Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Jiang Zhu, Zhaochong Zhang, M. Santosh, Shucheng Tan, Yinan Deng, Qiuhong Xie. Recycled carbon degassed from the Emeishan plume as the potential driver for the major end-Guadalupian carbon cycle perturbations[J]. Geoscience Frontiers, 2021, 12(4): 101140. doi: 10.1016/j.gsf.2021.101140
Citation: Jiang Zhu, Zhaochong Zhang, M. Santosh, Shucheng Tan, Yinan Deng, Qiuhong Xie. Recycled carbon degassed from the Emeishan plume as the potential driver for the major end-Guadalupian carbon cycle perturbations[J]. Geoscience Frontiers, 2021, 12(4): 101140. doi: 10.1016/j.gsf.2021.101140

Recycled carbon degassed from the Emeishan plume as the potential driver for the major end-Guadalupian carbon cycle perturbations

doi: 10.1016/j.gsf.2021.101140
Funds:

This work was funded by the National Key Research and Development Program of China (2016YFC0600502), the National Natural Science Foundation of China (41761134086, 42002062), 111 Project (B18048), China Postdoctoral Science Foundation (2020 M673309) and Postdoctoral Science Foundation of Yunnan Province (W8163007). We thank two anonymous reviewers for their constructive suggestions and comments, as well as associate editor Sohini Ganguly for editorial handling.

  • Received Date: 2020-10-19
  • Rev Recd Date: 2020-12-28
  • Massive gas emissions (e.g., CO2, CH4 and SO2) during the formation of large igneous provinces (LIPs) have been suggested as the primary cause of dramatic climatic change and the consequent ecological collapses and biotic crises. Thermogenic carbon of crustal sediments induced by intrusive magmatism throughout the LIPs is considered as the primary trigger for environmental catastrophe including mass extinction, as illustrated in the case of the Emeishan LIP in Southwest China. Here we evaluate the Emeishan LIP to address the causal link between carbon degassing and environmental crises during the end-Guadalupian of Middle Permian. An assessment of the carbon flux degassed from recycled oceanic crust in the Emeishan plume shows that recycled oceanic crust contributed significantly to the carbon flux. Using evidence from carbonate carbon isotopic records at the Gualupian-Lopingian (G-L) boundary stratotype at Penglaitan of South China, our study suggests that carbon degassed from massive recycled components in the Emeishan plume served as a major end-Guadalupian (Middle Permian) carbon isotope excursion. The model based on the Emeishan LIP also offers new insights into the important role of recycled carbon released from other LIPs in climatic change and mass extinctions, as in the cases of the end-Permian Siberian and end-Cretaceous Deccan Traps. Our work highlights that carbon released from subducted slabs is returned to the atmosphere via upwelling mantle plumes, which could drive global climatic change and mass extinction.

  • loading
  • [1]
    Ali, J.R., Fitton, J.G., Herzberg, C., 2010. Emeishan large igneous province (SW China) and the mantle-plume up-doming hypothesis. J. Geol. Soc. (Lond.) 167, 953-959. https://doi.org/10.1144/0016-76492009-129.
    [2]
    Berner, R.A., 2005. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim. Cosmochim. Acta 69, 3211-3217. https://doi.org/10.1016/j.gca.2005.03.021.
    [3]
    Bond, D.P.G., Grasby, S.E., 2017. On the causes of mass extinctions. Palaeogeogr.Palaeoclimatol. Palaeoecol. 478, 3-29. https://doi.org/10.1016/j.palaeo.2016.11.005.
    [4]
    Bond, D.P.G., Wignall, P.B., Wang, W., Izon, G., Jiang, H.S., Lai, X.L., Sun, Y.D., Newton, R.J., Shao, L.Y., Védrine, S., Cope, H., 2010. The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China. Paleogeogr. Paleoclimatol.Paleoecol. 292, 282-294. https://doi.org/10.1016/j.palaeo.2010.03.056.
    [5]
    Burgess, S.D., Bowring, S.A., Shen, S.Z., 2014. High-precision timeline for Earth's most severe extinction. Proc. Natl. Acad. Sci. USA 111, 3316-3321. https://doi.org/10.1073/pnas.1317692111.
    [6]
    Burgess, S.D., Muirhead, J.D., Bowring, S.A., 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164. https://doi.org/10.1038/s41467-017-00083-9.
    [7]
    Campbell, I.H., Griffiths, R.W., 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett. 99, 79-93. https://doi.org/10.1016/0012-821X(90)90072-6.
    [8]
    Cao, C.Q., Love, G.D., Hays, L.E., Wang, W., Shen, S.H., Summons, R.E., 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet. Sci. Lett. 281, 188-201. https://doi.org/10.1016/j.epsl.2009.02.012.
