Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Yuzhu Ge. Decoupled δ13Ccarb and δ13Corg records at Triassic-Jurassic boundary interval in eastern Tethys: Environmental implications for spatially different global response[J]. Geoscience Frontiers, 2021, 12(4): 101146. doi: 10.1016/j.gsf.2021.101146
Citation: Yuzhu Ge. Decoupled δ13Ccarb and δ13Corg records at Triassic-Jurassic boundary interval in eastern Tethys: Environmental implications for spatially different global response[J]. Geoscience Frontiers, 2021, 12(4): 101146. doi: 10.1016/j.gsf.2021.101146

Decoupled δ13Ccarb and δ13Corg records at Triassic-Jurassic boundary interval in eastern Tethys: Environmental implications for spatially different global response

doi: 10.1016/j.gsf.2021.101146

Constructive reviews from three anonymous colleagues as well as editorial comments are gratefully acknowledged and appreciated. The research was funded by the Petroleum Institute, Abu Dhabi, now part of Khalifa University (LTR 15005). Dr. T. Steuber and Dr. A. Suwaidi are thanked for the instruction and discussion. M. Shi, A. Talarmin and M.B. Suarez are thanked for analytical lab support.

  • Received Date: 2020-02-09
  • Rev Recd Date: 2020-12-30
  • Although δ13C data (either δ13Ccarb or δ13Corg) of many Triassic-Jurassic (T-J) sections have been acquired, paired δ13Ccarb and δ13Corg from continuous T-J carbonate sections, especially in eastern Tethys, have been scarcely reported. This study presents paired and decoupled δ13Ccarb and δ13Corg data from a continuous T-J carbonate section in Wadi Naqab. The T-J Wadi Naqab carbonate section, located in United Arab Emirates, Middle East, represents tropical and shallow marine sedimentation in eastern Tethys. At the T-J boundary interval, an initial carbon isotope excursion (CIE) is observed with different magnitude of isotope excursion and timing in δ13Ccarb and δ13Corg, while subsequently a positive CIE is only distinct in δ13Ccarb. Based on petrological, carbon isotope, Rock-Eval and elemental analyses, the δ13Ccarb is thought to record marine inorganic carbon, and the δ13Corg to record terrigenous organic carbon. Therefore, the paired δ13Ccarb and δ13Corg herein potentially document simultaneous changes in T-J atmospheric and marine settings of eastern Tethys. Their decoupled behavior may likely be caused by different changes or evolution of carbon pool between marine and atmospheric settings. The initial CIE present in both δ13Ccarb and δ13Corg may indicate influence of isotopically light carbon release related to CAMP activity in both atmospheric and marine settings. The following positive CIE only in δ13Ccarb suggests relatively steady carbon isotope composition in atmosphere, but enhanced burial of isotopically light carbon in marine settings. Furthermore, the T-J carbonates in the studied section were possibly deposited in normal and oxic shallow marine conditions. Global correlation based on the Wadi Naqab section and other T-J sections suggests spatially different T-J environmental parameters:in eastern Tethys and western Panthalassa, oxic condition, lacking organic-rich sediment, weaker ocean acidification and less influence of isotopically light carbon are more prevalent; in western Tethys and eastern Panthalassa, oxygen-depleted condition, black shales, stronger acidification and heavier influence of isotopically light carbon are more prevalent. These differences may be related to spatial distance from the CAMP or to different paleogeography.

  • loading
  • [1]
    Al-Suwaidi, A.H., Steuber, T., Suarez, M.B., 2016. The Triassic-Jurassic boundary event from an equatorial carbonate platform (Ghalilah Formation, United Arab Emirates). J. Geol.Soc. Lond. 173, 947-953.
    Atkinson, J.W., Wignall, P.B., 2019. How quick was marine recovery after the end-Triassic mass extinction and what role did anoxia play? Palaeogeogr. Palaeoclimatol.Palaeoecol. 528, 99-119.
