Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Andrei V. Grebennikov, Igor V. Kemkin, Alexander I. Khanchuk. Paleocene-early Eocene post-subduction magmatism in Sikhote-Alin (Far East Russia): New constraints for the tectonic history of the Izanagi-Pacific ridge and the East Asian continental margin[J]. Geoscience Frontiers, 2021, 12(4): 101142. doi: 10.1016/j.gsf.2021.101142
Citation: Andrei V. Grebennikov, Igor V. Kemkin, Alexander I. Khanchuk. Paleocene-early Eocene post-subduction magmatism in Sikhote-Alin (Far East Russia): New constraints for the tectonic history of the Izanagi-Pacific ridge and the East Asian continental margin[J]. Geoscience Frontiers, 2021, 12(4): 101142. doi: 10.1016/j.gsf.2021.101142

Paleocene-early Eocene post-subduction magmatism in Sikhote-Alin (Far East Russia): New constraints for the tectonic history of the Izanagi-Pacific ridge and the East Asian continental margin

doi: 10.1016/j.gsf.2021.101142
Funds:

We would like to thank the two anonymous reviewers for providing detailed and insightful advice that greatly improved this manuscript. This work was financially supported by the Russian Foundation for Basic Research and the National Natural Science Foundation of China for scientific project No. 19-55-53008 as well as by the partial financial support of the Russian Foundation for Basic Research (No. 19-05-00100).

  • Received Date: 2020-08-23
  • Rev Recd Date: 2020-12-27
  • New isotopic, geochemical and geochronological data justify the widespread occurrence of middle Paleocene to early Eocene (60-53 Ma) post-subduction felsic magmatism across the entire Sikhote-Alin territory (southeastern Russia), conform with previous observations in Northeast China, the southern Korean Peninsula, and the Inner Zone of Japan. This igneous activity in East Asia coincided with the reactivation (after tectonic quiescence between ~93-60 Ma) of left-lateral strike-slip displacements along the Tan-Lu and Central Sikhote-Alin faults and with the post-60 Ma cessation of subduction/accretion recorded in the Shimanto belt of SW Japan. The Sikhote-Alin post-subduction igneous A-type rocks present diverse mineralogical and geochemical features that suggest interactions of the subducting plate with anhydrous mantle upwelling through slab tears in the continental margin. The middle Paleocene-early Eocene magmatism is not related to subduction but is synchronous with strike-slip tectonics and the termination of accretionary prism development, suggesting a shift in tectonic regime from oceanic plate subduction at a convergent margin to parallel sliding and initiation of a transform continental margin. These new observations are inconsistent with the current tectonic model of 60-50 Ma Izanagi-Pacific ridge subduction beneath East Asian continental margin.

  • loading
  • [1]
    Alenicheva, A.A., Sakhno, V.G., 2008. The U-Pb dating of extrusive-intrusive complexes in ore districts in the Southern part of the Eastern Sikhote-Alin volcanic belt (Russia).Dokl. Earth Sci. 419, 217-221.
    [2]
    Alexandrov, I.A., Liao, J.P., Jahn, B.M., Golozoubov, V.V., Ivin, V.V., Stepnova, Y.A., 2018. Eocene granitoids of the Okhotsk granodiorite complex (South Sakhalin). Dokl. Earth Sci. 483, 1499-1503.
    [3]
    Alexeiev, D.V., Gaedicke, C., Tsukanov, N.V., Freitag, R., 2006. Collision of the Kronotskiy arc at the NE Eurasia margin and structural evolution of the Kamchatka-Aleutian junction. Int. J. Earth Sci. 95, 977-993.
    [4]
    Benoit, M., Aguillón-Robles, A., Calmus, T., Maury, R.C., Bellon, H., Cotten, J., Bourgois, J., Michaud, F., 2002. Geochemical diversity of late miocene volcanism in Southern Baja California, Mexico:implication of mantle and crustal sources during the opening of an asthenospheric window. J. Geol. 110, 627-648.
    [5]
    Bessho, T., 2015. How are the roofing and unroofing processes reflected in sandstone composition? A case study in the Shimanto Belt, Kii Peninsula, Southwestern Japan.J. Sedimentol. Soc. Jpn. 74, 3-20.
    [6]
    Bonin, B., 2007. A-type granites and related rocks:evolution of a concept, problems and prospects. Lithos 97, 1-29.
    [7]
    Bonin, B., Azzouni-Sekkal, A., Bussy, F., Ferrag, S., 1998. Alkali-calcic and alkaline postorogenic (PO) granite magmatism:petrologic constraints and geodynamic settings.Lithos 45, 45-70.
