nature 425, 605-609.
    [135]
    Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res. 51, 1-25.
    [136]
    Robinson, F.A., Foden, J.D., Collins, A.S., 2015a. Geochemical and isotopic constraints on island arc, synorogenic, post-orogenic and anorogenic granitoids in the Arabian Shield, Saudi Arabia. Lithos 220-223, 97-115.
    [137]
    Robinson, F.A., Foden, J.D., Collins, A.S., 2015b. Zircon geochemical and geochronological constraints on contaminated and enriched mantle sources beneath the Arabian Shield, Saudi Arabia. J. Geol. 123, 463-489.
    [138]
    Rooney, T.O., Morell, K.D., Hidalgo, P., Fraceschi, P., 2015. Magmatic consequences of the transition from orthogonal to oblique subduction in Panama. Geochem. Geophys.Geosy. 16, 4178-4208.
    [139]
    Rudnick, R.L., Fountain, D.M., 1995. Nature and composition of the continental crust:A lower crustal perspective. Rev. Geophys 33, 267-309.
    [140]
    Schöpa, A., Annen, C., 2013. The effects of magma flux variations on the formation and lifetime of large silicic magma chambers. J. Geophys. Res. 118, 926-942.
    [141]
    Seyler, M., Bonatti, E., 1988. Petrology of a gneiss-amphibolite lower crustal unit from Zabargad Island, Red Sea. Tectonophysics 150, 177-207.
    [142]
    Simonetti, A., Neal, C.R., 2010. In-situ chemical, U-Pb dating, and Hf isotope investigation of megacrystic zircons, Malaita (Solomon Islands):Evidence for multi-stage alkaline magmatic activity beneath the Ontong Java Plateau. Earth Planet Sci. Lett. 295, 251-261.
    [143]
    Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon-A new natural reference material for UPb and Hf isotopic microanalysis. Chem. Geol. 249, 1-35.
    [144]
    Smithies, R.H., 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci. Lett 182, 115-125.
    [145]
    Sparks, R., Marshall, L., 1986. Thermal and mechanical constraints on mixing between mafic and silicic magmas. J. Volcanol Geotherm. Res. 29, 99-124.
    [146]
    Stern, C.R., Kilian, R., 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib.Mineral. Petrol. 123, 263-281.
    [147]
    Stern, R., 1985. The Najd fault system, Saudi Arabia and Egypt:A late Precambrian riftrelated transform system? Tectonics 4, 497-511.
    [148]
    Stern, R.J., 2002. Subduction zones. Rev. Geophys. 40, 3.1-3.38.
    [149]
    Sun, S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the ocean basins. Geol. Soc. Lond. Spec. Publ 42, pp. 313-345.
    [150]
    Tartèse, R., Boulvais, P., 2010. Differentiation of peraluminous leucogranites "en route" to the surface. Lithos 114, 353-368.
    [151]
    Tatsumi, Y., 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. J. Geophys. Res. 94, 4697-4707.
    [152]
    Thompson, A.B., 2001. Partial melting of metavolcanics in amphibolite facies regional metamorphism. Proc Indian Acad Sci, Earth Planet Sci 110, 287-291.
    [153]
    Tiepolo, M., Bottazzi, P., Foley, S.F., Oberti, R., Zanetti, A., 2001. Fractionation of Nb and Ta from Zr and Hf at mantle depths:The role of titanian-pargasite and kaersutite.J. Petrol. 42, 221-232.
    [154]
    Van Kranendonk, M.J., 2010. Two types of Archean continental crust:Plume and plate tectonics on early earth. Am. J. Sci. 310, 1187-1209.
    [155]
    Villa, I.M., De Bièvre, P., Holden, N.E., Renne, P.R., 2015. IUPAC-IUGS recommendation on the half-life of 87Rb. Geochem. Cosmochim. Acta 164, 382-385.
    [156]
    Watkins, J.M., Clemens, J.D., Treloar, P.J., 2007. Archaean TTGs as sources of younger granitic magmas:Melting of sodic metatonalites at 0.6-1.2 GPa. Contrib. Mineral. Petrol. 154, 91-110.
    [157]
    Watson, E.B., 1979. Zircon saturation in felsic liquids:Experimental data and applications to trace element geochemistry. Contrib. Mineral. Petrol. 70, 407-419.
    [158]
    Watson, E.B., Harrison, T.M., 1984. Accessory minerals and the geochemical evolution of crustal magmatic systems:A summary and prospectus of experimental approaches Phys. Earth Planet. In. 35, 19-30.
    [159]
    Weaver, B.L., Tarney, J., 1983. Elemental depletion in Archaean granulite facies rocks. In:Atherton, M.P., Gribble, C.D. (Eds.), Migmatite, Melting and Metamorphism.Nantwich, Shiva, pp. 250-263.
    [160]
    Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C., Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandard Newslett. 19, 1-23.
    [161]
    Winther, K.T., 1996. An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chem. Geol. 127, 43-59.
    [162]
    Wolde, B., Team, G.G.G., 1996. Tonalite-trondhjemite-granite genesis by partial melting of newly underplated basaltic crust:An example from the Neoproterozoic Birbir magmatic arc, western Ethiopia. Precambrian Res. 76, 3-14.
    [163]
    Wolf, M.B., Wyllie, P.J., 1989. The formation of tonalitic liquids during the vapor-absent partial melting of amphibolite at 10 kb. Trans. Am. Geophys. Union (EOS) 70, 506.
    [164]
    Wolf, M.B., Wyllie, P.J., 1994. Dehydration melting of amphibolite at 10 kbar:The effects of temperature and time. Contrib. Mineral. Petrol. 115, 369-383.
    [165]
    Wyman, D.A., Hollings, P., Biczok, J., 2011. Crustal evolution in a cratonic nucleus:Granitoids and felsic volcanic rocks of the North Caribou Terrane, Superior Province Canada.Lithos 123, 37-49.
    [166]
    Yarmolyuk, V.V., Kovach, V.P., Kozakov, I.K., Kozlovsky, A.M., Kotov, A.B., Rytsk, E.Yu., 2012. Mechanisms of continental crust formation in the Central Asian foldbelt. Geotectonics 46, 251-272.
    [167]
    Zamora, D., 2007. Fusion de la crouˆ te océanique subductée:approche expérimentale et géochimique. Ph.D. dissertation. Université Blaise Pascal, Clermont-Ferrand, France 248 pp.
    [168]
    Zhai, M.G., 2011. Cratonization and the Ancient North China Continent:A summary and review. Sci. China Earth Sci. 54, 1110-1120.
    [169]
    Zhang, C.L., Li, H.K., Santosh, M., Li, Z.X., Zou, H.B., Wang, H., Ye, H., 2012. Precambrian evolution and cratonization of the Tarim Block, NW China:Petrology, geochemistry, Ndisotopes and U-Pb zircon geochronology from Archaean gabbro-TTG-potassic granite suite and Paleoproterozoic metamorphic belt. J. Asian Earth Sci. 47, 5-20.
    [170]
    Zhang, S.B., Zheng, Y.F., Zhao, Z.F., Wu, Y.B., Yuan, H., Wu, F.Y., 2009. Origin of TTG-like rocks from anatexis of ancient lower crust:Geochemical evidence from Neoproterozoic granitoids in South China. Lithos 113, 347-368.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (69) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return