Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Zhipeng Xie, Keiko Hattori, Youpu Dong, Jian Wang. In situ characterization of forearc serpentinized peridotite from the Sulu ultrahigh-pressure terrane: Behavior of fluid-mobile elements in continental subduction zone[J]. Geoscience Frontiers, 2021, 12(4): 101139. doi: 10.1016/j.gsf.2021.101139
Citation: Zhipeng Xie, Keiko Hattori, Youpu Dong, Jian Wang. In situ characterization of forearc serpentinized peridotite from the Sulu ultrahigh-pressure terrane: Behavior of fluid-mobile elements in continental subduction zone[J]. Geoscience Frontiers, 2021, 12(4): 101139. doi: 10.1016/j.gsf.2021.101139

In situ characterization of forearc serpentinized peridotite from the Sulu ultrahigh-pressure terrane: Behavior of fluid-mobile elements in continental subduction zone

doi: 10.1016/j.gsf.2021.101139
Funds:

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 41603032, 41472051, 41802215 and 4176201) and Applied Basic Research Foundation of Yunnan Province (Grant No. 2017FB075) to ZPX, JW and YPD. This manuscript was completed when ZPX was a visiting researcher for a year at the University of Ottawa with financial support from the China Scholarship Council. Dr. Shenjin Guan from Kunming University of Science and Technology is acknowledged for his assistance with Raman spectra analysis.

  • Received Date: 2020-07-20
  • Rev Recd Date: 2020-12-25
  • Serpentinized peridotites in the Yangkou (YK), Suoluoshu (SLS) and Hujialin (HJL) areas in the Sulu ultrahigh-pressure terrane represent the relic of ancient subcontinental lithospheric mantle below the North China Craton. Their protoliths, harzburgite and dunite, were variably hydrated by aqueous fluids released from subducting Yangtze continent. The rocks are enriched in fluid-mobile elements (FME) including Sb (42-333 times the depleted mantle value) and Pb (30-476 times). The degrees of the FME enrichment are comparable to that of the Himalayan forearc serpentinites, and greater than forearc mantle serpentinites from Marianas, suggesting that the degrees of FME enrichment in the forearc serpentinites are greater in continental subduction zones than those in the oceanic subduction zones. Lizardite after olivine in the SLS serpentinite shows higher degrees of enrichment in Sb and As than those for antigorite after both olivine and orthopyroxene in the YK area. The antigorite has highly enriched in Pb, U, Cs, and LREE, but not for the lizardite. The abundance of FME in two different species of serpentine reflects the different temperature of hydration. At temperature lower than 300℃, formed lizardite at shallow depths of the mantle wedge incorporates elements that are fluid mobile at low temperatures, such as Sb and As. When the temperature greater than 300℃, formed antigorite at a relatively deep mantle wedge incorporate more FME from the subducting continental slab (or fragments), including Pb, U, Cs, LREE as well as Sb and As. The eventual breakdown of antigorite (600-700℃) in prograde metamorphism would discharge water as well as FME into the subducting channel and/or the overlying mantle.

  • loading
  • [1]
    Agranier, A., Lee, C.T.A., Li, Z.X.A., Leeman, W.P., 2007. Fluid-mobile element budgets in serpentinized oceanic lithospheric mantle:Insights from B, as, Li, Pb, PGEs and Os isotopes in the Feather River Ophiolite, California. Chem. Geol. 245 (3-4), 230-241.
    [2]
    Ames, L., Tilton, G.R., Zhou, G., 1993. Timing of collision of the Sino-Korean and Yangtze cratons:U-Pb zircon dating of coesite-bearing eclogites. Geology 21, 339-342.
    [3]
    Auzende, A.L., Daniel, I., Reynard, B., Lemaire, C., Guyot, F., 2004. High-pressure behaviour of serpentine minerals:a Raman spectroscopic study. Phys. Chem. Miner. 31, 269-277.
    [4]
    Bebout, G.E., 2007. Metamorphic chemical geodynamics of subduction zones. Earth Planet. Sci. Lett. 70 (18), A44.
    [5]
    Bohm, M., Luth, S., Echtler, H., Asch, G., Bataille, K., Bruhn, C., Rietbrock, A., Wigger, P., 2002. The Southern Andes between 36 degrees and 40 degrees S latitude:seismicity and average seismic velocities. Tectonophysics 356, 275-289.