    [9]
    Chen, B., Joachimski, M.M., Sun, Y.D., Shen, S.Z., Lai, X.L., 2011. Carbon and conodont apatite oxygen isotope records of Guadalupian-Lopingian boundary sections:Climatic or sea-level signal? Paleogeogr. Paleoclimatol. Paleoecol. 311, 145-153. https://doi.org/10.1016/j.palaeo.2011.08.016.
    [10]
    Dannberg, J., Sobolev, S.V., 2015. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept. Nat. Commun. 6, 6960. https://doi.org/10.1038/ncomms7960.
    [11]
    Dasgupta, R., Hirschmann, M.M., 2010. The deep carbon cycle and melting in Earth's interior. Earth Planet. Sci. Lett. 298, 1-13. https://doi.org/10.1016/j.epsl.2010.06.039.
    [12]
    Dasgupta, R., Hirschmann, M.M., Smith, N.D., 2007. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrol. 48, 2093-2124. https://doi.org/10.1093/petrology/egm053.
    [13]
    Davies, J.H.F.L., Marzoli, A., Bertrand, H., Youbi, N., Ernesto, M., Schaltegger, U., 2017. EndTriassic mass extinction started by intrusive CAMP activity. Nat. Commun. 8, 15596.https://doi.org/10.1038/ncomms15596.
    [14]
    Deines, P., 2002. The carbon isotope geochemistry of mantle xenoliths. Earth Sci. Rev. 58, 247-278. https://doi.org/10.1016/S0012-8252(02)00064-8.
    [15]
    Ernst, R.E., 2014. Large Igneous Provinces. Cambridge University Press, Cambridge, pp. 1-653 https://doi.org/10.1017/CBO9781139025300.
    [16]
    Ernst, R.E., Youbi, N., 2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record.PPaleogeogr. Paleoclimatol. Paleoecol. 478, 30-52. https://doi.org/10.1016/j.palaeo.2017.03.014.
    [17]
    Gales, E., Black, B., Elkins-Tanton, L.T., 2020. Carbonatites as a record of the carbon isotope composition of large igneous province outgassing. Earth Planet. Sci. Lett. 535, 116076.https://doi.org/10.1016/j.epsl.2020.116076.
    [18]
    Ganino, C., Arndt, N.T., 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37, 323-326. https://doi.org/10.1130/G25325A.1.
    [19]
    Heimdal, T.H., Jones, M.T., Svensen, H.H., 2020. Thermogenic carbon release from the Central Atlantic magmatic province caused major end-Triassic carbon cycle perturbations. Proc. Natl. Acad. Sci. USA 117, 11968-11974. https://doi.org/10.1073/pnas.2000095117.
    [20]
    Hofmann, A.W., White, W.M., 1982. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421-436. https://doi.org/10.1016/0012-821X(82)90161-3.
    [21]
    Hou, T., Zhang, Z.C., Encarnacion, J., Santosh, M., Sun, Y.L., 2013. The role of recycled oceanic crust in magmatism and metallogeny:Os-Sr-Nd isotopes, U-Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe-Ti oxide deposit, Central Emeishan large igneous province, SW China. Contrib. Mineral. Petrol. 165, 805-822.https://doi.org/10.1007/s00410-012-0836-3.
    [22]
    Huang, Y.G., Chen, Z.Q., Wignall, P.B., Grasby, S.E., Zhao, L.S., Wang, X.D., Kaiho, K., 2019.Biotic responses to volatile volcanism and environmental stresses over the Guadalupian-Lopingian (Permian) transition. Geology 47, 175-178. https://doi.org/10.1130/G45283.1.
    [23]
    Isozaki, Y., Kawahata, H., Ota, A., 2007. A unique carbon isotope record across the Guadalupian-Lopingian (Middle-Upper Permian) boundary in mid-oceanic paleoatoll carbonates:the high-productivity "Kamura event" and its collapse in Panthalassa. Global Planet. Change 55, 21-38. https://doi.org/10.1016/j.gloplacha.2006.06.006.
    [24]
    Jost, A.B., Mundil, R., He, B., Brown, S.T., Altiner, D., Sun, Y.D., DePaolo, D.J., Payne, J.L., 2014.Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes. Earth Planet. Sci. Lett. 396, 201-212. https://doi.org/10.1016/j.epsl.2014.04.014.
    [25]
    Kamenetsky, V.S., Chung, S.L., Kamenetsky, M.B., Kuzmin, D.V., 2012. Picrites from the Emeishan large Igneous Province, SW China:a compositional continuum in primitive magmas and their respective mantle sources. J. Petrol. 53, 2095-2113. https://doi.org/10.1093/petrology/egs045.
