Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Nick M. W. Roberts, Jiří Žák, František Vacek, Jiří Sláma. No more blind dates with calcite: Fluid-flow vs. fault-slip along the Očkov thrust, Prague Basin[J]. Geoscience Frontiers, 2021, 12(4): 101143. doi: 10.1016/j.gsf.2021.101143
Citation: Nick M. W. Roberts, Jiří Žák, František Vacek, Jiří Sláma. No more blind dates with calcite: Fluid-flow vs. fault-slip along the Očkov thrust, Prague Basin[J]. Geoscience Frontiers, 2021, 12(4): 101143. doi: 10.1016/j.gsf.2021.101143

No more blind dates with calcite: Fluid-flow vs. fault-slip along the Očkov thrust, Prague Basin

doi: 10.1016/j.gsf.2021.101143

k) and by the Charles University through Centre for Geosphere Dynamics (UNCE/SCI/006) and project PROGRES Q45. We also acknowledge financial support from the Ministry of Culture of the Czech Republic through project DKRVO 2019-2023/1.IV.b (National Museum, 00023272). Robert Holder is thanked for providing the chip of Duff Brown calcite. We thank Stijn Glorie and an anonymous reviewer for their constructive comments, and Prof. Santosh for efficient editorial handling.


Nick Roberts publishes with the permission of the Director of the British Geological Survey. This study was supported by the Czech Science Foundation through Grant No. 16-11500S (to Jiř



  • Received Date: 2020-10-28
  • Rev Recd Date: 2020-12-31
  • Dating of fracture-filling calcite with U-Pb geochronology is becoming a rapidly adopted technique for determining the absolute timing of brittle deformation in the upper crust. Slickenfibre calcite is a desirable target, as it precipitates between individual fault slip displacement events, and provides additional kinematic information. Here we present a case study of slickenfibres formed on the Očkov thrust in the Lower Palaezoic Prague Basin, Bohemian Massif, utilising a combination of petrographic and in situ methods. We demonstrate that slickenfibre external textures can be preserved, whilst internally primary textures are removed by fluid infiltration and recrystallization, leading to variable U and Pb mobilisation. One slickenfibre yielded a date of ca. 250 Ma, which we interpret as recording fault slip along the Očkov thrust. Another cross-cutting slickenfibre yielded more scattered U-Pb data, with an imprecise apparent age around ca. 95 Ma. This slickenfibre is recrystallised, destroying the primary textures, and exhibits element mobility. The meaning of this younger apparent age is therefore questionable; whereas it likely reflects Cretaceous U and Pb mobility assisted by fluid-flow along the fault plane, it may not reflect a period of fault slip. Our results demonstrate that slickenfibre-based U-Pb dates do not unequivocally relate to fault motion, and that petrographic and elemental analyses are important requirements for interpreting calcite U-Pb data.

  • loading
  • [1]
    Adamovič, J., 2002. Brittle Deformation of Devonian Limestones along the Očkov Fault, Čertovy Schody Quarry. Czech Geological Survey, Czech Republic, Geoscience Research Reports, pp. 12-13.
    Arche, A., López-Gómez, J., 1996. Origin of the Permian-Triassic Iberian Basin, CentralEastern Spain. Tectonophysics 266, 443-464.
    Bajo, P., Hellstrom, J., Frisia, S., Drysdale, R., Black, J., Woodhead, J., Borsato, A., Zanchetta, G., Wallace, M.W., Regattieri, E., Haese, R., 2016. "Cryptic" diagenesis and its implications for speleothem geochronologies. Quat. Sci. Rev. 148, 17-28.
    Beaudoin, N., Lacombe, O., Roberts, N.M.W., Koehn, D., 2018. U-Pb dating of calcite veins reveals complex stress evolution and thrust sequence in the Bighorn Basin, Wyoming, USA. Geology 46, 1015-1018.
    Beaudoin, N.E., Labeur, A., Lacombe, O., Koehn, D., Billi, A., Hoareau, G., Boyce, A., John, C.M., Marchegiano, M., Roberts, N.M.W., Millar, I.L., 2020. Regional-scale paleofluid system across the Tuscan Nappe-Umbria-Marche Apennine Ridge (northern Apennines) as revealed by mesostructural and isotopic analyses of stylolite-vein networks. Solid Earth 11, 1617-1641.
    Bons, P.D., Elburg, M.A., Gomez-Rivas, E., 2012. A review of the formation of tectonic veins and their microstructures. J. Struct. Geol. 43, 33-62.
    Chlupáč, I., 1989. Geological Map 1:25,000, Sheet 12-413 Králův Dvůr. Prague, Czech Republic, Czech Geological Survey.
    Chlupáč,I.,Havlíček,V.,Kříž,J.,Kukal,Z.,Štorch,P.,1998.PalaeozoicoftheBarrandian(Cambrian to Devonian). Prague, Czech Republic, Czech Geological Survey, pp. 1-183.
    Coogan, L.A., Parrish, R.R., Roberts, N.M.W., 2016. Early hydrothermal carbon uptake by the upper oceanic crust:Insight from in situ U-Pb dating. Geology 44, 147-150.
    Cornell, D.H., Austin Hegardt, E., 2003. No more blind dates with zircon! EGS-AGU-EUG Joint Assembly, 2524, Nice, France.
    Coubal, M., Málek, J., Adamovič, J., Štěpančíková, P., 2015. Late Cretaceous and Cenozoic dynamics of the Bohemian Massif inferred from the paleostress history of the Lusatian Fault Belt. J. Geodyn. 87, 26-49.
    Danišík, M., Migoń, P., Kuhlemann, J., Evans, N.J., Dunkl, I., Frisch, W., 2010.Thermochronological constraints on the long-term erosional history of the Karkonosze Mts., Central Europe. Geomorphology 117, 78-89.
    Danišík, M., Štěpančíková, P., Evans, N.J., 2012. Constraining long-term denudation and faulting history in intraplate regions by multisystem thermochronology:an example of the Sudetic Marginal Fault (Bohemian Massif, central Europe). Tectonics 31, TC2003. https://doi.org/10.1029/2011TC003012.
    DeWolf, C.P., Halliday, A.N., 1991. U-Pb dating of a remagnetized Paleozoic limestone.Geophys. Res. Lett. 18, 1445-1448.
    Edel, J.B., Schneider, J.L., 1995. The Late Carboniferous to Early Triassic geodynamic evolution of Variscan Europe in the light of magnetic overprints in Early Permian rhyolites from the northern Vosges (France) and central Black Forest (Germany). Geophys.J. Int. 122, 858-876.
    Filip, J., Suchý, V., 2004. Thermal and tectonic history of the Barrandian Lower Paleozoic, Czech Republic:is there a fission-track evidence for Carboniferous-Permian overburden and pre-Westphalian alpinotype thrusting? B Geosci. 79, 107-112.
    Glasmacher, U.A., Mann, U., Wagner, G.A., 2002. Thermotectonic evolution of the Barrandian, Czech Republic, as revealed by apatite fission-track analysis.Tectonophysics 359, 381-402.
    Goodfellow, B.W., Viola, G., Bingen, B., Nuriel, P., Kylander-Clark, A.R., 2017. Palaeocene faultinginSESwedenfromU-Pbdatingofslickenfibrecalcite.TerraNova 29,321-328.
    Hajná, J., Žák, J., Kachlík, V., Chadima, M., 2012. Deciphering the Variscan tectonothermal overprint and deformation partitioning in the Cadomian basement of the Teplá-Barrandian unit, Bohemian Massif. Int. J. Earth Sci. 101, 1855-1873.
    Halavínová, M., Melichar, R., Slobodník, M., 2008. Hydrothermal veins linked with the Variscan structure of the Prague Synform (Barrandien, Czech Re public):resolving fluid-wall rock interaction. Geol. Q. 52, 309-320.
    Hansman, R.J., Albert, R., Gerdes, A., Ring, U., 2018. Absolute ages of multiple generations of brittle structures by U-Pb dating of calcite. Geology 46, 207-210.
    Havlíček, V., 1963. Tectogenetic disruption of the Barrandian Paleozoic. J. Geol. Sci. Geol. 1, 77-102.
    Havlíček, V., 1981. Development of a linear sedimentary depression exemplified by the Prague Basin (Ordovician-Middle Devonian; Barrandian area-central Bohemia).Sbor. Geol. Věd. Geol. 35, 7-48.
    Hejl, E., Coyle, D., Lal, N., Van den Haute, P., Wagner, P.A., 1997. Fission-track dating of the western border of the Bohemian massif:thermochronology and tectonic implications. Geol. Rundsch. 86, 210-219.
    Hill, C.A., Polyak, V.J., Asmerom, Y., Provencio, P., 2016. Constraints on a Late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U-Pb dating of lacustrine limestone. Tectonics 35, 896-906.
    Hoareau, G., Crognier, N., Lacroix, B., Aubourg, C., Roberts, N.M.W., Niemi, N., Branellec, M., Beaudoin, N., Ruiz, I.S., 2021. Combination of Δ47 and U-Pb dating in tectonic calcite veins unravel the last pulses related to the Pyrenean Shortening (Spain). Earth Planet.Sci. Lett. 553, 116636.
    Holdsworth, R.E., McCaffrey, K.J.W., Dempsey, E., Roberts, N.M.W., Hardman, K., Morton, A., Feely, M., Hunt, J., Conway, A., Robertson, A., 2019. Natural fracture propping and earthquake-inducedoilmigrationinfracturedbasementreservoirs.Geology 47,700-704.
    Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A., Birbaum, K., Frick, D.A., Günther, D., 2011. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanal. Res. 35, 397-429.
    Kley, J., Voigt, T., 2008. Late Cretaceous intraplate thrusting in Central Europe:effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36, 839-842.
    Li, Q., Parrish, R.R., Horstwood, M.S.A., McArthur, J.M., 2014. U-Pb dating of cements in Mesozoic ammonites. Chem. Geol. 376, 76-83.
    Machel, H.G., 1985. Cathodoluminescence in calcite and dolomite and its chemical interpretation. Geosci. Can. 12, 161-168.
    Machel, H.G., 2000. Application of cathodoluminescence to carbonate diagenesis. In:Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D. (Eds.), Cathodoluminescence in Geosciences. Springer, Berlin, Germany, pp. 271-301.
    Malkovský, M., 1987. The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution. Tectonophysics 137, 31-42.
    Martínez Catalán, J.R., 2012. The Central Iberian arc, an orocline centered in the Iberian Massif and some implications for the Variscan belt. Int. J. Earth Sci. 101, 1299-1314.
    Melichar, R., 2004. Tectonics of the Prague Synform:a hundred years of scientific discussion. Krystalinikum 30, 167-187.
    Miranda, T.S., Neves, S.P., Celestino, M.A.L., Roberts, N.M., 2020. Structural evolution of the Cruzeiro do Nordeste shear zone (NE Brazil):Brasiliano-Pan-African-ductile-tobrittle transition and Cretaceous brittle reactivation. J. Struct. Geol. 141, 104203.https://doi.org/10.1016/j.jsg.2020.104203.
    Mottram, C.M., Kellett, D.A., Barresi, T., Zwingmann, H., Friend, M., Todd, A., Percival, J.B., 2020. Syncing fault rock clocks:Direct comparison of U-Pb carbonate and K-Ar illite fault dating methods. Geology 48, 1179-1183.
    Nádaskay, R., Žák, J., Sláma, J., Sidorinová, T., Valečka, J., 2019. Deciphering the Late Paleozoic to Mesozoic tectonosedimentary evolution of the northern Bohemian Massif from detrital zircon geochronology and heavy mineral provenance. Int. J. Earth Sci. 108, 2653-2681.
    Nance, R.D., Gutiérrez-Alonso, G., Keppie, J.D., Linnemann, U., Murphy, J.B., Quesada, C., Strachan, R.A., Woodcock, N.H., 2010. Evolution of the Rheic Ocean. Gondwana Res. 17, 194-222.
    Nuriel, P., Weinberger, R., Kylander-Clark, A.R.C., Hacker, B.R., Craddock, J.P., 2017. The onset of the Dead Sea transform based on calcite age-strain analyses. Geology 45, 587-590.
    Nuriel, P., Craddock, J., Kylander-Clark, A.R., Uysal, I.T., Karabacak, V., Dirik, R.K., Hacker, B.R., Weinberger, R., 2019. Reactivation history of the North Anatolian fault zone based on calcite age-strain analyses. Geology 47, 465-469.
    Opluštil, S., Cleal, C.J., 2007. A comparative analysis of some late Carboniferous basins of Variscan Europe. Geol. Mag. 144, 417-448.
    Opluštil, S., Schmitz, M.D., Cleal, C.J., Martínek, K., 2016. A review of the Middle-Late Pennsylvanian west European regional substages and floral biozones, and their correlation to the Geological Time Scale based on new U-Pb ages. Earth-Sci. Rev. 154, 301-335.
    Oren, O., Nuriel, P., Kylander-Clark, A.R., Haviv, I., 2020. Evolution and propagation of an active plate boundary:U-Pb ages of fault-related calcite from the Dead Sea Transform. Tectonics 39. https://doi.org/10.1029/2019TC005888e2019TC005888.
    Parrish, R.R., Parrish, C.M., Lasalle, S., 2018. Vein calcite dating reveals Pyrenean orogen as cause of Paleogene deformation in southern England. J. Geol. Soc. Lond. 175, 425-442.
    Passchier, C.W., Trouw, R.A., 2005. Microtectonics. Springer Science & Business Media, Berlin.Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite:freeware for the visualisation and processing of mass spectrometric data. J. Anal. Atom Spectrom. 26, 2508-2518.
    Peterek, A., Rauche, H., Schröder, B., Franzke, H.J., Bankwitz, P., Bankwitz, E., 1997. The late- and post-Variscan tectonic evolution of the Western Border fault zone of the Bohemian massif (WBZ). Geol. Rundsch. 86, 191-202.
    Ring, U., Gerdes, A., 2016. Kinematics of the Alpenrhein-Bodensee graben system in the Central Alps:Oligocene/Miocene transtension due to formation of the Western Alps arc. Tectonics 35, 1367-1391.
    Roberts, N.M.W., Walker, R.J., 2016. U-Pb geochronology of calcite-mineralized faults:absolute timing of rift-related fault events on the Northeast Atlantic margin. Geology 44, 531-534.
    Roberts, N.M.W., Rasbury, E.T., Parrish, R.R., Smith, C.J., Horstwood, M.S., Condon, D.J., 2017. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochem.Geophys. Geosyst. 18, 2807-2814.
    Roberts, N.M.W., Drost, K., Horstwood, M.S., Condon, D.J., Chew, D., Drake, H., Milodowski, A.E., McLean, N.M., Smye, A.J., Walker, R.J., Haslam, R., 2020a. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb carbonate geochronology:strategies, progress, and limitations. Geochronology 2, 33-61.
    Roberts, N.M.W., Lee, J.K., Holdsworth, R.E., Jeans, C., Farrant, A.R., Haslam, R., 2020b. Nearsurface Palaeocene fluid flow, mineralisation and faulting at Flamborough Head, UK:newfieldobservationsandU-Pbcalcitedating constraints.SolidEarth 11,1931-1945.
    Röhlich, P., 2007. Structure of the Prague basin:the deformation diversity and its causes(Czech Republic). B Geosci. 82, 175-182.
    Scheck-Wenderoth, M., Krzywiec, P., Zühlke, R., Maystrenko, Y., Froitzheim, N., McCann, T., 2008. Permian to Cretaceous tectonics. The Geology of Central Europe Volume 2:Mesozoic and Cenozoic. Geol Soc Spec Pub, pp. 999-1030.
    Scholz, D., Tolzmann, J., Hoffmann, D.L., Jochum, K.P., Spotl, C., Riechelmann, D.F.C., 2014.Diagenesis of speleothems and its effect on the accuracy of 230Th/U-ages. Chem. Geol. 387, 74-86.
    Schröder, B., 1987. Inversion tectonics along the western margin of the Bohemian Massif.Tectonophysics 137, 93-100.
    Schröder, B., Ahrendt, H., Peterek, A., Wemmer, K., 1997. Post-Variscan sedimentary record of the SW margin of the Bohemian massif:a review. Geol. Rundsch. 86, 178-184.
    Schulmann, K., Konopásek, J., Janoušek, V., Lexa, O., Lardeaux, J.M., Edel, J.B., Štípská, P., Ulrich, S., 2009. An Andean type Palaeozoic convergence in the Bohemian Massif.Compt. Rendus Geosci. 341, 266-286.
    Schulmann, K., Lexa, O., Janoušek, V., Lardeaux, J.M., Edel, J.B., 2014. Anatomy of a diffuse cryptic suture zone:an example from the Bohemian Massif, European Variscides. Geology 42, 275-278.
    Simpson, A., Glorie, S., Morley, C.K., Roberts, N.M.W., Gillespie, J., Lee, J.K., 2021. In-situ calcite U-Pb geochronology of hydrothermal veins in Thailand:new constraints on Indosinian and Cenozoic deformation. J. Asian Earth Sci. 206, 104649. https://doi.org/10.1016/j.jseaes.2020.104649.
    Slobodník, M., Melichar, R., Hurai, V., Bakker, R.J., 2012. Litho-stratigraphic effect on Variscan fluid flow within the Prague synform, Barrandian:evidence based on C, O, Sr isotopes and fluid inclusions. Mar. Pet. Geol. 35, 128-138.
    Smeraglia, L., Aldega, L., Billi, A., Carminati, E., Di Fiore, F., Gerdes, A., Albert, R., Rossetti, F., Vignaroli, G., 2019. Development of an intrawedge tectonic mélange by out-ofsequence thrusting, buttressing, and intraformational rheological contrast, Mt.Massico Ridge, Apennines, Italy. Tectonics 38, 1223-1249.
    Smith, P.E., Farquhar, R.M., Hancock, R.G., 1991. Direct radiometric age determination of carbonate diagenesis using U-Pb in secondary calcite. Earth Planet. Sci. Lett. 105, 474-491.
    Stille, H., 1924. Grundfragen der vergleichenden Tektonik. Borntraeger, Berlin, p. 443.
    Suchý, V., Rozkošný, I., Žák, K., Franců, J., 1996. Epigenetic dolomitization of the Přídolí formation (Upper Silurian), the Barrandian basin, Czech Republic:implications for burial history of lower Paleozoic strata. Int. J. Earth Sci. 85, 264-277.
    Suchý, V., Dobeš, P., Filip, J., Stejskal, M., Zeman, A., 2002. Conditions for veining in the Barrandian Basin (lower Palaeozoic), Czech Republic:evidence from fluid inclusion and apatite fission track analysis. Tectonophysics 348, 25-50.
    Szulc, J., 2000. Middle Triassic evolution of the northern peri-Tethys area as influenced by early opening of the Tethys Ocean. Ann. Soc. Geol. Pol. 70, 1-48.
    Uličný, D., 2001. Depositional systems and sequence stratigraphy of coarse-grained deltas in a shallow-marine, strike-slip setting:the Bohemian Cretaceous Basin, Czech Republic. Sedimentology 48, 599-628.
    Uličný, D., Laurin, J., Čech, S., 2009a. Controls on clastic sequence geometries in a shallowmarine, transtensional basin:the Bohemian Cretaceous Basin, Czech Republic. Sedimentology 56, 1077-1114.
    Uličný, D., Špičáková, L., Grygar, R., Svobodová, M., Čech, S., Laurin, J., 2009b.Palaeodrainage systems at the basal unconformity of the Bohemian Cretaceous Basin:roles of inherited fault systems and basement lithology during the onset of basin filling. B Geosci. 84, 577-610.
    Vacek, F., Žák, J., 2019. A lifetime of the Variscan orogenic plateau from uplift to collapse as recorded by the Prague Basin, Bohemian Massif. Geol. Mag. 156, 485-509.
    Vamvaka, A., Siebel, W., Chen, F., Rohrmüller, J., 2014. Apatite fission-track dating and low-temperature history of the Bavarian Forest (southern Bohemian Massif). Int.J. Earth Sci. 103, 103-119.
    Ventura, D., Lisker, F., 2003. Long-term landscape evolution of the northeastern margin of the Bohemian Massif:apatite fission-track data from the Erzgebirge (Germany). Int.J. Earth Sci. 92, 691-700.
    Wagner, G.A., Coyle, D.A., Duyster, J., Henjes-Kunst, F., Peterek, A., Schröder, B., Stöckhert, B., Wemmer, K., Zulauf, G., Ahrendt, H., Bischoff, R., Hejl, E., Jacobs, J., Menzel, D., Lal, N., Van den Haute, P., Vercoutere, C., Welzel, B., 1997. Post-Variscan thermal and tectonic evolution of the KTB site and its surroundings. J. Geophys. Res. 102, 18221-18232.
    Weinberger, R., Nuriel, P., Kylander-Clark, A.R., Craddock, J.P., 2020. Temporal and spatial relations between large-scale fault systems:evidence from the Sinai-Negev shear zone and the Dead Sea Fault. Earth-Sci. Rev. 211, 103377. https://doi.org/10.1016/j.earscirev.2020.103377.
    Williams, R.T., Goodwin, L.B., Sharp, W.D., Mozley, P.S., 2017. Reading a 400,000-year record of earthquake frequency for an intraplate fault. P Nat. Acad. Sci. 114, 4893-4898.
    Williams, R.T., Mozley, P.S., Sharp, W.D., Goodwin, L.B., 2019. U-Th dating of syntectonic calcite veins reveals the dynamic nature of fracture cementation and healing in faults.
    Geophys. Res. Lett. 46, 12900-12908.
    Winchester, J.A., 2002. Palaeozoic amalgamation of Central Europe:new results from recent geological and geophysical investigations. Tectonophysics 360, 5-21.
    Žák, J., Kraft, P., Hajná, J., 2013. Timing, styles, and kinematics of Cambro-Ordovician extension in the Teplá-Barrandian Unit, Bohemian Massif, and its bearing on the opening of the Rheic Ocean. Int. J. Earth Sci. 102, 415-433.
    Ziegler, P.A., 1982. Triassic rifts and facies patterns in Western and Central Europe. Geol.Rundsch. 71, 747-772.
    Zulauf, G., 2001. Structural style, deformational mechanisms and paleodifferential stress along an exposed crustal section:constraints on the rheology of quartzofeldspathic rocks at supra- and infrastructural levels (Bohemian Massif). Tectonophysics 332, 211-237.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (114) PDF downloads(5) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint