Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Bhaskar J. Saikia, G. Parthasarathy, Felix F. Gorbatsevich, Rashmi R. Borah. Characterization of amphiboles from the Kola super-deep borehole, Russia by Raman and infrared spectroscopy[J]. Geoscience Frontiers, 2021, 12(4): 101134. doi: 10.1016/j.gsf.2020.12.013
Citation: Bhaskar J. Saikia, G. Parthasarathy, Felix F. Gorbatsevich, Rashmi R. Borah. Characterization of amphiboles from the Kola super-deep borehole, Russia by Raman and infrared spectroscopy[J]. Geoscience Frontiers, 2021, 12(4): 101134. doi: 10.1016/j.gsf.2020.12.013

Characterization of amphiboles from the Kola super-deep borehole, Russia by Raman and infrared spectroscopy

doi: 10.1016/j.gsf.2020.12.013
Funds:

We thank Director, Indian Institute of Technology, Guwahati (IITG) for providing analytical facilities for characterization of the sample. We are grateful to Prof. M. Santosh for his useful editorial comments, in improving the manuscript, also for his support and encouragement. We expressed our grateful thanks to the Reviewers for the constructive comments that have improved the manuscript. We also thank Dr. S. Sarmah, IIT Guwahati for his assistance in the spectroscopic analysis. GP is grateful to National Institute of advanced Studies (NIAS) and Indian National Science Academy (INSA) for the support in under the INSA senior Scientist scheme.

  • Received Date: 2020-08-19
  • Rev Recd Date: 2020-12-03
  • We present here for the first time, the Raman and infrared spectroscopic investigation of amphiboles from the World's deepest borehole, the Kola super-deep borehole, at the depth of 11.66 km. The Kola Super-deep borehole (SG-3) (henceforth referred as KSDB) is located in the northwest of the Kola Peninsula in the northern frame of the Pechenga structure, Russia. It was drilled in the north-eastern part of the Baltic Shield (69о5'N, 30о44'E) and reached a depth of 12.262 km. It has been drilled in the northern limb of the Pechenga geosyncline composed of rhythmically inter-bedded volcanogenic and tuffaceous-sedimentary strata extending to the NW at 300°-310° and dipping to SW at angles of 30°-50°. The SG-3 geological section is represented by two complexes-Proterozoic and Archaean. Amphibolite facies is dominant in the depth region from 6000 m to 12,000 m to the deepest.The Raman spectra of the sample reveal abundant presence of plagioclase and amphiboles. The most distinct Raman peak in this study indicates the tremolite-ferro-actinolite rich enrichment of the borehole samples at this depth corroborating earlier conventional petrographic studies.

  • loading
  • [1]
    Aliatis, I., Lambruschi, E., Mantovani, L., Bersani, D., Andò, S., Gatta, D., Gentile, P., SalvioliMariani, E., Prencipe, M., Tribaudino, M., 2015. A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8). J. Raman Spectrosc. 46, 501-508.
    [2]
    Andò, S., Garzanti, E., 2014. Raman spectroscopy in heavy mineral studies. In:Scott, R.A., Smyth, H.R., Morton, A.C., Richardson, N. (Eds.), Sediment Provenance Studies in Hydrocarbon Exploration and Production. 386. Geological Society London Special Publications, London, UK, pp. 395-412.
    [3]
    Bayanova, T.B., Pozhilenko, V.I., Smolkin, V.F., Kudryashov, N.M., Kaulina, T.V., Vetrin, V.R., 2002. Catalogue of geochronological data for the north-eastern Baltic Shield. Apatity, KSC RAS, (in Russian).
    [4]
    Befus, K.S., Lin, J., Cisneros, M., Fu, S., 2018. Feldspar Raman shift and application as a magmatic thermobarometer. Am. Mineral. 103, 600-609.
    [5]
    Burns, R.G., Strens, R.G.J., 1966. Infrared study of the hydroxyl bands in clinoamphiboles. Science 153, 890-892.
    [6]
    Deer, W.A., Howie, R.A., Zussman, J., 1997. Rock-forming minerals. Volume 2B:Doublechain silicates, second ed. Geological Society of London 652 pp.
    [7]
    Fornero, E., Allegrina, M., Rinaudo, C., Mazziotti-Tagliani, S., Gianfagna, A., 2008. MicroRaman spectroscopy applied on oriented crystals of fluoro-edenite amphibole. Periodico di Mineralogia 77 (2), 5-14.
    [8]
    Freeman, J.J., Wang, A., Kuebler, K.E., Jolliff, B.L., Haskin, L.A., 2008. Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Can. Mineral. 46, 1477-1500.
    [9]
    Gadsden, J.A., 1975. Infrared spectra of minerals and related inorganic compounds. Butterworths, USA.
    [10]
    Garzanti, E., Doglioni, C., Vezzoli, G., Andò, S., 2007. Orogenic Belts and Orogenic Sediment Provenance. J. Geol. 115, 315-334.
    [11]
    Gillet, Ph., Reynard, B., Tequi, C., 1989. Thermodynamic properties of glaucophane new data from calorimetric and sproscopic measurements. Phys. Chem. Miner. 16, 659-667.
    [12]
    Golovataya, O.S., Gorbatsevich, F.F., Kern, H., Popp, T., 2006. Properties of some rocks from the section of the Kola ultradeep borehole as a function of the P-T parameters. Izvestiya, Physics of the Solid Earth 42, 865-876.
    [13]
    Gopal, N.O., Narasimhulu, K.V., Rao, J.L., 2004. EPR, optical, infrared and Raman spectral studies of Actinolite mineral. Spectrochim. Acta A Mol. Biomol. Spectrosc. 60, 2441-2448.
    [14]
    Gorbatsevich, F.F., 2015. Sructure, properties, state of rocks and geodynamics in the geospace of the Kola superdeep borehole (SG-3). Nauka, St. Petersburg, p. 366.
    [15]
    Gorbatsevich, F.F., Ikorsky, S.V., Zharikov, A.V., 2010. Structure and permeability of deepseated rocks in the Kola superdeep borehole section (SG-3). Acta Geodyn. Geomater. 7 (2), 145-152.
    [16]
    Hawthorne, F.C., 1983. The crystal chemistry of the amphiboles. Can. Mineral. 21, 173-480.
    [17]
    Helmy, H.M., Ahmed.F., A, El Mahallawi, M.M., Ali, S.M., 2004. Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic implication. J. Afr. Earth Sci. 38, 255-268.
    [18]
    Hofmeister, A.M., Bowey, J.E., 2006. Quantitative infrared spectra of hydrosilicates and related minerals. Mon. Not. R. Astron. Soc. 367, 577-591.
    [19]
    Ishida, K., Hawthorne, F.C., Ando, Y., 2002. Fine structure of infrared OH-stretching bands in natural and heat-treated amphiboles of the tremolite-ferro-actinolite series. Am. Mineral. 87, 891-898.
    [20]
    Kazansky, V.I., 1992. Deep structure and metallogeny of Early Proterozoic mobile belts in the light of superdeep drilling in Russia. Precambrian Res. 58, 289-303.
    [21]
    Kern, H., Popp, T., Gorbatsevich, F.F., Zharikov, A.V., Lobanov, K.V., Smirnov, Yu.P., 2001. Pressure and temperature dependence of Vp and Vs in rocks from the superdeep well and from surface analogues at Kola and the nature of velocity anisotropy. Tectonophysics 338, 113-134.
    [22]
    Kieffer, S.W., 1980. Thermodynamics and Lattice Vibrations of Minerals:Application to Chain and Sheet Silicates and Orthosilicate. Rev. Geophys. Space Phys. 18 (4), 862-886.
    [23]
    Kloprogge, J.T., Visser, D., Ruan, H., Frost, R.L., 2001. Infrared and Raman spectroscopy of holmquistite, Li2(Mg,Fe2+)3(Al,Fe3+)2(Si,Al)8O22(OH)2. J. Mater. Sci. Lett. 20, 1497-1499.
    [24]
    Kozlovsky, E.A., 1987. The superdeep well of the Kola peninsula. Springer Berlin Heidelberg, p. 558.
    [25]
    Leake, B.E., 1971. On aluminous and edenitic hornblendes. Mineral. Mag. 38, 389-407.
