Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Yuxu Zhang, Shili Liao, Chunhui Tao, Hanjie Wen, Haifeng Fan, Jing Wen, Weifang Yang, Wei Li. Ga isotopic fractionation in sulfides from the Yuhuang and Duanqiao hydrothermal fields on the Southwest Indian Ridge[J]. Geoscience Frontiers, 2021, 12(4): 101137. doi: 10.1016/j.gsf.2020.12.016
Citation: Yuxu Zhang, Shili Liao, Chunhui Tao, Hanjie Wen, Haifeng Fan, Jing Wen, Weifang Yang, Wei Li. Ga isotopic fractionation in sulfides from the Yuhuang and Duanqiao hydrothermal fields on the Southwest Indian Ridge[J]. Geoscience Frontiers, 2021, 12(4): 101137. doi: 10.1016/j.gsf.2020.12.016

Ga isotopic fractionation in sulfides from the Yuhuang and Duanqiao hydrothermal fields on the Southwest Indian Ridge

doi: 10.1016/j.gsf.2020.12.016
Funds:

This work was financially supported by the National Key R&D Program of China (Grant No. 2017YFC0602503), the National Natural Science Foundation of China (Grant Nos. 41890841, 42006074 and 41573007), China Ocean Mineral Resources R & D Association Project (DY135-S1-1-02), and a special fund managed by the State Key Laboratory of Ore Deposit Geochemistry. We thank Professor Sheng-Ao Liu and another anonymous reviewer for their very useful and constructive comments to the initial version of this work. We also thank the Associate Editor Dr. Christopher Spencer, and Dr. Lily Wang for their handling of the manuscript and editorial input.

  • Received Date: 2020-08-08
  • Rev Recd Date: 2020-10-28
  • This study examines the Ga isotopic compositions of sulfides in the Yuhuang and Duanqiao hydrothermal fields on the Southwest Indian Ridge, mid-ocean ridge basalts (MORB), and calcareous sediments around the hydrothermal fields. The δ71/69GaNIST-994 values of the MORB samples vary little (+1.20‰ to +1.23‰, with an average of +1.22‰) and are consistent with the δ71/69GaNIST-994 values of two standard basalt samples (BCR-2 and BHVO-2), indicating that Ga isotopes may either not fractionate or fractionate only slightly under high-temperature geological processes; therefore, the δ71/69GaNIST-994 value of oceanic crust may be +1.22‰. The sediments (+1.28‰ to +1.47‰, with an average of +1.38‰) are rich in heavier Ga isotopes than the basalts, and the Ga present in the sediments may have originated from soluble Ga present in the seawater that was adsorbed by (Mn, Fe) oxides/hydroxides. The Ga contribution of basaltic debris to the sediments was almost negligible. Thus, we speculate that the δ71/69GaNIST-994 value of seawater in the study area fell within a range from +1.92‰ to +2.36‰. The δ71/69GaNIST-994 values of the sulfides in the Yuhuang hydrothermal field range from +0.99‰ to +1.57‰, with an average of +1.25‰, and the δ71/69GaNIST-994 values of the sulfides in the Duanqiao hydrothermal field range from +0.93‰ to +1.55‰, with an average of +1.19‰. The δ71/69GaNIST-994 ranges of the sulfides in the Yuhuang and Duanqiao hydrothermal fields are similar, with the Ga isotopic fractionation reaching 0.58‰ and 0.62‰, respectively. The average δ71/69GaNIST-994 values in the sulfides are close to those in the MORBs. This suggests that Ga within the sulfides in the Yuhuang and Duanqiao hydrothermal fields mainly originated from MORBs, with seawater and sediments making only small contributions. The Ga isotopic fractionation in the sulfides may be related to processes associated with the formation of sulfides, such as rapid precipitation or the admixture of different stages of sulfide. This study is of great significance for understanding the global distribution of Ga isotopes and the Ga cycle in submarine hydrothermal systems.

  • loading
  • [1]
    Zhang, B.S., 2019. Study of mineralization at the Longqi and Duanqiao hydrothermal fields, Southwest Indian Ridge. Ph.D. thesis. China University of Geosciences (Beijing) 238 pp (in Chinese with English abstract).
    [2]
    Burton, J.D., Culkin, F., 1978. Gallium. In:Wedepohl, K.H. (Ed.), Handbook of Geochemistry II-3. Springer-Verlag, Berlin 32-D-7.
    [3]
    Cannat, M., Rommevaux-Jestin, C., Sauter, D., Deplus, C., Mendel, V., 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E).J. Geophys. Res. Atmos. 104 (B10), 22825-22843.