    [8]
    Castillo, P.R., 2008. Origin of the adakite-high-Nb basalt association and its implications for postsubduction magmatism in Baja California. Mexico. Geol. Soc. Am. Bull. 120, 451-462.
    [9]
    Chashchin, A.A., Nechaev, V.P., Nechaeva, E.V., Blokhin, M.G., 2011. Discovery of Eocene adakites in Primor'e. Dokl. Earth Sci. 438, 744-749.
    [10]
    Cheong, C.S., Yi, K., Kim, N., Lee, T.H., Lee, S.R., Geng, J.Z., Li, H.K., 2013. Tracking source materials of Phanerozoic granitoids in South Korea by zircon Hf isotopes. Terra Nova 25, 228-235.
    [11]
    Cole, R.B., Basu, A.R., 1995. Nd-Sr isotopic geochemistry and tectonics of ridge subduction and middle Cenozoic volcanism in Western California. Geol. Soc. Am. Bull. 107, 167-179.
    [12]
    Dall'Agnol, R., De Oliveira, D.C., 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil:implications for classification and petrogenesis of A-type granites.Lithos 93, 215-233.
    [13]
    Dall'Agnol, R., Frost, C.D., Rämö, O.T., 2012. IGCP project 510 "A-type granites and related rocks through time":project vita, results, and contribution to granite research. Lithos 151, 1-16.
    [14]
    Domeier, M., Shephard, G.E., Jakob, J., Gaina, C., Doubrovine, P.V., Torsvik, T.H., 2017.Intraoceanic subduction spanned the Pacific in the late Cretaceous-Paleocene. Sci.Adv. 3, eaao2303.
    [15]
    Engebretson, D.C., 1985. Relative motions between oceanic and continental plates in the Pacific basin. Geol. Soc. Am. Spec. Pap. 206, 1-59.
    [16]
    Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. J. Petrol. 42, 2033-2048.
    [17]
    Gladenkov, Y.B., Bazhenova, O.K., Grechin, V.I., Margulis, L.S., Sal'nikov, B.A., 2002. Cenozoic History and Oil-and-Gas-Bearing Potential of Sakhalin. GEOS, Moscow.
    [18]
    Glorie, S., Alexandrov, I., Nixon, A., Jepson, G., Gillespie, J., Jahn, B.-M., 2017. Thermal and exhumation history of Sakhalin Island (Russia) constrained by apatite U-Pb and fission track thermochronology. J. Asian Earth Sci. 143, 326-342.
    [19]
    Golozubov, V., Miklovda, S., Lee, D.-W., Pavlyutkin, B., Kasatkin, S., 2007. Dynamics of the formation of the Cenozoic Uglovsky basin (Southern Primorye). Russ. J. Pac. Geol. 1, 324-334.
    [20]
    Golozubov, V., Li, D.U., Kasatkin, S., Pavlyutkin, B., 2009. Tectonics of the Cenozoic Nizhnii Bikin coaliferous depression in the Northern Primorye region. Russ. J. Pac. Geol. 3, 269-283.
    [21]
    Golozubov, V.V., Khanchuk, A.I., 1995. Taukha and Zhuravlevka Terranes South SikhoteAlin:a fragments of early cretaceous Asia continental margin. Russ. J. Pac. Geol. 14, 13-26.
    [22]
    Grebennikov, A.V., 2011. Silica-metal spherules in ignimbrites of Southern Primorye. Russ.J. Earth Sci. 22, 20-31.
    [23]
    Grebennikov, A.V., 2014. A-type granites and related rocks:petrogenesis and classification. Russ. Geol. Geophys. 55, 1353-1366.
    [24]
    Grebennikov, A.V., Maksimov, S.O., 2006. Fayalite rhyolites and a zoned magma chamber of the Paleocene Yakutinskaya volcanic depression in Primorye. Russia. J. Mineral.Petrol. Sci. 101, 69-88.
    [25]
    Grebennikov, A.V., Maksimov, S.O., 2021. Reasons for the occurrence of A-type volcanic rocks at the active continental margins (South Sikhote-Alin, Russian Far East). Russ.Geol. Geophys. 62 (2). https://doi.org/10.15372/RGG2020114.
    [26]
    Grebennikov, A.V., Popov, V.K., 2014. Petrogeochemical aspects of the late Cretaceous and Paleogene ignimbrite volcanism of East Sikhote-Alin. Russ. J. Pac. Geol. 8, 38-55.
    [27]
    Grebennikov, A.V., Shcheka, S.A., Karabtsov, A.A., 2012. Silicate-metallic spherules and the problem of the ignimbrite eruption mechanism:the Yakutinskaya volcanic depression. J. Volcanol. Seismol. 6, 211-229.
