Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Deung-Lyong Cho, Tae-Ho Lee, Yutaka Takahashi, Takenori Kato, Keewook Yi, Shinae Lee, Albert Chang-sik Cheong. Zircon U-Pb geochronology and Hf isotope geochemistry of magmatic and metamorphic rocks from the Hida Belt, southwest Japan[J]. Geoscience Frontiers, 2021, 12(4): 101145. doi: 10.1016/j.gsf.2021.101145
Citation: Deung-Lyong Cho, Tae-Ho Lee, Yutaka Takahashi, Takenori Kato, Keewook Yi, Shinae Lee, Albert Chang-sik Cheong. Zircon U-Pb geochronology and Hf isotope geochemistry of magmatic and metamorphic rocks from the Hida Belt, southwest Japan[J]. Geoscience Frontiers, 2021, 12(4): 101145. doi: 10.1016/j.gsf.2021.101145

Zircon U-Pb geochronology and Hf isotope geochemistry of magmatic and metamorphic rocks from the Hida Belt, southwest Japan

doi: 10.1016/j.gsf.2021.101145
Funds:

We thank Kenji Horie and two anonymous journal reviewers for their constructive comments and suggestions. We also appreciate the careful editorial handling from Professors M. Santosh and Sanghoon Kwon. This work was jointly supported by a Basic Research Project (20-3111-1:Geological survey in the Korean Peninsula and publication of the geological maps) of the Korea Institute of Geoscience and Mineral Resources, funded by the Ministry of Science and ICT, Korea, and research grants from the Korea Basic Science Institute (C070110, C030120).

  • Received Date: 2020-09-18
  • Rev Recd Date: 2021-01-04
  • Zircon U-Pb and Hf isotope data integrated in this study for magmatic and metamorphic rocks from the Hida Belt, southwest Japan, lead to a new understanding of the evolution of the Cordilleran arc system along the ancestral margins of present-day Northeast Asia. Ion microprobe data for magmatic zircon domains from eight mafic to intermediate orthogneisses in the Tateyama and Tsunogawa areas yielded weighted mean 206Pb/238U ages spanning the entire Permian period (302-254 Ma). Under cathodoluminescence, primary magmatic growth zones in the zircon crystals were observed to be partially or completely replaced by inward-penetrating, irregularly curved featureless or weakly zoned secondary domains that mostly yielded U-Pb ages of 250-240 Ma and relatively high Th/U ratios (> 0.2). These secondary domains are considered to have been formed by solid-state recrystallization during thermal overprints associated with intrusions of Hida granitoids. Available whole-rock geochemical and Sr-Nd isotope data as well as zircon age spectra corroborate that the Hida Belt comprises the Paleozoic-Mesozoic Cordilleran arc system built upon the margin of the North China Craton, together with the Yeongnam Massif in southern Korea. The arc magmatism along this system was commenced in the Carboniferous and culminated in the Permian-Triassic transition period. Highly positive εHf(t) values (> +12) of late Carboniferous to early Permian detrital zircons in the Hida paragneisses indicate that there was significant input from the depleted asthenospheric mantle and/or its crustal derivatives in the early stage of arc magmatism. On the other hand, near-chondritic εHf(t) values (+5 to -2) of magmatic zircons from late Permian Hida orthogneisses suggest a lithospheric mantle origin. Hf isotopic differences between magmatic zircon cores and the secondary rims observed in some orthogneiss samples clearly indicate that the zircons were chemically open to fluids or melts during thermal overprints. Resumed highly positive zircon εHf(t) values (>+9) shared by Early Jurassic granitoids in the Hida Belt and Yeongnam Massif may reflect reworking of the Paleozoic arc crust.

  • loading
  • [1]
    Anderson, J.L., 1990. The Nature and Origin of Cordilleran Magmatism. Geol. Soc. Am.Mem. 174, 405pp.