    [6]
    Brovarone, A.V., Sverjensky, D.A., Piccoli, F., Ressico, F., Giovannelli, D., Daniel, I., 2020.Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere. Nat. Commun. 11, 3880.
    [7]
    Cannaò, E., 2020. Boron isotope fractionation in subducted serpentinites:a modelling attempt. Lithos 376-377, 105768.
    [8]
    Chen, S.Z., Yang, J.S., Li, T.F., 2009. Petrological investigation of the Ganyu peridotite in the Sulu ultrahigh-pressure terrane, eastern China. Tectonophysics 475, 383-395.
    [9]
    De Hoog, J.C.M., Gall, L., Cornell, D.H., 2010. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem. Geol. 270, 196-215.
    [10]
    Deschamps, F., Guillot, S., Godard, M., Chauvel, C., Andreani, M., Hattori, K., 2010. In situ characterization of serpentinites from forearc mantle wedges:timing of serpentinization and behavior of FME in subduction zones. Chem. Geol. 269, 262-277.
    [11]
    Deschamps, F., Godard, M., Guillot, S., Chauvel, C., Andreani, M., Hattori, K., Wunder, B., France, L., 2012. Behavior of FME in serpentines from abyssal to subduction environments:examples from Cuba and Dominican Republic. Chem. Geol. 312-313, 93-117.
    [12]
    Deschamps, F., Godard, M., Guillot, S., Hattori, K., 2013. Geochemistry of subduction zone serpentinites:a review. Lithos 178, 96-127.
    [13]
    Evans, B.W., Hattori, K., Baronnet, A., 2013. Serpentinite:what, why, where? Elements 9, 99-106.
    [14]
    Gao, T.S., Chen, J.F., Xie, Z., Yang, S.H., Yu, G., 2004. Zircon SHRIMP U-Pb age of garnet olivine pyroxenite at Hujialin in the Sulu terrane and its geological significance. Chin.Sci. Bull. 49 (20), 2198-2204.
    [15]
    Glaser, S.M., Foley, S.F., Gunther, D., 1999. Trace element compositions of minerals in garnet and spinel peridotite xenoliths from the Vitim volcanic field, Transbaikalia, eastern Siberia. Lithos 48, 263-285.
    [16]
    Guillot, S., Hattori, K.H., Sigoyer, J., Naegler, T., Auzende, A.L., 2001. Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth Planet. Sci. Lett. 193, 115-127.
    [17]
    Guillot, S., Hattori, K.H., Agard, P., Schwartz, S., Vidal, O., 2009. Exhumation processes in oceanic and continental subduction contexts:A review. In:Lallemand, S., Funiciello, F. (Eds.), Subduction Zone Geodynamics, pp. 175-205.
    [18]
    Hacker, B.R., Wallis, S.R., Ratschbacher, L., Grove, M., Gehrels, G., 2006. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahighpressure Dabie-Sulu Orogen. Tectonics 25, TC5006.
    [19]
    Hattori, K., Guillot, S., 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology 31, 525-528.
    [20]
    Hattori, K., Guillot, S., 2007. Geochemical character of serpentinites associated with high-to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas:Recycling of elements in subduction zones. Geochem. Geophys. Geosyst. 8, Q09010.
    [21]
    Hattori, K., Takahashi, Y., Guillot, S., Johanson, B., 2005. Occurrence of arsenic (V), in forearc mantle serpentinites:X-ray absorption spectroscopy study. Geochim.Cosmochim. Ac. 69, 5585-5596.
    [22]
    Iwamori, I., 2007. Transportation of H2O beneath the Japan arcs and its implications for global water circulation. Chem. Geol. 239 (3-4), 182-198.
    [23]
    Kawakatsu, H., Watada, S., 2007. Seismic evidence for deep-water transportation in the mantle. Science 316, 1468-1471.
    [24]
    Lafay, R., Deschamps, F., Schwartz, S., Guillot, S., Godard, M., Debret, B., Nicollet, C., 2013.High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions:example from the Piedmont zone of the western Alps. Chem. Geol. 343, 38-54.
    [25]
    Li, H.Y., Chen, R.X., Zheng, Y.F., Hu, Z.C., Xu, L.J., 2018. Crustal metasomatism at the slabmantle interface in a continental subduction channel:geochemical evidence from orogenic peridotite in the Sulu orogen. J. Geophys. Res-Sol. Ea. 123 (3), 2174-2198.