    [26]
    Payne, J.L., Turchyn, A.V., Paytan, A., DePaolo, D.J., Lehrmann, D.J., Yu, M.Y., Wei, J.Y., 2010.Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl. Acad. Sci.USA 107, 8543-8548. https://doi.org/10.1073/pnas.0914065107.
    [27]
    Petersen, S.V., Dutton, A., Lohmann, K.C., 2016. End-cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change. Nature Commun. 7, 12079. https://doi.org/10.1038/ncomms12079.
    [28]
    Plank, T., Manning, C.E., 2019. Subducting carbon. Nature 574, 343-352. https://doi.org/10.1038/s41586-019-1643-z.
    [29]
    Qi, L., Zhou, M.F., 2008. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China. Chem. Geol. 248, 83-103. https://doi.org/10.1016/j.chemgeo.2007.11.004.
    [30]
    Ren, Z.Y., Wu, Y.D., Zhang, L., Nichols, A.R.L., Hong, L.B., Zhang, Y.H., Zhang, Y., Liu, J.Q., Xu, Y.G., 2017. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions. Geochim. Cosmochim. Acta 208, 63-85. https://doi.org/10.1016/j.gca.2017.01.054.
    [31]
    Rothman, D.H., 2002. Atmospheric carbon dioxide levels for the last 500 million years.Proc. Natl. Acad. Sci. USA 99, 4167-4171. https://doi.org/10.1073/pnas.022055499.
    [32]
    Saitoh, M., Isozaki, Y., Ueno, Y., Yoshida, N., Yao, J.X., Ji, Z.S., 2013. Middle-Upper Permian carbon isotope stratigraphy at Chaotian South China:Pre-extinction multiple upwelling of oxygen-depleted water onto continental shelf. J. Asian Earth Sci. 67, 51-62.https://doi.org/10.1016/j.jseaes.2013.02.009.
    [33]
    Schoene, B., Eddy, M.P., Samperton, K.M., Keller, C.B., Keller, G., Adatte, T., Khadri, S.F., 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the endcretaceous mass extinction. Science 363, 862-866. https://doi.org/10.1126/science.aau2422.
    [34]
    Self, S., Widdowson, M., Thordarson, T., Jay, A.E., 2006. Volatile fluxes during flood basalt eruptions and potential effects on the global environment:a Deccan perspective.Earth Planet. Sci. Lett. 248, 518-532. https://doi.org/10.1016/j.epsl.2006.05.041.
    [35]
    Shellnutt, J.G., 2014. The Emeishan large igneous province:a synthesis. Geosci. Front. 5, 369-394. https://doi.org/10.1016/j.gsf.2013.07.003.
    [36]
    Shellnutt, J.G., Denyszyn, S.W., Mundil, R., 2012. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Res. 22, 118-126. https://doi.org/10.1016/j.gr.2011.10.009.
    [37]
    Shen, S.Z., Cao, C.Q., Zhang, H., Bowring, S.A., Henderson, C.M., Payne, J.L., Davy-dov, V.I., Chen, B., Yuan, D.X., Zhang, Y.C., Wang, W., Zheng, Q.F., 2013. High-resolution δ-13Ccarbchemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran. Earth Planet. Sci. Lett. 375, 156-165. https://doi.org/10.1016/j.epsl.2013.05.020.
    [38]
    Sobolev, A.V., Hofmann, A.W., Nikogosian, I.K., 2000. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas. Nature 404, 986-990.https://doi.org/10.1038/35010098.
    [39]
    Sobolev, S.V., Sobolev, A.V., Kuzmin, D.V., Krivolutskaya, N.A., Petrunin, A.G., Arndt, N.T., Radko, V.R., Vasiliev, Y.R., 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312-316. https://doi.org/10.1038/nature10385.
    [40]
    Svensen, H., Planke, S., Polozov, A.G., Schmidbauer, N., Corfu, F., Podladchikov, Y.Y., Jamtveit, B., 2009. Siberian gas venting and the end-Permian environmental crisis.Earth Planet. Sci. Lett. 277, 490-500. https://doi.org/10.1016/j.epsl.2008.11.015.
    [41]
    Wang, W., Cao, C.Q., Wang, Y., 2004. The carbon isotope excursion on GSSP candidate section of Lopingian-Guadalupian boundary. Earth Planet. Sci. Lett. 220, 57-67. https://doi.org/10.1016/S0012-821X(04)00033-0.
    [42]
    Wang, W., Zhou, C.M., Yuan, X.L., Chen, Z., Xiao, S.H., 2012. A pronounced negative δ13C excursion in an Ediacaran succession of western Yangtze Platform:a possible equivalent to the Shuram event and its implication for chemostratigraphic correlation in South China. Gondwana Res. 22, 1091-1101. https://doi.org/10.1016/j.gr.2012.02.017.