    [2]
    Arakawa, Y., 1990a. Two types of granitic intrusions in the Hida belt, Japan:Sr isotopic and chemical characteristics of the Mesozoic Funatsu granitic rocks. Chem. Geol. 85, 101-117.
    [3]
    Arakawa, Y., 1990b. Strontium isotopic compositions of Mesozoic granitic rocks in the Hida belt, Central Japan:diversities of magma sources and processes of magma evolution in a continental margin area. Lithos 24, 261-273.
    [4]
    Arakawa, Y., Shinmura, T., 1995. Nd-Sr isotopic and geochemical characteristics of two contrasting types of calc-alkaline plutons in the Hida belt, Japan. Chem. Geol. 124, 217-232.
    [5]
    Arakawa, Y., Saito, Y., Amakawa, H., 2000. Crustal development of the Hida belt, Japan:evidence from Nd-Sr isotopic and chemical characteristics of igneous and metamorphic rocks. Tectonophysics 328, 183-204.
    [6]
    Arndt, N.T., 2013. Formation and evolution of the continental crust. Geochem. Perspect. 2, 405-533.
    [7]
    Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.K., Davis, D.W., Korsch, R.J., Foudoulis, C., 2003. TEMORA 1:a new zircon standard for Phanerozoic U-Pb geochronology.Chem. Geol. 200, 155-170.
    [8]
    Blichert-Toft, J., 2008. The Hf isotopic composition of zircon reference material 91500.Chem. Geol. 253, 252-257.
    [9]
    Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148, 243-258.
    [10]
    Cawood, P.A., Kröner, A., Collins, W.J., Kusky, T.M., Mooney, W.D., Windley, B.F., 2009. Accretionary orogens through Earth history. In:Cawood, P.A., Kröner, A. (Eds.), Earth Accretionary Systems in Space and Time. vol. 318. Geol. Soc. London Spec. Publ., pp. 1-36.
    [11]
    Cawood, P.A., Hawkesworth, C.J., Dhuime, B., 2012. Detrital zircon record and tectonic setting. Geology 40, 875-878.
    [12]
    Chen, J., Jahn, B.m., 1998. Crustal evolution of southeastern China:Nd and Sr isotopic evidence. Tectonophysics 284, 101-133.
    [13]
    Cheong, A.C.S., Jo, H.J., 2017. Crustal evolution in the Gyeongsang Arc, southeastern Korea:geochronological, geochemical and Sr-Nd-Hf isotopic constraints from granitoid rocks. Am. J. Sci. 317, 369-410.
    [14]
    Cheong, A.C.S., Jo, H.J., 2020. Tectonomagmatic evolution of a Jurassic Cordilleran flare-up along the Korean Peninsula:geochronological and geochemical constraints from granitoid rocks. Gondwana Res. 88, 21-44.
    [15]
    Cheong, C.S., Kim, N., 2012. Review of radiometric ages for Phanerozoic granitoids in southern Korean Peninsula. J. Petrol. Soc. Korea 21, 173-192 (in Korean with English abstract).
    [16]
    Cheong, C.S., Yi, K., Kim, N., Lee, T.H., Lee, S.R., Geng, J.Z., Li, H.K., 2013. Tracking source materials of Phanerozoic granitoids in South Korea by zircon Hf isotopes. Terra Nova 25, 228-235.
    [17]
    Cheong, C.S., Kim, N., Kim, J., Yi, K., Jeong, Y.J., Park, C.S., Li, H.K., Cho, M., 2014. Petrogenesis of late Permian sodic metagranitoids in southeastern Korea:SHRIMP zircon geochronology and elemental and Nd-Hf isotope geochemistry. J. Asian Earth Sci. 95, 228-242.
    [18]
    Cheong, A.C.S., Jo, H.J., Jeong, Y.J., Li, X.H., 2019. Magmatic response to the interplay of collisional and accretionary orogenies in the Korean Peninsula:geochronological, geochemical, and O-Hf isotopic perspectives from Triassic plutons. Geol. Soc. Am. Bull. 131, 609-634.