    [26]
    Liu, F.L., Xu, Z.Q., Liou, J.G., Song, B., 2004. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, South-Western Sulu terrane, eastern China.J. Metamorph. Geol. 22, 315-326.
    [27]
    Liu, Q.S., Qiu, N., Zheng, J.P., Li, Z.Y., Wang, H.C., 2015. Crustal large-scale serpentinized mantle peridotite body in the Sulu ultrahigh-pressure metamorphic belt, eastern China:evidence from gravity and magnetic anomalies. J. Struct. Geol. 70, 190-199.
    [28]
    Maruyama, S., Liou, J.G., Terabayashi, M., 1996. Blueschists and eclogites of the world and their exhumation. Int. Geol. Rev. 38, 485-594.
    [29]
    Matsubara, M., Obara, K., Kasahara, K., 2008. Three-dimensional P- and S-wave velocity structures beneath the Japan Islands obtained by high-density seismic stations by seismic tomography. Tectonophysics 454, 86-103.
    [30]
    McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chem. Geol. 120, 223-253.
    [31]
    Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites:Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J. Geol. 45, 2423-2458.
    [32]
    Pagé, L., Hattori, K., Guillot, S., 2018. Mantle wedge serpentinites:a transient reservoir of halogens, boron, and nitrogen for the deeper mantle. Geology 46 (10), 883-886.
    [33]
    Pagé, P., Barnes, S.J., 2009. Using Trace elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Québec, Canada. Econ. Geol. 104 (7), 997-1018.
    [34]
    Qi, L., Hu, J., Gregoire, D.C., 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51, 507-513.
    [35]
    Ramachandran, K., Hyndman, R.D., 2012. The fate of fluids released from subducting slab in Northern Cascadia. Solid Earth 3, 121-129.
    [36]
    Reynard, B., 2013. Serpentine in active subduction zones. Lithos 178 (9), 171-185.
    [37]
    Rinaudo, C., Gastaldi, D., Belluso, E., 2003. Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Can. Mineral. 41, 883-890.
    [38]
    Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. In:Rudnick, R.L. (Ed.), The Crust. In:Holland, H.D., Turekian, K.K. (eds.), Treatise on Geochemistry. 3.Elsevier-Pergamon, Oxford, pp. 1-64.
    [39]
    Rüpke, L.H., Morgan, J.P., Hort, M., Connolly, J.A.D., 2004. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 223, 17-34.
    [40]
    Salters, V.J.M., Stracke, A., 2004. Composition of the depleted mantle. Geochem. Geophys.Geosyst. 5, Q05B07.
    [41]
    Saumur, B.M., Hattori, K., Guillot, S., 2010. Contrasting origins of serpentinites in a subduction complex, northern Dominican Republic. Geol. Soc. Am. Bull. 122 (1-2), 292-304.
    [42]
    Savov, I.P., Ryan, J.G., D'Antonio, M., 2005. Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125:Implications for the elemental recycling at subduction zones. Geochem. Geophys. Geosyst. 6, Q04J15.
    [43]
    Scambelluri, M., Bottazzi, P., Trommsdorff, V., Vannucci, R., Hermann, J., Gòmez-Pugnaire, M.T., Lòpez-Sànchez Vizcaìno, V., 2001. Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet. Sci. Lett. 192, 457-470.
    [44]
    Scambelluri, M., Pettke, T., Cannaò, E., 2015. Fluid-related inclusions in Alpine highpressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps). Earth Planet. Sci. Lett. 429, 45-59.
    [45]
    Scambelluri, M., Cannaò, E., Gilio, M., 2019. The water and fluid-mobile element cycles during serpentinite subduction. A review. Eur. J. Mineral. 1-24.
    [46]
    Schwartz, S., Guillot, S., Reynard, B., Lafay, R., Debret, B., Nicollet, C., Lanari, P., Auzende, A.L., 2013. Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 178, 197-210.
    [47]
    Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 517-568.
    [48]
    Takahashi, Y., Minamikawa, R., Hattori, K.H., Kurishima, K., Nihou, N., Yuita, K., 2004. Arsenic behaviour in paddy fields during the cycle of flooded and non-flooded periods.Environ. Sci. Technol. 38, 1038-1044.