    Bachan, A., Payne, J.L., 2016. Modelling the impact of pulsed CAMP volcanism on pCO2 and δ13C across the Triassic-Jurassic transition. Geol. Mag. 153, 252-270.
    Bachan, A., van de Schootbrugge, B., Fiebig, J., McRoberts, C.A., Ciarapica, G., Payne, J.L., 2012. Carbon cycle dynamics following the end-Triassic mass extinction:constraints from paired δ13Ccarb and δ13Corg records. Geochem. Geophys. Geosyst. 13, Q09008.https://doi.org/10.1029/2012GC004150.
    Bachan, A., van de Schootbrugge, B., Payne, J.L., 2014. The end-Triassic negative δ13C excursion:a lithologic test. Palaeogeogr. Palaeoclimatol. Palaeoecol. 412, 177-186.
    Beerling, D.J., Berner, R.A., 2002. Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event. Global Biogeochem. Cycles 16, 1-13.
    Behar, F., Beaumont, V., De Penteado, B.H.L., 2001. Rock-Eval 6 technology:performances and developments. Oil Gas Sci. Technol. 56, 111-134.
    Bonis, N.R., Ruhl, M., Kürschner, W.M., 2010. Climate change driven black shale deposition during the end-Triassic in the western Tethys. Palaeogeogr. Palaeoclimatol.Palaeoecol. 290, 151-159.
    Cohen, A.S., Coe, A.L., 2002. New geochemical evidence for the onset of volcanism in the Central Atlantic magmatic province and environmental change at the TriassicJurassic boundary. Geology 30, 267-270.
    Črne, A.E., Weissert, H., Goričan, Š., Bernasconi, S.M., 2011. A biocalcification crisis at the Triassic-Jurassic boundary recorded in the Budva Basin (Dinarides, Montenegro).GSA Bulletin 123, 40-50.
    de Matos, J.E., 1997. Stratigraphy, Sedimentation and Oil Potential of the Lower Jurassic to Kimmeridgian of the United Arab Emirates:Outcrop and Subsurface Compared. P.h.D thesis. University of Aberdeen, p. 18.
    Deenen, M.H., Ruhl, M., Bonis, N.R., Krijgsman, W., Kuerschner, W.M., Reitsma, M., Van Bergen, M.J., 2010. A new chronology for the end-Triassic mass extinction. Earth Planet. Sci. Lett. 291, 113-125.
    Dunhill, A.M., Foster, W.J., Sciberras, J., Twitchett, R.J., 2018. Impact of the late Triassic mass extinction on functional diversity and composition of marine ecosystems.Palaeontology 61, 133-148.
    Fujisaki, W., Sawaki, Y., Yamamoto, S., Sato, T., Nishizawa, M., Windley, B.F., Maruyama, S., 2016. Tracking the redox history and nitrogen cycle in the pelagic Panthalassic deep ocean in the Middle Triassic to early Jurassic:insights from redox-sensitive elements and nitrogen isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 397-420.
    Fujisaki, W., Matsui, Y., Asanuma, H., Sawaki, Y., Suzuki, K., Maruyama, S., 2018. Global perturbations of carbon cycle during the Triassic-Jurassic transition recorded in the mid-Panthalassa. Earth Planet. Sci. Lett. 500, 105-116.
    Fujisaki, W., Fukami, Y., Matsui, Y., Sato, T., Sawaki, Y., Suzuki, K., 2020. Redox conditions and nitrogen cycling during the Triassic-Jurassic transition:a new perspective from the mid-Panthalassa. Earth Sci. Rev. 204, 103173. https://doi.org/10.1016/j.earscirev.2020.103173.
    Galli, M.T., Jadoul, F., Bernasconi, S.M., Weissert, H., 2005. Anomalies in global carbon cycling and extinction at the Triassic/Jurassic boundary:evidence from a marine Cisotope record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216, 203-214.