    [26]
    Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresh, V.W., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles:report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can. Mineral. 35, 219-246.
    [27]
    Leake, B.E., Woolley, A.R., Birch, W.D., Burke, E.A.J., Ferraris, G., Grice, J.D., Hawthorne, F.C., Kisch, H.J., Krivovichev, V.G., Schumacher, J.C., Stephenson, N.C.N., Whittaker, E.J.W., 2003. Nomenclature of amphiboles:additions and revisions to the international mineralogical association's 1997 recommendations. Can. Mineral. 41, 1355-1362.
    [28]
    Leake, B.E., Woolley, A.R., Birch, W.D., Burke, E.A.J., Ferraris, G., Grice, J.D., Hawthorne, F.C., Kisch, H.J., Krivovichev, V.G., Schumacher, J.C., Stephenson, N.C.N., Whittaker, E.J.W., 2004. Nomenclature of amphiboles:Additions and revisions to the International Mineralogical Association's amphibole nomenclature. Am. Mineral. 89, 883-887.
    [29]
    Leissner, L., Schlüter, J., Horn, I., Mihailova, B., 2015. Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates:I. Amphiboles. Am. Mineral. 100, 2682-2694.
    [30]
    Makreski, P., Jovanovski, G., Gajović, A., 2006. Minerals from Macedonia:XVII.Vibrational spectra of some common appearing amphiboles. Vib. Spectrosc. 40, 98-109.
    [31]
    McKeown, D.A., 2005. Raman spectroscopy and vibrational analyses of albite:From 25℃ through the melting temperature. Am. Mineral. 90, 1506-1517.
    [32]
    Mernagh, T., 1991. Use of the laser Raman microprobe for discrimination amongst feldspar minerals. J. Raman Spectrosc. 22, 453-457.
    [33]
    Nakamoto, K., 2009. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A:Theory and Applications in Inorganic Chemistry. Sixth ed. John Wiley and Sons, New Jersey, p. 419.
    [34]
    Nalivkina, E.B., Vinogradova, N.P., 1986. The rock forming minerals in the deep vertical section. In Kozlovsky, V.A. (Eds.) Kola Superdeep Borehole. The Deep Construction Study of the Continental Core by Kola Super deep Borehole Drilling. Nedra, Moscow(in Russian).
    [35]
    Nalivkina, E.B., Lanev, V.S., Vinogradova, N.P., 1984. Rocks and rock-forming minerals. In:Kozlovsky, V.A. (Ed.), Kola Superdeep Borehole. The Deep Construction Study of the Continental Core by Kola Superdeep Borehole Drilling. Nedra, Moscow (in Russian).
    [36]
    Nesse, W.D., 2000. Introduction to Mineralogy. Oxford University Press, New York, pp. 261-290.
    [37]
    Orlov, V.P., Laverov, N.P., 1998. Kola Super deep:Scientific results and research experience, M F "Technoneftegas", Moscow (in Russian).
    [38]
    Pandey, O.P., Tripathi, P., Parthasarathy, G., Rajagopalan, V., Bojja, S., 2014. Geochemical and mineralogical studies of chlorine-rich amphibole and biotite from the 2.5 Ga mid-crustal basement beneath the 1993 Killari earthquake region, Maharashtra:Evidence for mantle metasomatism beneath the Deccan Trap. J. Geol. Soc. India 83, 599-612.
    [39]
    Parthasarathy, G., 2005. Phase transition of amphiboles from the Archean section of the Kola Superdeep well (12148 m) and surface analogues. Indian Mineralogist 39, 71-82.
    [40]
    Parthasarathy, G., 2007. High-Temperature Decomposition of Tremolite from the Archaean rocks of Kola Super Deep Well (12148 m):Electrical resistivity, Heat capacity, and IR spectroscopic studies. Vestnik MSTU 273-279, 10.
    [41]
    Parthasarathy, G., Gorbatsevich, F.F., 2012. Electrical Properties of amphiboles from the Kola super deep borehole, Russia, at mantle pressure and temperature conditions. J. Phys. Conf. Ser. 377, 012056.
    [42]
    Petry, R., Mastalerz, R., Zahn, S., Mayerhöfer, T.G., Völksch, G., Viereck-Götte, L., KreherHartmann, B., Holz, L., Lankers, M., Popp, J., 2006. Asbestos Mineral Analysis by UV Raman and Energy-Dispersive X-ray Spectroscopy. Phys. Chem. 7, 414-420.
    [43]
    Prokofiev, V.Y., Banks, D.A., Lobanov, K.V., 2020. Exceptional concentrations of Gold Nanoparticles in 1.7 Ga fluid inclusions from the Kola Superdeep Borehole, Northwest Russia. Sci. Rep. 10, 1108.
    [44]
    Rinaudo, C., Belluso, E., Gastaldi, D., 2004. Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineral. Mag. 68, 443-453.
    [45]
    Rinaudo, C., Gastaldi, D., Belluso, E., Capella, S., 2005. Application of Raman Spectroscopy on asbestos fibre identification. Neues Jahrbuch fur Mineralogie Abhandlungen 182, 31-36.
    [46]
    Saikia, B.J., 2014. Spectroscopic estimation of geometrical structure elucidation in natural SiO2 crystal. J. Material Physics and Chemistry 2, 28-33.
    [47]
    Saikia, B.J., Parthasarathy, G., 2010. Fourier transform infrared spectroscopic characterization of Kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 1, 206-210.
    [48]
    Saikia, B.J., Parthasarathy, G., Sarmah, N.C., 2008a. Fourier transform infrared spectroscopic estimation of crystallinity in SiO2 based rocks. Bull. Mater. Sci. 31, 775-779.
    [49]
    Saikia, B.J., Parthasarathy, G., Sarmah, N.C., Baruah, G.D., 2008b. Fourier-transform infrared spectroscopic characterization of naturally occurring glassy fulgurites. Bull. Mater. Sci. 31, 155-158.
    [50]
    Sbroscia, M., Della Ventura, G., Iezzi, G., Sodo, A., 2018. Quantifying the A-site occupancy in amphiboles:A Raman study in the OH-stretching region. Eur. J. Mineral. 30, 429-436.
    [51]
    Sharma, S.K., Simons, B., Yoder, H., 1983. Raman study of anorthite, calcium Tschermak's pyroxene, and gehlenite in crystalline and glassy states. Am. Mineral. 68, 1113-1125.
    [52]
    Shurvell, H.F., Rintoul, L., Fredericks, P.M., 2001. Infrared and Raman spectra of jade and jade minerals. Int. J. Vibrational Spectroscopy 5, 4.
    [53]
    Smyth, J.R., Bish, D.L., 1988. Crystal Structures and Cation Sites of the Rock-Forming Minerals. Geochim. Cosmochim. Acta 55 (5), 1490.
    [54]
    Strens, R.G.J, 1974. The common chain, ribbon and ring silicates. In:Farmer, V.C. (Ed.), The Infrared Spectra of Minerals. Mineralogical Society, London, pp. 305-330.
    [55]
    Taylor, D.G., Nenadic, C.M., Crable, J.V., 1970. Infrared spectra for mineral identification. Am. Ind. Hyg. Assoc. J. 31, 100-108.
    [56]
    Trčková, J., Živor, R., Kazansky, V.I., Lobanov, K.V., Zharikov, A.V., Smirnov, Y.P., 2002. Comparison of elastic properties of the Kola Superdeep borehole core samples and their surface analogues obtained by static and dynamic measurements. Acta Montana IRSM AS CR Series A 21 (125), 27-54.
    [57]
    Wang, A., Dhamelincourt, P., Turrell, G., 1988. Raman Microspectroscopic Study of the Cation Distribution in Amphibole. Appl. Spectrosc. 42, 1441-1450.
    [58]
    Wilkins, R.W.T., 1970. Iron-magnesium distribution in the tremolite-actinolite series. Am. Mineral. 55, 1993-1998.
    [59]
    Yuakovleva, A.K., 1991. The melanocratic minerals. In:Mitrofanov, F.P. (Ed.), The Archean complex in KSDB-3 section. KSC RAS, Apatity, Russia (in Russian).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (70) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return