    [49]
    Tang, J., Zheng, Y.F., Wu, Y.B., Gong, B., Zha, X.P., Liu, X.M., 2008. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogeny, China. Precambr. Res. 161, 389-418.
    [50]
    Ulmer, P., Trommsdorff, V., 1995. Serpentine stability to mantle depths and subductionrelated magmatism. Science 268, 858-861.
    [51]
    Wallis, S.R., Ishiwatari, A., Hirajima, T., Ye, K., Guo, J., Nakamura, D., Kato, T., Zhai, M., Enami, M., Cong, B., Banno, S., 1997. Occurrence and field relationships of ultrahigh-pressure metagranitoid and coesite eclogite in the Su-Lu terrane, eastern China. J. Geol. Soc. Lond. 153, 45-54.
    [52]
    Witt-Eickschen, G., O'Neill, H.St.C., 2005. The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem. Geol. 221 (1-2), 65-101.
    [53]
    Wünder, B., Wirth, R., Gottschalk, M., 2001. Antigorite:pressure and temperature dependence of polysomatism and water content. Eur. J. Mineral. 13, 485-495.
    [54]
    Xie, Z.P., Hattori, K., Wang, J., 2013. Origins of ultramafic rocks in the Sulu Ultrahighpressure Terrane, Eastern China. Lithos 178, 158-170.
    [55]
    Xu, W.L., Yang, D.B., Gao, S., Pei, F.P., Yu, Y., 2010. Geochemistry of peridotite xenoliths in early cretaceous high-Mg# diorites from the central orogenic block of the North China Craton:the nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning. Chem. Geol. 270, 257-273.
    [56]
    Yang, J.J., Jahn, B.M., 2000. Deep subduction of mantle-derived garnet peridotites from the Su-Lu UHP metamorphic terrane in China. J. Metamorph. Geol. 18, 167-180.
    [57]
    Yao, Y.P., Ye, K., Liu, J.B., Cong, B.L., Wang, Q.C., 2000. A transitional eclogite to high pressure granulite-facies overprint on coesite-eclogite at Taohang in the Sulu ultrahigh-pressure terrane, eastern China. Lithos 52, 109-120.
    [58]
    Ye, K., Cong, B.L., Ye, D.N., 2000. The possible subduction of continental material to depths greater than 200 km. Nature 407, 734-736.
    [59]
    Zhang, R.Y., Liou, J.G., Zheng, J.P., Griffin, W.L., Yui, T.F., O'Reilly, S.Y., 2005a. Petrogenesis of the Yangkou layered garnet-peridotite complex, Sulu UHP terrane, China. Am. Mineral. 90 (5-6), 801-813.
    [60]
    Zhang, R.Y., Yang, J.S., Wooden, J.L., Liou, J.G., Li, T.F., 2005b. U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China:Implications for mantle metasomatism and subduction-zone UHP metamorphism. Earth Planet. Sci. Lett. 237 (3-4), 729-743.
    [61]
    Zhang, R.Y., Liou, J.G., Ernst, W.G., 2009. The Dabie-Sulu continental collision zone:a comprehensive review. Gondwana Res. 16, 1-26.
    [62]
    Zhao, R.X., Liou, J.G., Zhang, R.Y., Li, T.F., 2006. SHRIMP U-Pb zircon dating of the Rongcheng eclogite and associated peridotite:New constraints for ultrahighpressure metamorphism of mantle-derived mafic-ultramafic bodies from the Sulu terrane. Geol. Soc. Am. Bull. 403, 115-125.
    [63]
    Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., Yang, J.S., Li, T.F., Zhang, M., Zhang, R.Y., Liou, J.G., 2006. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere:constraints on mantle evolution beneath Eastern China. J. Petrol. 47, 2233-2256.
    [64]
    Zheng, Y.F., 2012. Metamorphic chemical geodynamics in continental subduction zones.Chem. Geol. 328, 5-48.
    [65]
    Zheng, Y.F., Wu, Y.B., Chen, F.K., Gong, B., Li, L., Zhao, Z.F., 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim. Cosmochim. Ac. 68, 4145-4165.
    [66]
    Zong, K.Q., Liu, Y.S., Gao, C.G., Hu, Z.C., Gao, S., Gong, H.J., 2010. In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite:refining constraints on the ultra high-pressure metamorphism of the Sulu terrane, China. Chem. Geol. 269(3-4), 237-251.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (305) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return