    [28]
    Grebennikov, A.V., Khanchuk, A.I., Gonevchuk, V.G., Kovalenko, S.V., 2016. Cretaceous and Paleogene granitoid suites of the Sikhote-Alin area (Far East Russia):geochemistry and tectonic implications. Lithos 261, 250-261.
    [29]
    Grebennikov, A.V., Kasatkin, S.A., Fedoseev, D.G., Khanchuk, A.I., 2020. The Middle Paleocene-Early Eocene (60.5-53.0 Ma) magmatic stage in the Southern Russian Far East.Russ. J. Pac. Geol. 14, 415-420.
    [30]
    Guo, F., Nakamuru, E., Fan, W., Kobayoshi, K., Li, C., 2007. Generation of Palaeocene adakitic andesites by magma mixing; Yanji Area, NE China. J. Petrol. 48, 661-692.
    [31]
    Hamahashi, M., Saito, S., Kimura, G., Yamaguchi, A., Fukuchi, R., Kameda, J., Hamada, Y., Kitamura, Y., Fujimoto, K., Hashimoto, Y., 2013. Contrasts in physical properties between the hanging wall and footwall of an exhumed seismogenic megasplay fault in a subduction zone-an example from the Nobeoka thrust drilling project.Geochem. Geophys. Geosyst. 14, 5354-5370.
    [32]
    Hara, H., Hara, K., 2019. Radiolarian and U-Pb zircon dating of late Cretaceous and Paleogene Shimanto accretionary complexes, Southwest Japan:temporal variations in provenance and offset across an out-of-sequence thrust. J. Asian Earth Sci. 170, 29-44.
    [33]
    Hara, H., Nakamura, Y., Hara, K., Kurihara, T., Mori, H., Iwano, H., Danhara, T., Sakata, S., Hirata, T., 2017. Detrital zircon multi-chronology, provenance, and low-grade metamorphism of the Cretaceous Shimanto accretionary complex, Eastern Shikoku, Southwest Japan:tectonic evolution in response to igneous activity within a subduction zone. Isl. Arc 26, e12218.
    [34]
    Hilde, T.W.C., Uyeda, S., Kroenke, L., 1977. Evolution of the Western Pacific and its margin.Tectonophys. 38, 145-165.
    [35]
    Honda, S., 2016. Slab stagnation and detachment under Northeast China. Tectonophys. 671, 127-138.
    [36]
    Huang, L., Liu, C.Y., Kusky, T.M., 2015. Cenozoic evolution of the Tan-Lu Fault Zone (East China)-Constraints from seismic data. Gondwana Res. 28, 1079-1095.
    [37]
    Hwang, B.H., Ernst, W.G., Yang, K., 2012. Two different magma series imply a Palaeogene tectonic transition from contraction to extension in the SE Korean Peninsula. Int.Geol. Rev. 54, 1284-1295.
    [38]
    Ichikawa, K., Mizutani, S., Hara, I., Hada, S., Yao, A., 1990. Pre-Cretaceous Terranes of Japan.Publication of IGCP Project No. 224. Pre-Jurassic Evolution of Eastern Asia, NihonInsatsu, Osaka.
    [39]
    Iida, K., Iwamori, H., Orihashi, Y., Park, T., Jwa, Y.J., Kwon, S.T., Danhara, T., Iwano, H., 2015.Tectonic reconstruction of batholith formation based on the spatiotemporal distribution of Cretaceous-Paleogene granitic rocks in Southwestern Japan. Isl. Arc 24, 205-220.
    [40]
    Ikeda, T., Harada, T., Kouchi, Y., Morita, S., Yokogawa, M., Yamamoto, K., Otoh, S., 2016.Provenance analysis based on detritalzirconage spectra of the lower Cretaceous formations in the Ryoseki-Monobe Area, outer zone of Southwest Japan. Mem. Fukui Prefect. Dinosaur Mus. 15, 33-84.
    [41]
    Ikesawa, E., Kimura, G., Sato, K., Ikehara-Ohmori, K., Kitamura, Y., Yamaguchi, A., Ujiie, K., Hashimoto, Y., 2005. Tectonic incorporation of the upper part of oceanic crust to overriding plate of a convergent margin:an example from the Cretaceous-early Tertiary Mugi Mélange, the Shimanto Belt. Japan. Tectonophys. 401, 217-230.
    [42]
    Imaoka, T., Kiminami, K., Nishida, K., Takemoto, M., Ikawa, T., Itaya, T., Kagami, H., Iizumi, S., 2011. K-Ar age and geochemistry of the SW Japan Paleogene cauldron cluster:implications for Eocene-Oligocene thermo-tectonic reactivation. J. Asian Earth Sci. 40, 509-533.