    [19]
    Cherniak, D.J., Watson, E.B., 2003. Diffusion in zircon. Rev. Mineral. Geochem. 53, 113-143.
    [20]
    Cho, M., Lee, Y., Kim, T., Cheong, W., Kim, Y., Lee, S.R., 2017. Tectonic evolution of Precambrian basement massifs and an adjoining fold-and-thrust belt (Gyeonggi Marginal Belt), Korea:an overview. Geosci. J. 21, 845-865.
    [21]
    Cho, M., Cheong, W., Ernst, W.G., Kim, Y., Yi, K., 2020. U-Pb detrital zircon ages of Cambrian-Ordovician sandstones from the Taebaeksan Basin, Korea:provenance variability in platform shelf sequences and paleogeographic implications. Geol. Soc.Am. Bull. 132. https://doi.org/10.1130/B35521.1.
    [22]
    Condie, K.C., 2007. Accretionary orogens in space and time. In:Hatcher Jr., R.D., Carlson, M.P., McBride, J.H., Martínez Catalán, J.R. (Eds.), 4-D Framework of Continental Crust. vol. 200. Geol. Soc. Am. Mem., pp. 145-158.
    [23]
    Dalziel, I.W.D., 1991. Pacific margins of Laurentia and east Antarctica-Australia as a conjugate rift pair:evidence and implications for an Eocambrian supercontinent. Geology 19, 598-601.
    [24]
    DeCelles, P.G., Ducea, M.N., Kapp, P., Zandt, G., 2009. Cyclicity in Cordilleran orogenic systems. Nat. Geosci. 2, 251-257.
    [25]
    Dhuime, B., Hawkesworth, C., Cawood, P., 2011. When continents formed. Science 331, 154-155.
    [26]
    Ducea, M.N., Barton, M.D., 2007. Igniting flare-up events in Cordilleran arcs. Geology 35, 1047-1050.
    [27]
    Ducea, M.N., Saleeby, J.B., Bergantz, G., 2015. The architecture, chemistry, and evolution of continental magmatic arcs. Annu. Rev. Earth Planet. Sci. 43, 299-331.
    [28]
    Ducea, M.N., Paterson, S.R., DeCelles, P.G., 2017. High-volume magmatic events in subduction systems. Elements 11, 99-104.
    [29]
    Ehiro, M., Tsujimori, T., Tsukada, K., Nuramkhaan, M., 2016. Paleozoic basement and associated cover. In:Moreno, T., Wallis, S., Kojima, T., Gibbons, W. (Eds.), The Geology of Japan. The Geological Society, London, pp. 25-60.
    [30]
    Fowler, A., Prokoph, A., Stern, R., Dupuis, C., 2002. Organization of oscillatory zoning in zircon:analysis, scaling, geochemistry, and model of a zircon from Kipawa, Quebec, Canada. Geochim. Cosmochim. Acta 66, 311-328.
    [31]
    Gao, P., Zheng, Y.F., Zhao, Z.F., 2017. Triassic granites in South China:a geochemical perspective on their characteristics, petrogenesis, and tectonic significance. Earth-Sci.Rev. 173, 266-294.
    [32]
    Geisler, T., Schaltegger, U., Tomaschek, F., 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements 3, 43-50.
    [33]
    Gill, J., 1981. Orogenic Andesites and Plate Tectonics. Springer-Verlag, Berlin, Heidelberg, p. 392.
    [34]
    Griffin, W.L., Pearson, N.J., Belousova, E.A., Jackson, S.E., O'Reilly, S.Y., van Achterberg, E., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 64, 133-147.
    [35]
    Grove, T.L., Till, C.B., Krawczynski, M.J., 2012. The role of H2O in subduction zone magmatism. Annu. Rev. Earth Planet. Sci. 40, 413-439.
    [36]
    Hanchar, J.M., Rudnick, R.L., 1995. Revealing hidden structures:the application of cathodoluminescence and backscattered electron imaging to dating zircons from lower crustal xenoliths. Lithos 36, 289-303.
    [37]
    Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S., Storey, C.D., 2010. The generation and evolution of the continental crust. J. Geol. Soc. 167, 229-248.
    [38]
    He, Z.Y., Xu, X.S., Niu, Y., 2010. Petrogenesis and tectonic significance of a Mesozoic granite-syenite-gabbro association from inland South China. Lithos 119, 621-641.
    [39]
    Hoffman, P.F., 1991. Did the breakout of Laurentia turn Gondwanaland inside out? Science 252, 1409-1412.
    [40]
    Horie, K., Yamashita, M., Hayasaka, Y., Katoh, Y., Tsutsumi, Y., Katsube, A., Hidaka, H., Kim, H., Cho, M., 2010. Eoarchean-Paleoproterozoic zircon inheritance in Japanese PermoTriassic granites (Unazuki area, Hida Metamorphic complex):unearthing more old crust and identifying source terranes. Precambrian Res. 183, 145-157.
    [41]
    Horie, K., Takehara, M., Suda, Y., Hidaka, H., 2013. Potential Mesozoic reference zircon from the Unazuki plutonic complex:geochronological and geochemical characterization. Island Arc 22, 292-305.
    [42]
    Horie, K., Tsutsumi, Y., Takehara, M., Hidaka, H., 2018. Timing and duration of regional metamorphism in the Kagasawa and Unazuki areas, Hida metamorphic complex, Southwest Japan. Chem. Geol. 484, 148-167.
    [43]
    Hoskin, P.W.O., Black, L.P., 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol. 18, 423-439.
    [44]
    Huang, H.Q., Li, X.H., Li, W.X., Li, Z.X., 2011. Formation of high δ18O fayalite-bearing A-type granite by high temperature melting of granulitic metasedimentary rocks, southern China. Geology 39, 903-906.
    [45]
    Huang, H.Q., Li, X.H., Li, Z.X., Li, W.X., 2013. Intraplate crustal remelting as the genesis of Jurassic high-K granites in the coastal region of the Guangdong Province, SE China.J. Asian Earth Sci. 74, 280-302.
    [46]
    Huang, H.Q., Li, X.H., Li, Z.X., Li, W.X., 2015. Formation of the Jurassic South China large Granitic Province:insights from the genesis of the Jiufeng pluton. Chem. Geol. 401, 43-58.
    [47]
    Ishihara, S., 1998. Granitoid series and mineralization in the Circum-Pacific Phanerozoic granitoid belts. Resour. Geol. 48, 219-224.
    [48]
    Ishihara, S., 2005. Source diversity of the older and early Mesozoic granitoids in the Hida Belt, central Japan. Bull. Geol. Soc. Jpn. 56, 117-126 (in Japanese with English abstract).
    [49]
    Isozaki, Y., 2019. A visage of early Paleozoic Japan:geotectonic and paleobiogeographical significance of Greater South China. Island Arc 28. https://doi.org/10.1111/iar.12296.
    [50]
    Jahn, B.M., 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In:Malpas, J., Fletcher, C.J.N., Ali, J.R., Aitchison, J.C. (Eds.), Aspects of the Tectonic Evolution of China. Geol. Soc. London Spec. Publ vol. 226, pp. 73-100.
    [51]
    Jahn, B.M., 2010. Accretionary orogen and evolution of the Japanese Islands:implications from a Sr-Nd isotopic study of the Phanerozoic granitoids from SW Japan. Am. J. Sci. 310, 1210-1249.
    [52]
    Jeong, G.Y., Cheong, C.S., Yi, K., Kim, J., Kim, N., Kwon, S.K., Geng, J.Z., Li, H.K., 2014. Mineral ages and zircon Hf isotopic composition of the Andong ultramafic complex:implications for the evolution of Mesozoic subduction system and subcontinental lithospheric mantle beneath SE Korea. Geol. Mag. 151, 765-776.
    [53]
    Kawano, Y., Ueda, Y., 1966. K-Ar dating on the igneous rocks in Japan, V. Granitic rocks in southwestern Japan. J. Japan. Assoc. Mineral. Petrol. Econ. Geol. 56, 191-211 (in Japanese).
    [54]
    Kelemen, P.B., Hanghøj, K., Greene, A.R., 2003. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In:Rudnick, R.L. (Ed.), The Crust. Amsterdam, Treaties on Geochemistry.vol. 3, pp. 749-805.
    [55]
    KIGAM (Korea Institute of Geoscience and Mineral Resources), 2001. Tectonic Map of Korea. Sungji Atlas Co. Ltd, Seoul (scale 1:1,000,000).
    [56]
    Kim, H.S., Ree, J.H., Kim, J., 2012. Tectonometamorphic evolution of the Permo-Triassic Songrim (Indosinian) orogeny:evidence from the late Paleozoic Pyeongan Supergroup in the northeastern Taebaeksan Basin, South Korea. Int. J. Earth Sci. 101, 483-498.
    [57]
    Kim, H.S., Hwang, M.K., Ree, J.H., Yi, K., 2013. Tectonic linkage between the Korean Peninsula and mainland Asia in the Cambrian:insights from U-Pb dating of detrital zircon.Earth Planet. Sci. Lett. 368, 204-218.
    [58]
    Kim, N., Cheong, C.S., Yi, K., Song, Y.S., Park, K.H., Geng, J.Z., Li, H.K., 2014. Zircon U-Pb geochronological and Hf isotopic constraints on the Precambrian crustal evolution of the north-eastern Yeongnam Massif, Korea. Precambrian Res. 242, 1-21.
    [59]
    Köppel, V., Sommerauer, J., 1974. Trace elements and the behaviour of the U-Pb system in inherited and newly formed zircons. Contrib. Mineral. Petrol. 43, 71-82.
    [60]
    Lee, T.H., Yi, K., Cheong, C.S., Jeong, Y.J., Kim, N., Kim, M.J., 2014. SHRIMP U-Pb zircon geochronology and geochemistry of drill cores from the Pohang Basin. J. Petrol. Soc.
    [61]
    Korea 23, 167-185 (in Korean with English abstract).Li, Z.X., Powell, C.M., 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Sci. Rev. 53, 237-277.
    [62]
    Li, X.H., Li, Z.X., Li, W.X., Liu, Y., Yuan, C., Wei, G., Qi, C., 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from Central Guangdong, SE China:a major igneous event in response to foundering of a subducted flat-slab? Lithos 96, 186-204.
    [63]
    Li, Z.X., Li, X.H., Chung, S.L., Lo, C.H., Xu, X., Li, W.X., 2012. Magmatic switch-on and switchoff along the South China continental margin since the Permian:transition from an Andean-type to a Western Pacific-type plate boundary. Tectonophysics 532-535, 271-290.
    [64]
    Ludwig, K.R., 2008. User's Manual for Isoplot 3.6:A Geochronological Toolkit for Microsoft Excel. 4. Berkeley Geochronology Center Special Publication, 77p.
    [65]
    Ludwig, K.R., 2009. User's Manual for Squid 2.50. 5. Berkeley Geochronology Center Special Publication, 110p.
    [66]
    Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., Champion, D., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG) and sanukitoid:relationships and some implications for crustal evolution. Lithos 79, 1-24.
    [67]
    McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chem. Geol. 120, 223-253.
    [68]
    Nakajima, T., Takahashi, M., Imaoka, T., Shimura, T., 2016. Granitic rocks. In:Moreno, T., Wallis, S., Kojima, T., Gibbons, W. (Eds.), The Geology of Japan. The Geological Society, London, pp. 251-272.
    [69]
    Paces, J.B., Miller Jr., J.D., 1993. Precise U-Pb ages of Duluth Complex and related mafic intrusions, Northeastern Minnesota:geochronological insights to physical, petrogenic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. J. Geophys. Res. 98, 13997-14013.
    [70]
    Paterson, S.R., Okaya, D., Memeti, V., Economos, R., Miller, R.B., 2011. Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs:combined field, geochronologic, and thermal modeling studies. Geosphere 7, 1439-1468.
    [71]
    Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite:freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508-2518.
    [72]
    Putnis, A., 2009. Mineral replacement reactions. Rev. Mineral. Geochem. 70, 87-124.
    [73]
    Ree, J.H., Kwon, S.H., Park, Y., 2001. Pretectonic and posttectonic emplacements of the granitic rocks in the south central Okcheon belt, South Korea:implications for the timing of strike-slip shearing and thrusting. Tectonics 20, 850-867.
    [74]
    Rubatto, D., 2017. Zircon:the metamorphic mineral. Rev. Mineral. Geochem. 83, 261-295.
    [75]
    Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. In:Rudnick, R.L. (Ed.), The Crust. Amsterdam, Treaties on Geochemistry. vol. 3, pp. 1-64.
    [76]
    Sagong, H., Kwon, S.T., Ree, J.H., 2005. Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics 24, TC5002.
    [77]
    Sano, Y., Hidaka, H., Terada, K., Shimizu, H., Suzuki, M., 2000. Ion microprobe U-Pb zircon geochronology of the Hida gneiss:finding of the oldest minerals in Japan. Geochem. J. 34, 135-153.
    [78]
    Scherer, E., Münker, C., Mezger, K., 2001. Calibration of the lutetium-hafnium clock. Science 293, 683-687.
    [79]
    Sengör, A.M.C., Natal'In, B.A., 1996. Turkic-type orogeny and its role in the making of the continental crust. Annu. Rev. Earth Planet. Sci. 24, 263-337.
    [80]
    Song, Y.S., Lee, H.S., Park, K.H., Fitzsimons, I.C.W., Cawood, P.A., 2015. Recognition of the Phanerozoic "Young Granite Gneiss" in the central Yeongnam Massif. Geosci. J. 19, 1-16.
    [81]
    Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207-221.
    [82]
    Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts.Geol. Soc. London Spec. Publ. 42, 313-345.
    [83]
    Takahashi, Y., Cho, D.L., Kee, W.S., 2010. Timing of mylonitization in the Funatsu shear zone within Hida Belt of Southwest Japan:implications for correlation with the shear zones around the Ogcheon Belt in the Korean Peninsula. Gondwana Res. 17, 102-115.
    [84]
    Takahashi, Y., Cho, D.L., Mao, J., Zhao, X., Yi, K., 2018. SHRIMP U-Pb zircon ages of the Hida metamorphic and plutonic rocks, Japan:implications for late Paleozoic to Mesozoic tectonics around the Korean Peninsula. Island Arc 27 (1), e12220. https://doi.org/10.1111/iar.12220.
    [85]
    Takehara, M., Horie, K., 2019. U-Pb zircon geochronology of the Hida gneiss and granites in the Kamioka area, Hida Belt. Island Arc 28 (4), e12303. https://doi.org/10.1111/iar.12303.
    [86]
    Tanaka, S., 1992. Origin of the early Mesozoic granitic rocks in the Hida terrane, Japan, and its implication for evolution of the continental crust. J. Sci. Hiroshima Univ. Ser. C 9, 435-493.
    [87]
    Tao, J.H., Li, W.X., Li, X.H., Tao, C., 2013. Petrogenesis of early Yanshanian highly evolved granites in the Longyuanba area, southern Jiangxi Province:evidence from zircon U-Pb dating, Hf-O isotope and whole-rock geochemistry. Sci. China Earth Sci. 56, 922-939.
    [88]
    Tatsumi, Y., Eggins, S., 1995. Subduction Zone Magmatism. Blackwell Science, Cambridge, Massachusetts, p. 211.
    [89]
    Tsujimori, T., Liou, J.G., Ernst, W.G., Itaya, T., 2006. Triassic paragonite- and garnet-bearing epidote-amphibolite from the Hida Mountains, Japan. Gondwana Res. 9, 167-175.
    [90]
    Vonlanthen, P.V., Fitz Gerald, J.D., Rubatto, D., Hermann, J., 2012. Recrystallization rims in zircon (Valle d'Arbedo, Switzerland):an integrated cathodoluminescence, LA-ICPMS, SHRIMP, and TEM study. Am. Mineral. 97, 369-377.
    [91]
    Wan, Y., Zhao, X., Wang, Z., Liu, D., Kröner, A., Dong, C., Xie, H., Geng, Y., Zhang, Y., Fan, R., Sun, H., 2014. SHRIMP zircon dating and LA-ICPMS Hf analysis of early Precambrian rocks from drill holes into the basement beneath the Central Hebei Basin, North China Craton. Geosci. Front. 5, 471-484.
    [92]
    Whattam, S.A., Cho, M., Smith, I.E.M., 2011. Magmatic peridotites and pyroxenites, Andong Ultramafic complex, Korea:geochemical evidence for suprasubduction zone formation and extensive melt-rock interaction. Lithos 127, 599-618.
    [93]
    Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In:McKibben, M.A., Shanks III, W.C., Rindley, W.I. (Eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology. vol. 7. Society of Economic Geologists, Inc, Littleton, pp. 1-35.
    [94]
    Yi, K., Cheong, C.S., Kim, J., Kim, N., Jeong, Y.J., Cho, M., 2012. Late Paleozoic to early Mesozoic arc-related magmatism in southeastern Korea:SHRIMP zircon geochronology and geochemistry. Lithos 153, 129-141.
    [95]
    Zhang, S.H., Zhao, Y., Davis, G.A., Ye, H., Wu, F., 2014. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton:implications for lithospheric thinning and decratonization. Earth-Sci. Rev. 131, 49-87.
    [96]
    Zhang, Y., Yang, J.H., Sun, J.F., Zhang, J.H., Chen, J.Y., Li, X.H., 2015. Petrogenesis of Jurassic fractionated I-type granites in Southeast China:constraints from whole-rock geochemical and zircon U-Pb and Hf-O isotopes. J. Asian Earth Sci. 111, 268-283.
    [97]
    Zhao, X., Mao, J., Ye, H., Liu, K., Takahashi, Y., 2013. New SHRIMP U-Pb zircon ages of granitic rocks in the Hida Belt, Japan:implications for tectonic correlation with Jiamushi massif. Island Arc 22, 508-521.
    [98]
    Zhao, X., Jiang, Y., Yu, S., Xing, G., Yu, M., 2018. Geochemical, zircon U-Pb-Hf, and wholerock Sr-Nd isotopic study of late Jurassic Sanming A-type granite in the Wuyi area, Fujian province, Southeast China. Geol. J. 53, 2204-2218.
    [99]
    Zhou, Z.M., Ma, C.Q., Wang, L.X., Chen, S.G., Xie, C.F., Li, Y., Liu, W., 2018. A source-depleted Early Jurassic granitic pluton from South China:implication to the Mesozoic juvenile accretion of the South China crust. Lithos 300-301, 278-290.
    [100]
    Zhu, W.G., Zhong, H., Li, X.H., He, D.F., Song, X.Y., Ren, T., Chen, Z.Q., Sun, H.S., Liao, J.Q., 2010. The early Jurassic mafic-ultramafic intrusion and A-type granite from northeastern Guangdong, SE China:age, origin, and tectonic significance. Lithos 119, 313-329.
    [101]
    Zhu, K.Y., Li, Z.X., Xu, X.S., Wilde, S.A., 2014. A Mesozoic Andean-type orogenic cycle in southeastern China as recorded by granitoid evolution. Am. J. Sci. 314, 187-234.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (80) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return