    Galli, M.T., Jadoul, F., Bernasconi, S.M., Cirilli, S., Weissert, H., 2007. Stratigraphy and palaeoenvironmental analysis of the Triassic-Jurassic in the western Southern Alps(North Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 52-70.
    Ge, Y., Shi, M., Steuber, T., Al-Suwaidi, A.H., Suarez, M.B., 2018. Environmental change during the Triassic-Jurassic boundary interval of an equatorial carbonate platform:sedimentology and chemostratigraphy of the Ghalilah Formation, United Arab Emirates.Palaeogeogr. Palaeoclimatol. Palaeoecol. 502, 86-103.
    Ge, Y., Al-Suwaidi, A.H., Shi, M., Li, Q., Morad, S., Steuber, T., 2019. Short-term variation of ooid mineralogy in the Triassic-Jurassic boundary interval and its environmental implications:evidence from the equatorial Ghalilah Formation, United Arab Emirates.Glob. Planet. Change 182, 103006. https://doi.org/10.1016/j.gloplacha.2019.103006.
    Gischler, E., Swart, P.K., Lomando, A.J., 2009. Stable isotopes of carbon and oxygen in modern sediments of carbonate platforms, barrier reefs, atolls and ramps:patterns and implications. Int. Assoc. Sedimentol. Spec. Publ. 41, 61-74.
    Glennie, K.W., Boeuf, M.G.A., Huges-Clarke, M.W., Moody-Stuart, M., Pilaar, W.F.H., Reinhardt, B.M., 1974. Geology of the Oman Mountains. Verh. Kon. Nederlands Geol. Mijnb. Gen. Ver. 31, 1-423.
    Golonka, J., 2007. Late Triassic and early Jurassic palaeogeography of the world.Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 297-307.
    Greene, S.E., Martindale, R.C., Ritterbush, K.A., Bottjer, D., Corsetti, F.A., Berelson, W.M., 2012. Recognising ocean acidification in deep time:an evaluation of the evidence for acidification across the Triassic-Jurassic boundary. Earth Sci. Rev. 113, 72-93.
    Guex, J., Bartolini, A., Atudorei, V., Taylor, D., 2004. High-resolution ammonite and carbon isotope stratigraphy across the Triassic-Jurassic boundary at New York Canyon (Nevada). Earth Planet. Sci. Lett. 225, 29-41.
    Hallam, A., 1995. Oxygen restricted facies of the basal Jurassic of North West Europe. Hist.Biol. 10, 247-257.
    Hallam, A., Wignall, P.B., 1997. Mass Extinctions and Their Aftermath. Oxford University Press, Oxford (156 pp.).
    Hallam, A., Wignall, P.B., 1999. Mass extinctions and sea-level changes. Earth Sci. Rev. 48, 217-250.
    Hallam, A., Wignall, P.B., Yin, J., Riding, J.B., 2000. An investigation into possible facies changes across the Triassic-Jurassic boundary in southern Tibet. Sediment. Geol. 137, 101-106.
    He, T., Dal Corso, J., Newton, R.J., Wignall, P.B., Mills, B.J., Todaro, S., Di Stefano, P., Turner, E.C., Jamieson, R.A., Randazzo, V., Rigo, M., 2020. An enormous sulfur isotope excursion indicates marine anoxia during the end-Triassic mass extinction. Sci. Adv. 6, eabb6704. https://doi.org/10.1126/sciadv.abb6704.
    Hedges, J.I., Hu, F.S., Devol, A.H., Hartnett, H.E., Tsamakis, E., Keil, R.G., 1999. Sedimentary organic matter preservation; a test for selective degradation under oxic conditions.Am. J. Sci. 299, 529-555.
    Hesselbo, S.P., Robinson, S.A., Surlyk, F., Piasecki, S., 2002. Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation:a link to initiation of massive volcanism? Geology 30, 251-254.
    Hönig, M.R., John, C.M., Manning, C., 2017. Development of an equatorial carbonate platform across the Triassic-Jurassic boundary and links to global palaeoenvironmental changes (Musandam Peninsula, UAE/Oman). Gondwana Res. 45, 100-117.
    Hori, R.S., Fujiki, T., Inoue, E., Kimura, J.I., 2007. Platinum group element anomalies and bioevents in the Triassic-Jurassic deep-sea sediments of Panthalassa. Palaeogeogr.Palaeoclimatol. Palaeoecol. 244, 391-406.
    Hudson, R.G.S., Chatton, M., 1959. The Musandam limestone (Jurassic to Lower Cretaceous) of Oman, Arabia. Notes Mémoires Moyen-Orient Mus d'Hist Nat Paris 7, 69-73.
    Hulthe, G., Hulth, S., Hall, P.O., 1998. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochim. Cosmochim. Acta 62, 1319-1328.
    Jaraula, C.M., Grice, K., Twitchett, R.J., Böttcher, M.E., LeMetayer, P., Dastidar, A.G., Opazo, L.F., 2013. Elevated pCO2 leading to Late Triassic extinction, persistent photic zone euxinia, and rising sea levels. Geology 41, 955-958.
    Jost, A.B., Bachan, A., van de Schootbrugge, B., Lau, K.V., Weaver, K.L., Maher, K., Payne, J.L., 2017. Uranium isotope evidence for an expansion of marine anoxia during the endTriassic extinction. Geochem. Geophys. Geosyst. 18, 3093-3108.
    Kasprak, A.H., Sepúlveda, J., Price-Waldman, R., Williford, K.H., Schoepfer, S.D., Haggart, J.W., Ward, P.D., Summons, R.E., Whiteside, J.H., 2015. Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction. Geology 43, 307-310.
    Kendall, C.G.S.C., Sadd, J.L., Alsharhan, A., 1994. Holocene marine cement coatings on beach-rocks of the Abu Dhabi coastline (UAE); analogs for cement fabrics in ancient limestones. Carbonates Evaporites 9, 119-131.
    Kiessling, W., Aberhan, M., Brenneis, B., Wagner, P.J., 2007. Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary. Palaeogeogr. Palaeoclimatol.Palaeoecol. 244, 201-222.
    Korte, C., Ruhl, M., Pálfy, J., Ullmann, C.V., Hesselbo, S.P., 2019. Chemostratigraphy across the Triassic-Jurassic boundary. In:Sial, A.N., Gaucher, C., Ramkumar, M., Ferreira, V.P.(Eds.), Chemostratigraphy Across Major Chronological Boundaries. 240. John Wiley & Sons, pp. 183-210.
    Kroopnick, P.M., 1985. The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Res.Part A. Oceanogr. Res. Pap. 32, 57-84.
    Kuroda, J., Hori, R.S., Suzuki, K., Gröcke, D.R., Ohkouchi, N., 2010. Marine osmium isotope record across the Triassic-Jurassic boundary from a Pacific pelagic site. Geology 38, 1095-1098.
    Lindström, S., Pedersen, G.K., van De Schootbrugge, B., Hansen, K.H., Kuhlmann, N., Thein, J., Johansson, L., Petersen, H.I., Alwmark, C., Dybkjær, K., Weibel, R., 2015. Intense and widespread seismicity during the end-Triassic mass extinction due to emplacement of a large igneous province. Geology 43, 387-390.
    Marzoli, A., Bertrand, H., Knight, K.B., Cirilli, S., Buratti, N., Vérati, C., Nomade, S., Renne, P.R., Youbi, N., Martini, R., Allenbach, K., Neuwerth, R., Rapaille, C., Zaninetti, L., Bellieni, G., 2004. Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis. Geology 32, 973-976.