    [43]
    Ishida, K., Hashimoto, H., 1998. Upper Cretaceous radiolarian biostratigraphy in selected chert-clastic sequences of the North Shimanto Terrane. East Shikoku. News Osaka Micropaleontol. 11, 211-225.
    [44]
    Ishihara, S., Chappell, B.W., 2008. Chemical compositions of the Paleogene granitoids of Eastern Shimane prefecture, Sanin district, Southwest Japan. Bull. Geol. Surv. Jpn 59, 225-254.
    [45]
    Ishihara, S., Tani, K., 2013. Zircon age of granitoids hosting molybdenite-quartz vein deposits in the central Sanin Belt. Southwest Japan. Shigen-Chishitsu (Resour. Geol.) 63, 11-14.
    [46]
    Isozaki, Y., Aoki, K., Nakama, T., Yanai, S., 2010. New insight into a subduction-related orogen:a reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Res. 18, 82-105.
    [47]
    Jahn, B.M., 2010. Accretionary orogen and evolution of the Japanese Islands:implications from a Sr-Nd isotopic study of the Phanerozoic granitoids from SW Japan. Am. J. Sci. 310, 1210-1249.
    [48]
    Jahn, B.M., Usuki, M., Usuki, T., Chung, S.L., 2014. Generation of Cenozoic granitoids in Hokkaido (Japan):constraints from zircon geochronology, Sr-Nd-Hf isotopic and geochemical analyses, and implications for crustal growth. Am. J. Sci. 314, 704-750.
    [49]
    Jahn, B.M., Valui, G., Kruk, N., Gonevchuk, V., Usuki, M., Wu, J.T.J., 2015. Emplacement ages, geochemical and Sr-Nd-Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt. Russian Far East:crustal growth and regional tectonic evolution. J. Asian Earth Sci. 111, 872-918.
    [50]
    Kemkin, I., 2008. Structure of terranes in a Jurassic accretionary prism in the Sikhote-AlinAmur area:implications for the Jurassic geodynamic history of the Asian Eastern margin. Russ. Geol. Geophys. 49, 759-770.
    [51]
    Kemkin, I., Khanchuk, A.I., Kemkina, R., 2016. Accretionary prisms of the Sikhote-Alin Orogenic belt:composition, structure and significance for reconstruction of the geodynamic evolution of the Eastern Asian margin. J. Geodyn. 102, 202-230.
    [52]
    Kemkin, I.V., 2006. Geodynamic Evolution of the Sikhote-Alin and Japan Sea Region in Mesozoic. Nauka, Moscow.
    [53]
    Khanchuk, A.I., 2001. Pre-Neogene tectonics of the Sea-of-Japan region:a view from the Russian side. Earth Sci. (Chikyu Kagaku) 55, 275-291.
    [54]
    Khanchuk, A.I., 2006. Geodynamics, Magmatism and Metallogeny of the Russian East.Dal'nauka, Vladivostok.
    [55]
    Khanchuk, A.I., Kemkin, I.V., Kruk, N.N., 2016. The Sikhote-Alin orogenic belt, Russian South East:terranes and the formation of continental lithosphere based on geological and isotopic data. J. Asian Earth Sci. 120, 117-138.
    [56]
    Khanchuk, A.I., Grebennikov, A.V., Ivanov, V.V., 2019. Albian-Cenomanian orogenic belt and igneous province of Pacific Asia. Russ. J. Pac. Geol. 13, 187-219.
    [57]
    Kiminami, K., Miyashita, S., Kawabata, K., 1994. Ridge collision and in situ greenstones in accretionary complexes:an example from the late Cretaceous Ryukyu Islands and Southwest Japan margin. Isl. Arc 3, 103-111.
    [58]
    Kiminami, K., Matsuura, T., Iwata, T., Miura, K., 1998. Relationship between sandstone composition in the Cretaceous Shimanto supergroup, Eastern Shikoku, and Cretaceous arc volcanism. J. Geol. Soc. Jpn. 104, 314-326.
    [59]
    Kimura, G., Yamaguchi, A., Hojo, M., Kitamura, Y., Kameda, J., Ujiie, K., Hamada, Y., Hamahashi, M., Hina, S., 2012. Tectonic mélange as fault rock of subduction plate boundary. Tectonophys. 568, 25-38.
    [60]
    Kimura, G., Hashimoto, Y., Yamaguchi, A., Kitamura, Y., Ujiie, K., 2016. Cretaceous-Neogene accretionary units:Shimanto belt. In:Moreno, T., Wallis, S., Kojima, T., Gibbons, W. (Eds.), The Geology of Japan. The Geological Society, London, pp. 125-137.