    [4]
    Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., SainiEidukat, B., Melcher, F., 2009. Trace and minor elements in sphalerite:a LA-ICPMS study. Geochim. Cosmochim. Acta. 73, 4761-4791.
    [5]
    Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., Von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K., van Andel, T.H., 1979. Submarine thermal springs on the Galápagos Rift. Science 203, 1073-1083.
    [6]
    De Laeter, J.R., 1972. The isotopic composition and elemental abundance of gallium in meteorites and in terrestrial samples. Geochim. Cosmochim. Acta. 36, 735-743.
    [7]
    Dick, H.J., Lin, J., Schouten, H., 2003. An ultraslow-spreading class of ocean ridge. Nature 426 (6965), 405-412.
    [8]
    Fleischer, M., 1955. Minor elements in some sulfide minerals. Econ. Geol. 970-1024.
    [9]
    Georgen, J.E., Lin, J., Dick, H.J.B., 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge:Effects of transform offsets. Earth Planet. Sci. Lett. 187 (3-4), 283-300.
    [10]
    Gregory, R.T., Taylor, H.P., 1981. An Oxygen Isotope Profile in a section of cretaceous Oceanic Crust, Samail Ophiolite, Oman:evidence for δ18O Buffering of the Oceans by deep(>5 km) Seawater-Hydrothermal Circulation at Mid-Ocean Ridges. J. Geophys. Res. 86, 2737-2755.
    [11]
    Han, X.Q., Wu, G.H., Cui, R., Qiu, Z.Y., Deng, X.M., Wang, Y., Dy, S.P.O., Leg, C., 2010. Discovery of a Hydrothermal Sulfide Deposit on the Southwest Indian Ridge at 49.2°E.American Geophysical Union (Fall Meeting, abstract#S21C-S1531C).
    [12]
    Han, X.Q., Wang, Y.J., Qiu, Z.Y., Liu, Y., Qiu, B.B., 2015. Discovery and mineralization features of the Yuhuang-1 hydrothermal field on Southwest Indian Ridge. Acta Mineral.Sin. 35 (S1), 1141-1142 (in Chinese with English abstract).
    [13]
    Hannington, M., Jamieson, J., Monecke, T., Petersen, S., Beaulieu, S., 2011. The abundance of seafloor massive sulfide deposits. Geology 39 (12), 1155-1158.
    [14]
    Inghram, M.G., Hess, D.C.J., 1948. On the isotopic composition of meteoritic and terrestrial Gallium. Phys. Rev. 74, 343-344.
    [15]
    Jian, H.C., Chen, Y.J., Singh, S.C., Li, J.B., Zhao, M.H., Ruan, A.G., Qiu, X.L., 2017. Seismic structure and magmatic construction of crust at the ultraslow-spreading Southwest Indian Ridge at 50°28'E. J. Geophys. Res. Solid Earth 122 (1), 18-42.
    [16]
    John, S.G., Rouxel, O.J., Craddock, P.R., Engwall, A.M., Boyle, E.A., 2008. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. Earth Planet. Sci. Lett. 269, 17-28.
    [17]
    Kato, C., Moynier, F., 2017a. Gallium isotopic evidence for extensive volatile loss from the Moon during its formation. Science Advances 3, e1700571. https://doi.org/10.1126/sciadv.1700571.
    [18]
    Kato, C., Moynier, F., 2017b. Gallium isotopic evidence for the fate of moderately volatile elements in planetary bodies and refractory inclusions. Earth Planet. Sci. Lett. 479, 330-339.
    [19]
    Kato, C., Moynier, F., Foriel, J., Teng, F.Z., Puchtel, I.S., 2017. The gallium isotopic composition of the bulk silicate Earth. Chem. Geol. 448, 164-172.
    [20]
    Li, J.B., Jian, H.C., Chen, Y.J., Singh, S.C., Ruan, A., Qiu, X.L., Zhao, M.H., Wang, X.G., Niu, X.W., Ni, J.Y., Zhang, J.Z., 2015. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge. Geophysical Research Letters 42 (8), 2656-2663.
    [21]
    Liao, S.L., Tao, C.H., Li, H.M., Barriga, F.J.A.S., Liang, J., Yang, W.F., Yu, J.Y., Zhu, C.W., 2018a.Bulk geochemistry, sulfur isotope characteristics of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore Geol. Rev. 96, 13-27.