    [43]
    Wignall, P.B., Sun, Y.D., Bond, D.P.G., Izon, G., Newton, R.J., Védrine, S., Widdowson, M., Ali, J.R., Lai, X.L., Jiang, H.S., Cope, H., Bottrell, S.H., 2009. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science 324, 1179-1182.https://doi.org/10.1126/science.1171956.
    [44]
    Wu, Q., Ramezani, J., Zhang, H., Yuan, D.X., Erwin, D.H., Henderson, C.M., Lambert, L.L., Zhang, Y.C., Shen, S.Z., 2020. High-precision U-Pb zircon age constraints on the Guadalupian in West Texas, USA. Paleogeogr. Paleoclimatol. Paleoecol. 548, 109668.https://doi.org/10.1016/j.palaeo.2020.109668.
    [45]
    Xu, Y.G., He, B., Chung, S.L., Menzies, M.A., Frey, F.A., 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology 32, 917-920. https://doi.org/10.1130/G20602.1.
    [46]
    Xu, Y.C., Yang, Z.Y., Tong, Y.B., Jing, X.Q., 2018. Paleomagnetic secular variation constraints on the rapid eruption of the Emeishan continental flood basalts in southwestern China and northern Vietnam. J. Geophys. Res. Solid Earth 123, 2597-2617. https://doi.org/10.1002/2017JB014757.
    [47]
    Yang, J.H., Cawood, P.A., Du, Y.S., Condon, D.J., Yan, J.X., Liu, J.Z., Huang, Y., Yuan, D.X., 2018.Early Wuchiapingian cooling linked to Emeishan basaltic weathering? Earth and Planet. Sci. Lett. 492, 102-111. https://doi.org/10.1016/j.epsl.2018.04.004.
    [48]
    Yang, C., Liu, S.A., 2019. Zinc isotope constraints on recycled oceanic crust in the mantle sources of the Emeishan large igneous province. J. Geophys. Res. Solid Earth 124, 12537-12555. https://doi.org/10.1029/2019JB017405.
    [49]
    Zeebe, R.E., Zachos, J.C., Dickens, G.R., 2009. Carbon dioxide forcing alone insufficient to explain Paleocene-Eocene Thermal Maximum warming. Nat. Geosci. 2, 576-580.https://doi.org/10.1038/ngeo578.
    [50]
    Zhang, Z.C., Mahoney, J.J., Mao, J.W., Wang, F.S., 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. J. Petrol. 47, 1997-2019. https://doi.org/10.1093/petrology/egl034.
    [51]
    Zhang, L.M., Wang, C.S., Wignall, P.B., Kluge, T., Wan, X.Q., Wang, Q., Gao, Y., 2018. Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China. Geology 46, 271-274. https://doi.org/10.1130/G39992.1.
    [52]
    Zheng, L., Yang, Z.Y., Tong, Y.B., Yuan, W., 2010. Magnetostratigraphic constraints on twostage eruptions of the Emeishan continental flood basalts. Geochem. Geophy. Geosy. 11, Q12014. https://doi.org/10.1029/2010GC003267.
    [53]
    Zhong, Y.T., He, B., Mundil, R., Xu, Y.G., 2014. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section:Implications for the termination age of the Emeishan large igneous province. Lithos 204, 14-19. https://doi.org/10.1016/j.lithos.2014.03.005.
    [54]
    Zhou, M.F., Malpas, J., Song, X.Y., Robinson, P.T., Sun, M., Kennedy, A.K., Lesher, C.M., Keays, R.R., 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth Planet. Sci. Lett. 196, 113-122.https://doi.org/10.1016/S0012-821X(01)00608-2.
    [55]
    Zhu, M.Y., Zhang, J.M., Yang, A.H., 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Paleogeogr. Paleoclimatol. Paleoecol. 254, 7-61. https://doi.org/10.1016/j.palaeo.2007.03.025.
    [56]
    Zhu, J., Zhang, Z.C., Reichow, M.K., Li, H.B., Cai, W.C., Pan, R.H., 2018. Weak vertical surface movement caused by the ascent of the Emeishan mantle anomaly. J. Geophys. Res.Solid Earth 123, 1018-1034. https://doi.org/10.1002/2017JB015058.
    [57]
    Zou, C.N., Wei, G.Q., Xu, C.C., Du, J.H., Xie, Z.Y., Wang, Z.C., Hou, L.H., Yang, C., Li, J., Yang, W., 2014. Geochemistry of the Sinian-Cambrian gas system in the Sichuan Basin, China.Org. Geochem. 74, 13-21. https://doi.org/10.1016/j.orggeochem.2014.03.004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (137) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return