    [61]
    Kimura, G., Kitamura, Y., Yamaguchi, A., Kameda, J., Hashimoto, Y., Hamahashi, M., 2019.Origin of the early Cenozoic belt boundary thrust and Izanagi-Pacific ridge subduction in the Western Pacific margin. Isl. Arc 28, e12320.
    [62]
    Kinoshita, O., 1995. Migration of igneous activities related to ridge subduction in Southwest Japan and the East Asian continental margin from the Mesozoic to the Paleogene. Tectonophys. 245, 25-35.
    [63]
    Kitamura, Y., Sato, K., Ikesawa, E., Ikehara-Ohmori, K., Kimura, G., Kondo, H., Ujiie, K., Onishi, C.T., Kawabata, K., Hashimoto, Y., 2005. Mélange and its seismogenic roof décollement:a plate boundary fault rock in the subduction zone-an example from the Shimanto Belt, Japan. Tectonics 24, TC5012.
    [64]
    Koike, W., Tsutsumi, Y., 2018. Zircon U-Pb dating of plutonic rocks at the Tsukuba area.Central Japan. Bull. Natl. Mus. Nat. Sci. Ser. C 1-11.
    [65]
    Kojima, S., 1989. Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 69, 213-232.
    [66]
    Kondo, H., Kimura, G., Masago, H., Ohmori-Ikehara, K., Kitamura, Y., Ikesawa, E., Sakaguchi, A., Yamaguchi, A., Okamoto, S.Y., 2005. Deformation and fluid flow of a major out-of-sequence thrust located at seismogenic depth in an accretionary complex:Nobeoka Thrust in the Shimanto Belt, Kyushu, Japan. Tectonics 24, TC6008.
    [67]
    Kononov, M.V., Lobkovsky, L.I., 2019. Influence of the upper mantle convection cell and related Pacific plate subduction on Arctic Tectonics in the late Cretaceous-Cenozoic.Geotectonics 53, 658-674.
    [68]
    Konstantinovskaia, E.A., 2001. Arc-continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific:an example from Kamchatka (NE Russia).Tectonophys. 333, 75-94.
    [69]
    Lagabrielle, Y., Guivel, C., Maury, R.C., Bourgois, J., Fourcade, S., Martin, H., 2000.Magmatic-tectonic effects of high thermal regime at the site of active ridge subduction:the Chile Triple Junction model. Tectonophys. 326, 255-268.
    [70]
    Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., IUGS Subcommission on the Systematics of Igneous Rocks, 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 27, 745-750.
    [71]
    Lewis, J.C., Byrne, T.B., 2001. Fault kinematics and past plate motions at a convergent plate boundary:tertiary Shimanto belt, Southwest Japan. Tectonics 20, 548-565.
    [72]
    Li, P.C., Liu, Z.H., Li, S.C., Zhao, Q.Y., Shi, Q., Li, C.H., Yang, X.H., 2018. Late Paleocene-early Eocene granitoids in the Jiamusi Massif, NE China:Zircon U-Pb ages, geochemistry, and tectonic implications. Int. Geol. Rev. 61, 1-16.
    [73]
    Liao, J.P., Jahn, B.M., Alexandrov, I., Chung, S.L., Zhao, P., Ivin, V., Usuki, T., 2018. Petrogenesis of Mid-Eocene granites in South Sakhalin, Russian Far East:Juvenile crustal growth and comparison with granitic magmatism in Hokkaido and Sikhote-Alin.J. Asian Earth Sci. 167, 103-129.
    [74]
    Liu, K., Zhang, J., Xiao, W., Wilde, S.A., Alexandrov, I., 2020. A review of magmatism and deformation history along the NE Asian margin from ca. 95 to 30 Ma:transition from the Izanagi to Pacific plate subduction in the early Cenozoic. Earth-Sci. Rev. 209, 103317.
    [75]
    Liu, X., Zhao, D., Li, S., Wei, W., 2017. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications. Earth Planet. Sci. Lett. 464, 166-174.
    [76]
    Maeda, J.i., Kagami, H., 1996. Interaction of a spreading ridge and an accretionary prism:implications from MORB magmatism in the Hidaka magmatic zone, Hokkaido, Japan.Geology 24, 31-34.
    [77]
    Malinovsky, A.I., 2019. Source areas and geodynamic settings of Cenozoic deposits in the West Sakhalin terrane based on the results of study of heavy detrial minerals. Bull.Kamchatka Reg. Assoc. Educ. Sci. Cent. Earth Sci. 3, 5-25.
    [78]
    Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 101, 635-643.
    [79]
    Martynov, Y.A., Khanchuk, A.I., Grebennikov, A.V., Chashchin, A.A., Popov, V.K., 2017. Late Mesozoic and Cenozoic volcanism of the East Sikhote-Alin area (Russian Far East):a new synthesis of geological and petrological data. Gondwana Res. 47, 358-371.