    Maurer, F., Rettori, R., Martini, R., 2008. Triassic stratigraphy, facies and evolution of the Arabian shelf in the northern United Arab Emirates. Int. J. Earth Sci. 97, 765-784.
    Maurer, F., Krystyn, L., Martini, R., McRoberts, C., Rettori, R., Hofmann, P., 2015. Towards a refined Arabian Plate Triassic stratigraphy:insights from the Musandam Peninsula. 5th Arabian Plate Geology Workshop Lower Triassic to Middle Jurassic EvaporiteCarbonates-Siliciclastic Systems of the Arabian Plate (Sudair to Dhruma and Time Equivalent), (Abstract P05 and Poster, Kuwait).
    McCarren, H., Thomas, E., Hasegawa, T., Röhl, U., Zachos, J.C., 2008. Depth dependency of the Paleocene-Eocene carbon isotope excursion:paired benthic and terrestrial biomarker records (Ocean Drilling Program Leg 208, Walvis Ridge). Geochem. Geophys.Geosyst. 9, Q10008. https://doi.org/10.1029/2008GC002116.
    McRoberts, C.A., Furrer, H., Jones, D.S., 1997. Palaeoenvironmental interpretation of a Triassic-Jurassic boundary section from Western Austria based on palaeoecological and geochemical data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 136, 79-95.
    Meyers, P.A., 2014. Why are the δ13Corg values in Phanerozoic black shales more negative than in in modern organic matter. Geochem. Geophys. Geosyst. 15, 3085-3106.
    Morante, R., Hallam, A., 1996. Organic carbon isotopic record across the Triassic-Jurassic boundary in Austria and its bearing on the cause of the mass extinction. Geology 24, 391-394.
    Ordoñez, L., Vogel, H., Sebag, D., Ariztegui, D., Adatte, T., Russell, J.M., Kallmeyer, J., Vuillemin, A., Friese, A., Crowe, S.A., Bauer, K.W., 2019. Empowering conventional Rock-Eval pyrolysis for organic matter characterization of the siderite-rich sediments of Lake Towuti (Indonesia) using End-Member Analysis. Org. Geochem. 134, 32-44.
    Pálfy, J., Zajzon, N., 2012. Environmental changes across the Triassic-Jurassic boundary and coeval volcanism inferred from elemental geochemistry and mineralogy in the Kendlbachgraben section (Northern Calcareous Alps, Austria). Earth Planet. Sci. Lett. 335, 121-134.
    Pálfy, J., Mortensen, J.K., Carter, E.S., Smith, P.L., Friedman, R.M., Tipper, H.W., 2000. Timing the end-Triassic mass extinction:first on land, then in the sea? Geology 28, 39-42.
    Pálfy, J., Demény, A., Haas, J., Hetényi, M., Orchard, M.J., Vető, I., 2001. Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary. Geology 29, 1047-1050.
    Pálfy, J., Demény, A., Haas, J., Carter, E.S., Görög, Á., Halász, D., Oravecz-Scheffer, A., Hetényi, M., Márton, E., Orchard, M.J., Ozsvárt, P., 2007. Triassic-Jurassic boundary events inferred from integrated stratigraphy of the Csővár section, Hungary.Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 11-33.
    Prokoph, A., Shields, G.A., Veizer, J., 2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci. Rev. 87, 113-133.
    Purdy, E.G., 1963. Recent calcium carbonate facies of the Great Bahama Bank. 2. Sedimentary facies. J. Geol. 71, 472-497.
    Reimers, C.E., Jahnke, R.A., McCorkle, D.C., 1992. Carbon fluxes and burial rates over the continental slope and rise off Central California with implications for the global carbon cycle. Glob. Biogeochem. Cycles 6, 199-224.
    Richoz, S., van De Schootbrugge, B., Pross, J., Püttmann, W., Quan, T.M., Lindström, S., Heunisch, C., Fiebig, J., Maquil, R., Schouten, S., Hauzenberger, C.A., 2012. Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nat. Geosci. 5, 662-667.