    [22]
    Liao, S.L., Tao, C.H., Li, H.M., Zhang, G.Y., Liang, J., Yang, W.F., Wang, Y., 2018b. Surface sediment geochemistry and hydrothermal activity indicators in the Dragon Horn area on the Southwest Indian Ridge. Mar. Geol. 398, 22-34.
    [23]
    Liao, S.L., Tao, C.H., Zhu, C.W., Li, H.M., Li, X.H., Liang, J., Yang, W.F., Wang, Y.J., 2019. Two episodes of sulfide mineralization at the Yuhuang-1 hydrothermal field on the Southwest Indian Ridge:Insight from Zn isotopes. Chem. Geol. 507, 54-63.
    [24]
    Liu, Y.J., 1982. Chief genetical types of Gallium-Bearing deposits in China. Mineral Deposits 1, 51-60 (in Chinese with English abstract).
    [25]
    Liu, S.A., Liu, P.P., Lv, Y.W., Wang, Z.Z., Dai, J.G., 2019. Cu and Zn isotope fractionation during oceanic alteration:Implications for Oceanic Cu and Zn cycles. Geochim.Cosmochim. Acta. 257, 191-205.
    [26]
    Malvin, D.J., Drake, M.J., 1987. Experimental determination of crystal/melt partitioning of Ga and Ge in the system forsterite-anorthite-diopside. Geochim. Cosmochim. Acta. 51(8), 2117-2128.
    [27]
    McAlister, J.A., Orians, K.J., 2015. Dissolved gallium in the Beaufort Sea of the Western Arctic Ocean:a GEOTRACES cruise in the International Polar Year. Mar. Chem. 177, 101-109.
    [28]
    Meija, J., Coplen, T.B., Berglund, M., Brand, W.A., De Bièvre, P., Gröning, M., Holden, N.E., Irrgeher, J., Loss, R.D., Walczyk, T., Prohaska, T., 2016. Isotopic compositions of the elements 2013 (IUPAC technical report). Pure Appl. Chem. 88, 293-306.
    [29]
    Mendel, V., Sauter, D., Rommevaux-Jestin, C., Patriat, P., Lefebvre, F., Parson, L.M., 2003.Magmato-tectonic cyclicity at the ultra-slow spreading Southwest Indian Ridge:evidence from variations of axial volcanic ridge morphology and abyssal hills pattern.Geochem. Geophys. Geosyst. 4 (5), 9102. https://doi.org/10.1029/2002GC000417.
    [30]
    Moskalyk, R.R., 2003. Gallium:the backbone of the electronics industry. Miner. Eng. 16, 921-929.
    [31]
    Orians, K.J., Bruland, K.W., 1988. Dissolved gallium in the open ocean. Nature 332, 717-719.
    [32]
    Patriat, P., Sauter, D., Munschy, M., Parson, L., 1997. A survey of the Southwest Indian Ridge Axis between Atlantis II Fracture Zone and the Indian Ocean Triple Junction:Regional setting and large Scale Segmentation. Mar. Geophys. Res. 19, 457-480.
    [33]
    Prokof'ev, V.Y., Naumov, V.B., Dorofeeva, V.A., 2016. Gallium Concentration in Natural Melts and Fluids. Geochem. Int. 54 (8), 691-705. https://doi.org/10.1134/S0016702916080097.
    [34]
    Rouxel, O., Fouquet, Y., Ludden, J.N., 2004. Copper Isotope systematics of the lucky strike, Rainbow, and Logatchev Sea-floor hydrothermal fields on the mid-Atlantic Ridge.Econ. Geol. 99, 585-600.
    [35]
    Rouxel, O., Shanks, Ш, Bach, W., Edwards, K.J., 2008. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific rise 9-10°N. Chem. Geol. 252, 214-227.
    [36]
    Rouxel, O., Toner, B., German, Y., Glazer, B., 2018. Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount. Geochim.Cosmochim. Acta. 220, 449-482.
    [37]
    Sauter, D., Patriat, P., Rommevaux-Jestin, C., Cannat, M., Briais, A., 2001. The Southwest Indian Ridge between 49°15'E and 57°E:Focused accretion and magma redistribution. Earth Planet. Sci. Lett. 192 (3), 303-317.
    [38]
    Sauter, D., Cannat, M., Meyzen, C., Bezos, A., Patriat, P., Humler, E., Debayle, E., 2009. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20'E:interaction with the Crozet hotspot? Geophys. J. Int. 179 (2), 687-699.
    [39]
    Shiller, A.M., 1998. Dissolved gallium in the Atlantic Ocean. Mar. Chem. 61, 87-99.
    [40]
    Shiller, A.M., Bairamadgi, G.R., 2006. Dissolved gallium in the northwest Pacific and the south and central Atlantic Oceans:Implications for aeolian Fe input and a reconsideration of profiles. Geochem. Geophys. Geosyst 7, Q08M09. https://doi.org/10.1029/2005GC001118.
    [41]
    Sun, C.F., Wu, Z.C., Tao, C.H., Ruan, A.G., Zhang, G.Y., Guo, Z.K., Huang, E.X., 2018. The deep structure of the Duanqiao hydrothermal field at the Southwest Indian Ridge. Acta Oceanol. Sin. 37 (3), 73-79.
    [42]
    Tao, C.H., Lin, J., Guo, S.Q., John Chen, Y.S., Wu, G.H., Han, X.Q., German, C.R., Yoerger, D.R., Zhou, N., Li, H.M., Su, X., Zhu, J., 2012. First active hydrothermal vents on an ultraslowspreading center:Southwest Indian Ridge. Geology 40 (1), 47-50.
    [43]
    Tao, C.H., Li, H.M., Jin, X.B., Zhou, J.P., Wu, T., He, Y.H., Deng, X.M., Gu, C.H., Zhang, G.Y., Liu, W.Y., 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chin. Sci. Bull. 59, 2266-2276. https://doi.org/10.1007/s11434-014-0182-0.
    [44]
    Tu, G.Z., Gao, Z.M., Hu, R.Z., Zhang, Q., Li, C.Y., Zhao, Z.H., Zhang, B.G., 2003. The Geochemistry and Ore-Forming Mechanism of the Dispersed Elements. Geological Publishing House, Beijing, pp. 368-395 (in Chinese).
    [45]
    Wang, W.F., Qin, Y., Liu, X.H., Zhao, J.L., Wang, J.Y., Wu, G.D., Liu, J.T., 2011. Distribution, occurrence and enrichment causes of gallium in coals from the Jungar Coalfield, Inner Mongolia. Sci. China Earth Sci. 54 (7), 1053-1068. https://doi.org/10.1007/s11430-010-4147-0.
    [46]
    Wang, S.J., Sun, W.D., Huang, J., Zhai, S.K., Li, H.M., 2020. Coupled Fe-S isotope composition of sulfide chimneys dominated by temperature heterogeneity in seafloor hydrothermal systems. Sci. Bull. 65 (20), 1767-1774. https://doi.org/10.1016/j.scib.2020.06.017.
    [47]
    Williams, D.L., Green, K., Van Andel, T.H., Von Herzen, R.P., Dymond, J.R., Crane, K., 1979. Hydrothermal mounds of the Galapagos Rift:Observations with DSRV Alvin and detailed heat flow studies. J. Geophys. Res. 84, 7467-7484.
    [48]
    Wood, S.A., Samson, I.M., 2006. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol. Rev. 28, 57-102.
    [49]
    Yuan, W., Chen, J.B., Birck, J.L., Yin, Z.Y., Yuan, S.L., Cai, H.M., Wang, Z.W., Huang, Q., Wang, Z.H., 2016. Precise analysis of Gallium isotopic composition by MC-ICP-MS. Anal.Chem. 88, 9606-9613. https://doi.org/10.1021/acs.analchem.6b02317.
    [50]
    Yuan, W., Saldi, G.D., Chen, J.B., Zuccolini, M.V., Birck, J.-L., Liu, Y.J., Schott, J., 2018. Gallium isotope fractionation during Ga adsorption on calcite and goethite. Geochim.Cosmochim. Acta. 223, 350-363.
    [51]
    Zhang, T., Zhou, L., Yang, L., Wang, Q., Feng, L.P., Liu, Y.S., 2016. High precision measurements of gallium isotopic compositions in geological materials by MC-ICP-MS.J. Anal. At. Spectrom. 31, 1673-1679.
    [52]
    Zhu, C.W., Tao, C.H., Yin, R.S., Liao, S.L., Yang, W.F., Liu, J., Barriga, F.J.A.S., 2020. Seawater versus mantle sources of mercury in sulfide-rich seafloor hydrothermal systems, Southwest Indian Ridge. Geochim. Cosmochim. Acta. 281, 91-101.
    [53]
    Zhuang, L.L., Song, Y.C., Liu, Y.C., Fard, M., Hou, Z.Q., 2019. Major and trace elements and sulfur isotopes in two stages of sphalerite from the world-class Angouran Zn-Pb deposit, Iran:Implications for mineralization conditions and type. Ore. Geol. Rev. 109, 184-200.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (62) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return