    [80]
    Maruyama, S., Send, T., 1986. Orogeny and relative plate motions:example of the Japanese Islands. Tectonophys. 127, 305-329.
    [81]
    Maruyama, S., Isozaki, Y., Kimura, G., Terabayashi, M., 1997. Paleogeographic maps of the Japanese Islands:plate tectonic synthesis from 750 Ma to the present. Isl. Arc 6, 121-142.
    [82]
    McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chem. Geol. 120, 223-253.
    [83]
    Mikhailov, V.A., 1989. The Magmatism of Volcanotectonic Structures in the Southern Segments of the East Sikhote-Alin Volcanic Belt. Far East Branch Russian Academy of Science, Vladivostok.
    [84]
    Mizutani, S., Kojima, S., 1992. Mesozoic radiolarian biostratigraphy of Japan and collage tectonics along the Eastern continental margin of Asia. Palaeogeogr. Palaeoclimatol.Palaeoecol. 96, 3-22.
    [85]
    Moreno, T., Wallis, S., Kojima, T., Gibbons, W., 2016. The Geology of Japan. Geol. Soc, London.
    [86]
    Müller, R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci. 44, 107-138.
    [87]
    Myeong, B., Kim, J.H., Woo, H.D., Jang, Y.D., 2018. Origin of the Eocene Gyeongju A-type granite, SE Korea:implication for the high fluorine contents. Econ. Environ. Geol. 51, 439-453.
    [88]
    Nakajima, T., 1996. Cretaceous granitoids in SW Japan and their bearing on the crustforming process in the Eastern Eurasian margin. Geol. Soc. Am. Spec. Pap. 315, 183-191.
    [89]
    Nakaya, S., 2012. Reconsideration of the "Nyunokawa Formation" of the Shimanto Belt in the Kii Peninsula, Southwest Japan. Assoc. Geol. Collab. Jpn. Monogr. 59, 51-60.
    [90]
    Nishida, K., Imaoka, T., Kiminami, K., Nagamatsu, Y., Iizumi, S., 2013. Marked change of Sr-Nd isotopic compositions of granitoids in Sanin Belt of SW Japan and Gyeongsang Basin of Korea during the latest Cretaceous, and geologic significance. J. Geol. Soc.Jpn. 119, 229-248.
    [91]
    Nokleberg, W.J., Parfenov, L.M., Monger, J.W.H., Norton, I.O., Khanchuk, A.I., Stone, D.B., Scotese, C.R., Scholl, D.W., Fujita, K., 2000. Phanerozoic Tectonic Evolution of the Circum-North Pacific. USGS Professional Paper 1626. California, CA, USGS.
    [92]
    Ohmori, K., Taira, A., Tokuyama, H., Sakaguchi, A., Okamura, M., Aihara, A., 1997.Paleothermal structure of the Shimanto accretionary prism, Shikoku, Japan:role of an out-of-sequence thrust. Geology 25, 327-330.
    [93]
    Osozawa, S., 1992. Double ridge subduction recorded in the Shimanto accretionary complex, Japan, and plate reconstruction. Geology 20, 939-942.
    [94]
    Otofuji, Y.I., Matsuda, T., 1983. Paleomagnetic evidence for the clockwise rotation of Southwest Japan. Earth Planet. Sci. Lett. 62, 349-359.
    [95]
    Otofuji, Y.I., Matsuda, T., 1987. Amount of clockwise rotation of Southwest Japan-fan shape opening of the Southwestern part of the Japan Sea. Earth Planet. Sci. Lett. 85, 289-301.
    [96]
    Otofuji, Y.I., Matsuda, T., Nohda, S., 1985. Paleomagnetic evidence for the Miocene counter-clockwise rotation of Northeast Japan-Rifting process of the Japan Arc.Earth Planet. Sci. Lett. 75, 265-277.
    [97]
    Oyaizu, A., Kiminami, K., 2004. Provenance changes of the late Cretaceous to early Paleogene Shimanto Supergroup in Western Shikoku, and its significance. J. Geol. Soc. Jpn. 110, 403-416.
    [98]
    Oyaizu, A., Miura, K., Tanaka, T., Hayashi, H., Kiminami, K., 2002. Geology and radiolarian ages of the Shimanto supergroup, Western Shikoku, Southwest Japan. J. Geol. Soc. Jpn. 108, 701-720.
    [99]
    Pallares, C., Maury, R.C., Bellon, H., Royer, J.Y., Calmus, T., Aguillón-Robles, A., Cotten, J., Benoit, M., Michaud, F., Bourgois, J., 2007. Slab-tearing following ridge-trench collision:evidence from Miocene volcanism in Baja California. México. J. Volc. Geotherm.Res. 161, 95-117.
    [100]
    Pavlyutkin, B.I., Chekryzhov, I.Y., Petrenko, T.I., 2016. Problems of Paleogene-Neogene stratigraphy of the Zerkal'naya depression, East Sikhote Alin. Russ. J. Pac. Geol. 10, 283-298.
    [101]
    Petrov, O.V., Morozov, A.F., Chepkasova, T.V., Shevchenko, S.S., 2015. Geochronological Atlas-Text Book of Main Lithotecotnic Complexes of Russia. VSEGEI, St. Petersburg.
    [102]
    Popov, V.K., Grebennikov, A.V., 2001. New data on the age of effusive rocks in the Bogopol'skaya formation in primorye Tikhookean. Russ. J. Pac. Geol. 3, 47-54.
    [103]
    Popov, V.K., Chashchin, A.A., Tsutsumi, Y., Chekryzhov, I.Yu., Budnitsky, S.Yu., 2018. New geochronology data on Eocene-Oligocene volcanism of Kraskin rift-related basin(South-Western Primorye). International Research Journal 12(78), 75-78.
    [104]
    Raimbourg, H., Augier, R., Famin, V., Gadenne, L., Palazzin, G., Yamaguchi, A., Kimura, G., 2014. Long-term evolution of an accretionary prism:the case study of the Shimanto Belt, Kyushu, Japan. Tectonics 33, 936-959.
    [105]
    Ren, J., Tamaki, K., Li, S., Junxia, Z., 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophys. 344, 175-205.
    [106]
    Robinson, F.A., Bonin, B., Pease, V., Anderson, J.L., 2017. A discussion on the tectonic implications of Ediacaran late- to post-orogenic A-type granite in the Northeastern Arabian Shield, Saudi Arabia. Tectonics 36, 582-600.
    [107]
    Saito, M., 2008. Rapid evolution of the Eocene accretionary complex (Hyuga Group) of the Shimanto terrane in Southeastern Kyushu. Southwestern Japan. Isl. Arc 17, 242-260.
    [108]
    Sakhno, V., Kovalenko, S., 2018. Igneous complexes of the Orochenka Caldera of the East Sikhote-Alin belt:U-Pb (SHRIMP) age, trace and rare earth element composition, and Au-Ag mineralization. Dokl. Earth Sci. 479, 420-424.
    [109]
    Sakhno, V.G., 2001. Late Mesozoic-Cenozoic Continental Volcanism of East Asia.Dal'nauka, Vladivostok.
    [110]
    Sakhno, V.G., Rostovskii, F.I., Alenicheva, A.A., 2010. U-Pb isotope dating of igneous complexes from the milogradovo gold-silver deposit (Southern Primor'e). Dokl. Earth Sci. 433, 879-886.
    [111]
    Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212-270.
    [112]
    Seton, M., Flament, N., Whittaker, J., Müller, R.D., Gurnis, M., Bower, D.J., 2015. Ridge subduction sparked reorganization of the Pacific plate-mantle system 60-50 million years ago. Geophys. Res. Lett. 42, 1732-1740.
    [113]
    Shibata, T., Orihashi, Y., Kimura, G., Hashimoto, Y., 2008. Underplating of mélange evidenced by the depositional ages:U-Pb dating of zircons from the Shimanto accretionary complex. Southwest Japan. Isl. Arc 17, 376-393.
    [114]
    Sun, S.S., Mcdonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders, A.D., Norry, M.J.(Eds.), Magmatism in the Ocean Basins. Geological Society of London Special Publication, London, pp. 313-345.
    [115]
    Taira, A., 2001. Tectonic evolution of the Japanese island arc system. Annu. Rev. Earth Planet. Sci. 29, 109-134.
    [116]
    Taira, A., Tashiro, M., 1987. Late Paleozoic and Mesozoic accretion tectonics in Japan and Eastern Asia. In:Taira, A., Tashiro, M. (Eds.), Historical Biogeogrphy and Plate Tectonic Evolution of Japan and Eastern Asia. Terra Scientific Publishing, Tokyo, pp. 1-43.
    [117]
    Taira, A., Katto, J., Tashiro, M., Okamura, M., Kodama, K., 1988. The Shimanto Belt in Shikoku, Japan:evolution of cretaceous to Miocene accretionary prism. Mod. Geol. 12, 5-16.
    [118]
    Takagi, T., 2004. Origin of magnetite-and ilmenite-series granitic rocks in the Japan arc.Am. J. Sci. 304, 169-202.
    [119]
    Tang, J., Xu, W., Niu, Y., Wang, F., Ge, W., Sorokin, A.A., Chekryzhov, I.Y., 2016. Geochronology and geochemistry of late Cretaceous-Paleocene granitoids in the Sikhote-Alin Orogenic Belt:petrogenesis and implications for the oblique subduction of the paleo-Pacific plate. Lithos 266, 202-212.
    [120]
    Tsuchiya, N., Suzuki, S., Kimura, J.I., Kagami, H., 2005. Evidence for slab melt/mantle reaction:petrogenesis of early cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan. Lithos 79, 179-206.
    [121]
    Tsutsumi, Y., Yokoyama, K., Kasatkin, S.A., Golozubov, V.V., 2016. Ages of igneous rocks in the Southern part of Primorye, Far East Russia. Mem. Natl. Mus. Nat. Sci. 51, 71-78.
    [122]
    Ueda, H., 2016. Hokkaido. In:Moreno, T., Wallis, S., Kojima, T., Gibbons, W. (Eds.), The Geology of Japan. Geol. Soc, London, pp. 201-222.
    [123]
    Utkin, V.P., 2013. Shear structural paragenesis and its role in continental rifting of the East Asian margin. Russ. J. Pac. Geol. 7, 167-188.
    [124]
    Uyeda, S., Miyashiro, A., 1974. Plate tectonics and the Japanese Islands:a synthesis. Geol.Soc. Am. Bull. 85, 1159-1170.
    [125]
    Vaes, B., Van Hinsbergen, D.J.J., Boschman, L.M., 2019. Reconstruction of subduction and back-arc spreading in the NW Pacific and Aleutian basin:clues to causes of cretaceous and Eocene plate reorganizations. Tectonics 38, 1367-1413.
    [126]
    Wakita, K., 2013. Geology and tectonics of Japanese islands:a review-the key to understanding the geology of Asia. J. Asian Earth Sci. 72, 75-87.
    [127]
    Wang, G., Li, S., Wu, Z., Suo, Y., Guo, L., Wang, P., 2018. Early Paleogene strike-slip transition of the Tan-Lu fault zone across the Southeast Bohai Bay basin:constraints from fault characteristics in its adjacent basins. Geol. J. 54, 835-849.
    [128]
    Wang, Z., Yang, H., Ge, W., Bi, J., Zhang, Y., Xu, W., 2016. Discovery and geological significance of the Eocene granodiorites in the Sanjiang basin, NE China:evidence from zircon U-Pb chronology, geochemistry and Sr-Nd-Hf isotopes. Acta Petrol. Sin. 32, 1823-1838.
    [129]
    Weigand, P.W., Savage, K.L., Nicholson, C., 2002. The Conejo volcanics and other Miocene volcanic suites in Southwestern California. In:Barth, A. (Ed.), Contributions to Crustal Evolution of the Southwestern United States. Geol. Soc. of Am. Spec. Pap, Boulder, Colorado, pp. 187-204.
    [130]
    Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites:geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 95, 407-419.
    [131]
    Whittaker, J.M., Müller, R.D., Leitchenkov, G., Stagg, H., Sdrolias, M., Gaina, C., Goncharov, A., 2007. Major Australian-Antarctic plate reorganization at Hawaiian-Emperor bend time. Science 318, 83-86.
    [132]
    Wu, J.T.J., Wu, J., 2019. Izanagi-Pacific ridge subduction revealed by a 56 to 46 Ma magmatic gap along the Northeast Asian margin. Geology 47, 953-957.
    [133]
    Yakushiji, A., Kamei, A., Shibata, T., 2012. Igneous activity forming hybrid rocks and leucogranites in the Obara area, San'in zone, Southwest Japan. J. Geol. Soc. Jpn. 118, 20-38.
    [134]
    Yamamoto, S., Senshu, H., Rino, S., Omori, S., Maruyama, S., 2009. Granite subduction:arc subduction, tectonic erosion and sediment subduction. Gondwana Res. 15, 443-453.
    [135]
    Zhao, P., Jahn, B.M., Xu, B., 2017. Elemental and Sr-Nd isotopic geochemistry of cretaceous to early Paleogene granites and volcanic rocks in the Sikhote-Alin orogenic belt(Russian Far East):implications for the regional tectonic evolution. J. Asian Earth Sci. 146, 383-401.
    [136]
    Zhao, P., Alexandrov, I., Jahn, B.M., Ivin, V., 2018. Timing of Okhotsk Sea plate collision with Eurasia plate:Zircon U-Pb age constraints from the Sakhalin Island, Russian Far East. J. Geophys. Res. Solid Earth 123, 8279-8293.
    [137]
    Zharov, A.E., 2004. Accretionary tectonics and geodynamics of Southern Sakhalin. Geotectonics 38, 277-293.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (94) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return