    Ruhl, M., Kürschner, W.M., 2011. Multiple phases of carbon cycle disturbance from large igneous province formation at the Triassic-Jurassic transition. Geology 39, 431-434.
    Ruhl, M., Veld, H., Kürschner, W.M., 2010. Sedimentary organic matter characterization of the Triassic-Jurassic boundary GSSP at Kuhjoch (Austria). Earth Planet. Sci. Lett. 292, 17-26.
    Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., Blackburn, T.J., 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38, 387-390.
    Sebag, D., Garcin, Y., Adatte, T., Deschamps, P., Ménot, G., Verrecchia, E.P., 2018. Correction for the siderite effect on Rock-Eval parameters:application to the sediments of Lake Barombi (Southwest Cameroon). Org. Geochem. 123, 126-135.
    Swart, P.K., 2015. The geochemistry of carbonate diagenesis:the past, present and future.Sedimentology 62, 1233-1304.
    Tanner, L.H., Lucas, S.G., Chapman, M.G., 2004. Assessing the record and causes of Late Triassic extinctions. Earth Sci. Rev. 65, 103-139.
    Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence. Springer Verlag, Heidelberg (694 pp.).
    van de Schootbrugge, B., Payne, J.L., Tomasovych, A., Pross, J., Fiebig, J., Benbrahim, M., Föllmi, K.B., Quan, T.M., 2008. Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event. Geochem. Geophys.Geosyst. 9, Q04028. https://doi.org/10.1029/2007GC001914.
    van de Schootbrugge, B., Bachan, A., Suan, G., Richoz, S., Payne, J.L., 2013. Microbes, mud and methane:cause and consequence of recurrent Early Jurassic anoxia following the end-Triassic mass extinction. Palaeontology 56, 685-709.
    Whiteside, J.H., Olsen, P.E., Eglinton, T., Brookfield, M.E., Sambrotto, R.N., 2010.Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proc. Natil. Acad. Sci. 107, 6721-6725.
    Wignall, P.B., 2001. Sedimentology of the Triassic-Jurassic boundary beds in Pinhay Bay(Devon, SW England). Proc. Geol. Assoc. 112, 349-360.
    Wignall, P.B., Zonneveld, J.P., Newton, R.J., Amor, K., Sephton, M.A., Hartley, S., 2007. The end Triassic mass extinction record of Williston Lake, British Columbia. Palaeogeogr.Palaeoclimatol. Palaeoecol. 253, 385-406.
    Williford, K.H., Ward, P.D., Garrison, G.H., Buick, R., 2007. An extended organic carbon-isotope record across the Triassic-Jurassic boundary in the Queen Charlotte Islands, British Columbia, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 290-296.
    Wotzlaw, J.F., Guex, J., Bartolini, A., Gallet, Y., Krystyn, L., McRoberts, C.A., Taylor, D., Schoene, B., Schaltegger, U., 2014. Towards accurate numerical calibration of the Late Triassic:High-precision U-Pb geochronology constraints on the duration of the Rhaetian. Geology 42, 571-574.
    Yager, J.A., West, A.J., Corsetti, F.A., Berelson, W.M., Rollins, N.E., Rosas, S., Bottjer, D.J., 2017. Duration of and decoupling between carbon isotope excursions during the end-Triassic mass extinction and Central Atlantic Magmatic Province emplacement.Earth Planet. Sci. Lett. 473, 227-236.
    Yin, J.R., Cai, H.W., Zhou, Z.G., Zhang, Y.Y., Duan, X., Xie, Y.W., 2006. Study of marine Triassic/Jurassic boundary stratigraphy and the latest Triassic mass extinction in Tibet.Earth Sci. Front. 13, 244-254 (in Chinese with English abstract).
    Ziegler, M.A., 2001. Late Permian to Holocene Paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia 6, 445-504.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (138) PDF downloads(5) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint