Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Marc Jolivet, Philippe Boulvais. Global significance of oxygen and carbon isotope compositions of pedogenic carbonates since the Cretaceous[J]. Geoscience Frontiers, 2021, 12(4): 101132. doi: 10.1016/j.gsf.2020.12.012
Citation: Marc Jolivet, Philippe Boulvais. Global significance of oxygen and carbon isotope compositions of pedogenic carbonates since the Cretaceous[J]. Geoscience Frontiers, 2021, 12(4): 101132. doi: 10.1016/j.gsf.2020.12.012

Global significance of oxygen and carbon isotope compositions of pedogenic carbonates since the Cretaceous

doi: 10.1016/j.gsf.2020.12.012
Funds:

We would like to thank Ch. Lecuyer for helpful discussions, A. Kaakinen and J. Andrews for providing access to datasets and two reviewers for their very helpful comments and suggestions. Funding for authors salaries was from Centre National de la Recherche Scientifique for M. Jolivet and University Rennes 1 for Ph. Boulvais.

  • Received Date: 2019-10-23
  • Rev Recd Date: 2020-06-24
  • Few global syntheses of oxygen and carbon isotope composition of pedogenic carbonates have been attempted, unlike marine carbonates. Pedogenic carbonates represent in-situ indicators of the climate conditions prevailing on land. The δ18O and δ13C values of pedogenic carbonates are controlled by local and global factors, many of them not affecting the marine carbonates largely used to probe global climate changes. We compile pedogenic oxygen and carbon isotopic data (N=12,167) from Cretaceous to Quaternary-aged paleosols to identify potential trends through time and tie them to possible controlling factors. While discrete events such as the Paleocene-Eocene Thermal Maximum are clearly evidenced, our analysis reveals an increasing complexity in the distribution of the δ18O vs δ13C values through the Cenozoic. As could be expected, the rise of C4 plants induces a shift towards higher δ13C values during the Neogene and Quaternary. We also show that the increase in global hypsometry during the Neogene plays a major role in controlling the δ18O and δ13C values of pedogenic carbonates by increasing aridity downwind of orographic barriers. Finally, during the Quaternary, an increase of 3‰ in δ18O values is recorded both by the pedogenic carbonates and the marine foraminifera suggesting that both indicators may be used to track global climate signal.

  • loading
  • [1]
    Achyuthan, H., 2003. Petrologic analysis and geochemistry of the late Neogene-early Quaternary hardpan calcretes of Western Rajasthan. India. Quat. Int. 106-107, 3-10.
    [2]
    Achyuthan, H., Shankar, N., Braida, M., Ahmad, S.M., 2012. Geochemistry of calcretes (calcic palaeosols and hardpan), Coimbatore, Southern India:Formation and paleoenvironment. Quat. Int. 265, 155-169.
    [3]
    Alam, M.S., Keppens, E., Paepe, R., 1997. The use of oxygen and carbon isotope composition of pedogenic carbonates from Pleistocene palaeosols in NW Bangladesh, as palaeoclimatic indicators. Quat. Sci. Rev. 16, 161-168.
    [4]
    Allison, G.B., Barnes, C.J., Hughes, M.W., Leary, F.W.J., 1984. The effect of climate and vegetation on the oxygen-18 and deuterium profiles in soils. Isotope Hydrology 1983. Proceedings of the Symposium IAEA. Austria, Vienna, pp. 105-123.
    [5]
    Alomar, L., 2001. Stable Isotope Geochemistry of Caliche in the Blackwater Draw Formation, Southern High Plains, Texas. M.S. Thesis. Texas Tech University, p. 69.
    [6]
    Alonso-Zarza, A.M., Arenas, C., 2004. Cenozoic calcretes from the Teruel graben, Spain:microstructure, stable isotope geochemistry and environmental significance. Sediment. Geol. 167, 91-108.
    [7]
    Amiot, R., Lécuyer, Ch., Buffetaut, E., Fluteau, F., Legendre, S., Martineau, F., 2004. Latitudinal temperature gradient during the Cretaceous Upper Campanian-Middle Maastrichtian:δ18O record of continental vertebrates. Earth Planet. Sci. Lett. 226, 255-271.
    [8]
    Andrews, J.E., Singhvi, A.K., Kailath, A.J., Kuhn, R., Dennis, P.F., Tandon, S.K., Dhir, R.P., 1998. Do stable isotope data from calcrete record late Pleistocene monsoonal climate variation in the Thar desert of India? Quat. Res. 50, 240-251.
    [9]
    Aronson, J.L., Hailemichael, M., Savin, S.M., 2008. Hominid environments at Hadar from paleosol studies in a framework of Ethiopian climate change. J. Hum. Evol. 55, 532-550.
    [10]
    Bains, S., Corfield, R.M., Norris, R.D., 1999. Mechanisms of climate warming at the end of the Paleocene. Science 285, 724-727.
    [11]
    Barrier, E., Vrielynck, B., Brouillet, J.-F., Brunet, M.-F., 2018. Paleotectonic Reconstruction of the Central Tethyan Realm. Tectonono-Sedimentary-Palinspastic Maps from Late Permian to Pliocene. CGMW, Paris.
    [12]
    Beerling, D.J., 2000. Increased terrestrial carbon storage across the Palaeocene-Eocene boundary. Paleogeogr. Paleoclimatol. Paleoecol. 161, 395-405.
    [13]
    Beerling, D.J., Royer, D.L., 2011. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418-420.
    [14]
    Behrensmeyer, A.K., Quade, J., Cerling, T.E., Kappelman, J., Khan, I.A., Copeland, P., Roe, L., Hicks, J., Stubblefield, P., Willis, B.J., Latorre, C., 2007. The structure and rate of late Miocene expansion of C4 plants:evidence from lateral variation in stable isotopes in paleosols of the Siwalik Group, northern Pakistan. Geol. Soc. Am. Bull. 119, 1486-1505.
    [15]
    Bershaw, J., Garzione, C.N., Schoenbohm, L., Gehrels, G., Tao, L., 2012. Cenozoic evolution of the Pamir plateau based on stratigraphy, zircon provenance, and stable isotopes of foreland basin sediments at Oytag (Wuyitake) in the Tarim Basin (West China).J. Asian Earth Sci. 44, 136-148.
    [16]
    Billups, K., Schrag, D.P., 2003. Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change. Earth Planet. Sci. Lett. 209, 181-195.
    [17]
    Bojar, A.V., Csiki, Z., Grigorescu, D., 2010. Stable isotope distribution in Maastrichtian vertebrates and paleosols from the Hateg Basin, South Carpathians. Paleogeogr.Paleoclimatol. Paleoecol. 293, 329-342.
    [18]
    Bosboom, R., Abels, H.A., Hoorn, C., van den Berg, B.C.J., Guo, Z., Dupont-Nivet, G., 2014.Aridification in continental Asia after the Middle Eocene Climatic Optimum(MECO). Earth Planet. Sci. Lett. 389, 34-42.
    [19]
    Boucot, A.J., Scotese, C.R., Chen, X., Morley, R.J., 2013. Phanerozoic paleoclimate:An Atlas of lithologic indicators of climate. In:Nichols, G.J., Ricketts, B. (Eds.), Concept in Sedimentology and Paleontology. Society for Sedimentary Geology, Tulsa, pp. 1-478.
    [20]
    Bowen, G.J., Koch, P.L., Gingerich, P.D., Norris, R.D., Bains, S., Corfield, R.M., 2001. Refined isotope stratigraphy across the continental Paleocene-Eocene boundary on Polecat Bench in the northern Bighorn Basin. In:Gingerich, P.D. (Ed.), Paleocene-Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming. University of Michigan Papers on Paleontology 33, 73-88.
    [21]
    Bowen, G.J., Koch, P.L., Meng, J., Ye, J., Ting, S., 2005. Age and correlation of fossiliferous late Paleocene-early Eocene strate of the Erlian Basin, Inner Mongolia. China. Am.Mus. Novit. 3474, 1-26.
    [22]
    Brlek, M., Glumac, B., 2014. Stable isotopic (δ13C and δ18O) signatures of biogenic calcretes marking discontinuity surfaces:a case study from Upper Cretaceous carbonates of cebtral Dalmatia and eastern Istria, Croatia. Facies 30, 773-788.
    [23]
    Broccoli, A.J., Manabe, S., 1992. The effects of orography on midlatitude northern hemisphere dry climates. J. Clim. 5, 1181-1201.
    [24]
    Caves, J.K., Sjostrom, D.J., Mix, H.T., Winnick, M.J., Chamberlain, C.P., 2014. Aridification of Central Asia and uplift of the Altai and Hangay Mountains, Mongolia:Stable isotope evidence. American Journal of Sciences 314, 1171-1201.
    [25]
    Caves, J.K., Winnick, M.J., Graham, S.A., Sjostrom, D.J., Mulch, A., Chamberlain, C.P., 2015.Role of the westerlies in Central Asia climate over the Cenozoic. Earth Planet. Sci.Lett. 428, 33-43.
    [26]
    Caves, J.K., Bayshashov, B.U., Zhamangara, A., Ritch, A.J., Ibarra, D.E., Sjostrom, D.J., Mix, H.T., Winnick, M.J., Chamberlain, C.P., 2017. Late Miocene uplift of the Tian Shan and Altai and reorganization of Central Asia climate. GSA Today 27 (2), 19-26.
    [27]
    https://doi.org/10.1130/GSATG305A.1.
    [28]
    Cerling, T.E., 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett. 71, 229-240.
    [29]
    Cerling, T.E., 1991. Carbon dioxide in the atmosphere:evidence from Cenozoic and Mesozoic paleosols. American Journal of Science 291, 377-400.
    [30]
    Cerling, T.E., 1992. Use of carbon isotopes in paleosols as an indicator of the P(CO2) of the paleoatmosphere. Glob. Biogeochem. Cycle 6 (3), 307-314.
    [31]
    Cerling, T.E., Hay, R.L., 1986. An isotopic study of paleosol carbonates from Olduvai gorge.Quat. Res. 25, 63-78.
    [32]
    Cerling, T.E., Quade, J., 1993. Stable carbon and oxygen isotopes in soil carbonates. Climate Change in Continental Isotopic Records. American Geophysical Union Geophysical Monograph 78, 217-231.
    [33]
    Cerling, T.E., Bowman, J.R., O'Neil, J.R., 1988. An isotopic study of a fluvial-lacustrine sequence:the Plio-Pleistocene Koobi Fora sequence, East Africa. Paleogeogr.Paleoclimatol. Paleoecol. 63, 335-356.
    [34]
    Cerling, T.E., Quade, J., Ambrose, S.H., Sikes, N.E., 1991. Fossil soils, grasses, and carbon isotopes from Fort Ternan, Kenya:grassland or woodland? J. Hum. Evol. 21, 295-306.
    [35]
    Cerling, T.E., Wynn, J.G., Andanje, S.A., Bird, M.I., Kimutai Korir, D., Levin, N.E., Mace, W., Macharia, A.N., Quade, J., Remien, C.H., 2011. Woody cover and hominid environments in the past 6 million years. Nature 476, 51-56.
    [36]
    Chamberlain, C.P., Poage, M.A., Craw, D., Reynolds, R.C., 1999. Topographic development of the Southern Alps recorded by the isotopic composition of authigenic clay minerals, South Island, New Zealand. Chem. Geol. 155, 279-294.
    [37]
    Charreau, J., Kent-Corson, M.L., Barrier, L., Augier, R., Ritts, B.D., Chen, Y., France-Lannord, Ch., Guilmette, C., 2012. A high-resolution stable isotopic record from the Junggar Basin (NW China):Implications for the paleotopographic evolution of the Tianshan Mountains. Earth Planet. Sci. Lett. 341-344, 158-169.
    [38]
    Cheng, F., Fu, S.T., Jolivet, M., Zhang, C.H., Guo, Z.J., 2016. Source to sink relation between the eastern Kunlun Range and the Qaidam Basin, northern Tibetan Plateau, during the Cenozoic. Geol. Soc. Am. Bull. 128 (1-2), 258-283. https://doi.org/10.1130/B31260.1.
    [39]
    Clyde, W.C., Sheldon, N.D., Koch, P.L., Gunnell, G.F., Bartels, W.S., 2001. Lining Wasatchian/Bridgerian boundary to the Cenozoic Global climate Optimum:new magnetostratigraphic and isotopic results from south Pass. Wyoming. Paleogeogr.Paleoclimatol. Paleoecol. 167, 175-199.
    [40]
    Coplen, T.B., Kendall, C., Hopple, J., 1983. Comparison of stable isotope reference samples.Nature 302, 236-238.
    [41]
    Cotton, J.M., Hyland, E.G., Sheldon, N.D., 2014. Multi-proxy evidence for tectonic control on the expansion of C4 grasses in Northwest Argentina. Earth Planet. Sci. Lett. 395, 41-50.
    [42]
    Dar, R.A., Chandra, R., Romshoo, S.A., Lone, M.A., Ahmad, S.M., 2015. Isotopic and micromorphological studies of late Quaternary loess-paleosol sequences of the Karewa Group:Inferences for paleoclimate of Kashmir Valley. Quat. Int. 265, 155-169.
    [43]
    De Pelsmaeker, E., Jolivet, M., Dransart Laborde, A., Poujol, M., Robin, C., Zhimulev, F.I., Nachtergaele, S., Glorie, S., De Clercq, S., Batalev, V.Y., De Grave, J., 2018. Source-tosink relations in the Kyrgyz Tien Shan from the Jurassic to the Paleogene:insights from sedimentological and detrital zircon U-Pb analyses. Gondwana Res. 54, 180-204.
    [44]
    Dercourt, J., Guetani, M., Vrielynk, B., 2000. In:Crasquin, S. (Ed.), Atlas Peri-Téthys and explaining notes. CCGM, Paris 268p.
    [45]
    Dettman, D.L., Fang, X.M., Garzione, C.N., Li, J.J., 2003. Uplift-driven climate change at 12 Ma:a long δ18O record from the NE margin of the Tibetan plateau. Earth Planet. Sci.Lett. 214, 267-277.
    [46]
    Deutz, P., Montañez, I.P., Monger, H.C., Morrison, J., 2001. Morphology and isotope heterogeneity of late Quaternary pedogenic carbonates:Implications for paleosol carbonates as paleoenvironmental proxies. Paleogeogr. Paleoclimatol. Paleoecol. 166, 293-317.
    [47]
    Dhir, R.P., Singhvi, A.K., Andrews, J.E., Kar, A., Sareen, B.K., Tandon, S.K., Kailath, A., Thomas, J.V., 2010. Multiple episodes of aggradation and calcrete formation in late Quaternary aeolian sands, Central Thar desert, Rajasthan. India. J. Asian Earth Sci. 37, 10-16.
    [48]
    Dickens, G.R., Castillo, M.M., Walker, J.C.G., 1997. A blast of gas in the latest Paleocene:Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259-262.
    [49]
    Dworkin, S.L., Nordt, L., Atchley, S., 2005. Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate. Earth Planet. Sci. Lett. 237, 56-68.
    [50]
    Edwards, E.J., Osborne, C.P., Strömberg, C.A.E., Smith, S.A., C4 Grasses Consortium, 2010.The origin of C4 grasslands:Integrating evolutionary and ecosystem science. Science 328, 587-591.
    [51]
    Eren, E., 2011. Stable isotope geochemistry of Quaternary calcretes in the Mersin area, southern Turkey-a comparison and implications for their origin. Chemie der Erde 71, 31-37.
    [52]
    Fan, M.J., Feng, R., Geissman, J.W., Poulsen, C.J., 2020. Late Paleogene emergence of a north American loess plateau. Geology 48, 273-277.
    [53]
    Fox, D.L., Koch, P.L., 2004. Carbon and oxygen isotopic variability in Neogene paleosol carbonates:constraints on the evolution of the C4-grasslands of the Great Plains. USA.Paleogeogr. Paleoclimatol. Paleoecol. 207, 305-329.
    [54]
    Fox, D.L., Honey, J.G., Martin, R.A., Peláez-Campomanes, P., 2012. Pedogenic carbonate stable isotope record of environmental change during the Neogene in the southern Great Plains, Southwest Kansas, USA:Oxygen isotopes and paleoclimate during the evolution of C4-dominated grassland. Geol. Soc. Am. Bull. 124, 431-443.
    [55]
    Frigola, A., Prange, M., Schulz, M., 2018. Boundary conditions for the Middle Miocene climate transition (MMCT v1.0). Geoscience Model Development 11, 1607-1626.
    [56]
    Gao, Y., Ibarra, C.E., Wang, C., Caves, J.K., Chamberlain, C.P., Graham, S.A., Wu, H., 2015.Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous. Geology 43, 287-290.
    [57]
    Garrett, N.D., Fox, D.L., McNulty, K.P., Faith, J.T., Peppe, D.J., Van Plantinga, A., Tryon, C.A., 2015. Stable isotope paleoecology of late Pleistocene Middle Stone Age humans from the Lake Victoria basin. Kenya. J. Hum. Evol. 82, 1-14.
    [58]
    Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., Mulch, A., 2008. Rise of the Andes. Science 230, 1304-1307.
    [59]
    Ghosh, P., Bhattacharya, S.K., Jani, R.A., 1995. Palaeoclimate and palaeovegetation in central India during the Upper Cretaceous based on stable isotope composition of the palaeosol carbonates. Paleogeogr. Paleoclimatol. Paleoecol. 114, 285-296.
    [60]
    Ghosh, P., Garzione, C.N., Eiler, J.M., 2006. Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science 311, 511-515.
    [61]
    Giambiagi, L.B., 1999. Los depositos Neogenos de la region del Rio Palomares, Cordillera Principal de Mendoza. Revista de la Asociatión Geológia Argentina 54, 47-59.
    [62]
    Gregory, R.T., Douthitt, C.B., Duddy, I.R., Rich, P.V., Rich, T.H., 1989. Oxygen isotopic composition of carbonate concretions from the lower Cretaceous of Victoria, Australia:implications for the evolution of meteoric waters on the Australian continent in a paleopolar environment. Earth Planet. Sci. Lett. 92, 27-42.
    [63]
    Harris, N., 2006. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Paleogeogr. Paleoclimatol. Paleoecol. 241, 4-15.
    [64]
    Heilbronn, G., Boulvais, P., Marchand, E., Robin, C., Bourquin, S., Barrier, L., Jia, Y., Fu, B., Jolivet, M., 2015. Stable isotope characterization of pedogenic and lacustrine carbonates from the Chinese Tian Shan:Constraints on the Mesozoic-lower Cenozoic palaeoenvironmental evolution. Chemie der Erde 75, 133-141.
    [65]
    Helland, P.E., Holmes, M.A., 1997. Surface textural analysis of quartz sand grains from ODP Site 918 off the southeast coast of Greenland suggests glaciation of southern Greenland at 11 Ma. Paleogeogr. Paleoclimatol. Paleoecol. 135, 109-121.
    [66]
    Hellwig, A., Voigt, S., Mulch, A., Frisch, K., Bartenstein, A., Pross, J., Gerdes, A., Voigt, T., 2018. Late Oligocene to early Miocene humidity change recorded in terrestrial sequences in the Ili Basin (South-Eastern Kazakhstan, Central Asia). Sedimentology 65, 517-539.
    [67]
    Herold, N., Seton, M., Müller, R.D., 2008. Middle Miocene tectonic boundary conditions for use in climate models. Geochem. Geophys. Geosyst. 9, Q10009. https://doi.org/10.1029/2008GC002046.
    [68]
    Herold, N., Buzan, J., Seton, M., Goldner, A., Green, J.A.M., Müller, R.D., Markwick, P., Huber, M., 2014. A suite of early Eocene (~55 Ma) climate model boundary conditions. Geoscience Model Development 7, 2077-2090.
    [69]
    Hoke, G.D., Garzione, C.N., 2008. Paleosurfaces, paleoelevation, and the mechanisms for the late Miocene topographic development of the Altiplano plateau. Earth Planet.Sci. Lett. 271, 192-201.
    [70]
    Hoke, G.D., Liu-Zeng, J., Hren, M.T., Wissink, G.K., Garzione, C.N., 2014a. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth Planet. Sci.Lett. 394, 270-278.
    [71]
    Hoke, G.D., Giambiagi, L.B., Garzione, C.N., Mahoney, J.B., Strecker, M.R., 2014b. Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina. Earth Planet. Sci. Lett. 406, 153-164.
    [72]
    Huang, C.M., Retallack, G.J., Wang, C.S., 2012. Early Cretaceous atmospheric pCO2 levels recorded from pedogenic carbonates in China. Cretac. Res. 33, 42-49.
    [73]
    Huerta, P., Armenteros, I., 2005. Calcrete and palustrine assemblages on a distal alluvialfloodplain:A response to local subsidence (Miocene of the Duero basin, Spain). Sediment. Geol. 177, 253-270.
    [74]
    Hyland, E., Sheldon, N.D., 2013. Coupled CO2-climate response during the early Eocene climatic optimum. Paleogeogr. Paleoclimatol. Paleoecol. 369, 125-135.
    [75]
    Hyland, E.G., Sheldon, N.D., Smith, S.Y., Strömberg, C.A.E., 2019. Late Miocene rise and fall of C4 grasses in the western United States linked to aridification and uplift. Geol. Soc.Am. Bull. 131 (1/2), 224-234.
    [76]
    Irigoyen, M.V., Buchan, K.L., Brown, R.L., 2000. Magnetostratigraphy of Neogene Andean foreland-basin strata, lat 33°S, Mendoza Province. Argentina. Geol. Soc. Am. Bull. 112, 803-816.
    [77]
    Jenny, H., 1980. The Soil Resource:Origin and Behavior. Springer Verlag, Berlin.
    [78]
    Jolivet, M., Dominguez, S., Charreau, J., Chen, Y., Li, Y.A., Wang, Q.C., 2010. Mesozoic and Cenozoic tectonic history of the Central Chinese Tian Shan:Reactivated tectonic structures and active deformation. Tectonics 29, TC6019. https://doi.org/10.1029/2010TC002712.
    [79]
    Jolivet, M., Arzhannikov, S., Arzhannikova, A., Chauvet, A., Vassallo, R., Braucher, R., 2013.Geomorphic Mesozoic and Cenozoic evolution in the Oka-Jombolok region (East Sayan ranges, Siberia). J. Asian Earth Sci. 62, 117-133.
    [80]
    Jolivet, M., Barrier, L., Dauteuil, O., Laborde, A., Li, Q., Reichenbacher, B., Popescu, S.-M., Sha, J.G., Guo, Z.J., 2018a. Late Cretaceous-Palaeogene topography of the Chinese Tian Shan:New insights from geomorphology and sedimentology. Earth Planet. Sci.Lett. 499, 95-106.
    [81]
    Jolivet, M., Boulvais, Ph., Barrier, L., Robin, C., Heilbronn, G., Ledoyen, J., Ventroux, Q., Jia, Y., Guo, Zh., Bataleva, E.A., 2018b. Oxygen and carbon stable isotope composition of Cretaceous to Pliocene calcareous paleosols in the Tian Shan region (Central Asia):controlling factors and paleogeographic implications. Geosciences 8, 330. https://doi.org/10.3390/geosciences80900330.
    [82]
    Jordan, T., Tamm, V., Figueroa, G., Flemings, P.B., Richards, D., Tabbutt, K., Cheatham, T., 1996. Development of the Miocene Manantiales foreland basin, principal Cordillera, San Juan, Argentina. Revista Geológica de Chile 23, 43-79.
    [83]
    Kaakinen, A., Sonninen, E., Lunkha, J.P., 2006. Stable isotope record in paleosol carbonates from the Chinese Loess Plateau:Implications for late Neogene paleoclimate and paleovegetation. Paleogeogr. Paleoclimatol. Paleoecol. 237, 359-369.
    [84]
    Kaplan, M.Y., Eren, E., Kadir, S., Kapur, S., 2013. Mineralogical, geochemical and isotopic characteristics of Quaternary calcretes in the Adana region, southern Turkey:Implications on their origin. Catena 101, 164-177.
    [85]
    Kingston, J.D., 1992. Stable isotopic evidence for hominid paleoenvironments in East Africa. Ph.D. thesis. Harvard University, Cambridge, Massachusetts, USA.
    [86]
    Kirby, E.P.W., Reiners, M.A., Krol, K.X., Whipple, K.V., Hodges, K.A., Farley, W., Tang, Z., Chen, Z., 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau:inferences from 40Ar/39Ar and (U-Th)/he thermochronology. Tectonics 21, 1-20.
    [87]
    Kleinert, K., Strecker, M.R., 2001. Climate change in response to orographic barrier uplift:Paleosol and stable isotope evidence from the late Neogene Santa María basin, northwestern Argentina. Geol. Soc. Am. Bull. 113, 728-742.
    [88]
    Koch, P.L., Zachos, J.C., Dettman, D.L., 1995. Stable isotope stratigraphy and paleoclimatology of the Paleogene Boghorn Basin (Wyoming, USA). Paleogeogr. Paleoclimatol.Paleoecol. 115, 61-89.
    [89]
    Koch, P.L., Clyde, W.C., Hepple, R.P., Fogel, M.L., Wing, S.L., Zachos, J.C., 2003. Carbon and oxygen isotope records from paleosols spanning the Paleocene-Eocene boundary, Bighorn Basin, Wyoming. In:Wing, S.L., Gingerich, P.D., Schmitz, B., Thomas, E.(Eds.), Cause and Consequences of Globally warm Climates in the early Paleogene.Geological Society of America, Special Paper 369, 49-64.
    [90]
    Kohn, M.J., 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of(paleo) ecology and (paleo) climate. Proceedings of the National Academy of Sciences, America. 107, pp. 19691-19695.
    [91]
    Körner, C., Farquhar, G., Wong, S.C., 1991. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88, 30-40.
    [92]
    Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15, 259-263.
    [93]
    Labaume, P., Jolivet, M., Souquière, F., Chauvet, A., 2008. Tectonic control on diagenesis in a foreland basin:combined petrologic and thermochronologic approaches in the Grès d'Annot basin (Late Eocene-Early Oligocene, French-Italian external Alps). Terra Nova 20, 95-101.
    [94]
    Ladant, J.B., Donnadieu, Y., 2016. Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse. Nature Communications 7, 12771. https://doi.org/10.1038/ncomms12771.
    [95]
    Larsen, H.C., Saunders, A.D., Clift, P.D., Beget, J., Wei, W., Spezzaferri, S., 1994. ODP Leg 152 Scientific Party, seven million years of glaciation in Greenland. Science 264, 952-956.
    [96]
    Latorre, C., Quade, J., McIntosh, W.C., 1997. The expansion of C4 grasses and global change in the late Miocene:Stable isotope evidence from the Americas. Earth Planet. Sci. Lett. 146, 83-96.
    [97]
    Lear, C.H., Elderfield, H., Wilson, P.A., 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/ca in benthic foraminiferal calcite. Science 287, 269-272.
    [98]
    Lee, Y.L., Hisada, K.I., 1999. Stable isotopic composition of pedogenic carbonates of the Early Cretaceous Shimonoseki Subgroup, western Honshu. Japan. Paleogeogr.Paleoclimatol. Paleoecol. 153, 127-138.
    [99]
    Leier, A., Quade, J., DeCelles, P., Kapp, P., 2009. Stable isotopic results from paleosol carbonate in South Asia:Paleoenvironmental reconstructions and selective alteration.Earth Planet. Sci. Lett. 279, 242-254.
    [100]
    Levin, N.E., 2013. Compilation of East Africa soil carbonate stable isotope data. Integrated Earth Data Applications. https://doi.org/10.1594/IEDA/100231.
    [101]
    Levin, N.E., 2015. Environment and climate of early human evolution. Annual Review of Earth and Planetary Sciences 43, 405-429.
    [102]
    Levin, N.E., Brown, F.H., Behrensmeyer, A.K., Bobe, R., Cerling, T.E., 2011. Paleosol carbonates from the Omo Group:Isotopic records of local and regional environmental change in East Africa. Paleogeogr. Paleoclimatol. Paleoecol. 307, 75-89.
    [103]
    Li, X., Xu, W., Liu, W., Zhou, Y., Wang, Y., Sun, Y., Liu, L., 2013. Climatic and environmental indications of carbon and oxygen isotopes from the Lower Cretaceous calcrete and lacustrine carbonates in Southeast and Northwest China. Paleogeogr. Paleoclimatol.Paleoecol. 385, 171-189.
    [104]
    Licht, A., van Cappelle, M., Abels, H.A., Ladant, J.B., Trabucho-Alexandre, J., France-Lanord, C., Donnadieu, Y., Vandenberghe, J., Rigaudier, T., Lécuyer, Ch., Terry Jr., D., Adriaens, R., Boura, A., Guo, Z., Soe, Aung Naing, Quade, J., Dupont-Nivet, G., Jaeger, J.J., 2014.Asian monsoons in a late Eocene greenhouse world. Nature 513, 501-506. https://doi.org/10.1038/nature13704.
    [105]
    Liu, B., Phillips, F.M., Campbell, A.R., 1996. Stable carbon and oxygen isotopes of pedogenic carbonates, Ajo Mountains, southern Arizona:implications for paleoenvironmental change. Paleogeogr. Paleoclimatol. Paleoecol. 124, 233-246.
    [106]
    Liu-Zeng, J., Tapponnier, P., Gaudemer, Y., Ding, L., 2008. Quantifying landscape differences across the Tibetan plateau:Implications for topographic relief evolution.J. Geophys. Res.-Earth Surf. 113, F04018.
    [107]
    Macaulay, E.A., Sobel, E.R., Mikolaichuk, A., Wack, M., Gilder, S.A., Mulch, A., Fortuna, A.B., Hynek, S., Apayarov, F., 2016. The sedimentary record of the Issyk Kul basin.Kyrgyzstan:climatic and tectonic inferences. Basin Res. 28, 57-80.
    [108]
    Mack, G.H., Cole, D.R., James, W.C., Girodano, T.H., Salyards, S.L., 1994. Stable oxygen and carbon isotopes of pedogenic carbonate as indicators of Plio-Pleistocene paleoclimate in the southern Rio Grande rift, south-Central New Mexico. American Journal of Sciences 294, 621-640.
    [109]
    Magaritz, M., Kaufman, A., Yaalon, D.H., 1981. Calcium carbonate nodules in soils:18O/16O and 13C/12C ratios and 14C contents. Geoderma 25, 157-172.
    [110]
    Markwick, P.J., 2007. The palaeogeographic and palaeoclimatic significance of climate proxies for data-model comparisons. In:Williams, M., Haywood, A.M., Gregory, J., Scmidt, D.N. (Eds.), Deep-Time Perspectives on Climate Change:Marrying the Signal from Computer Models and Biological Proxies. Geological Society Special Publication, pp. 251-312.
    [111]
    Markwick, P.J., Valdes, P.J., 2004. Palaeo-digital elevation models for use as boundary conditions in coupled ocean-atmosphere GCM experiments:a Maastrichtian (late Cretaceous) example. Paleogeogr. Paleoclimatol. Paleoecol. 213, 37-63.
    [112]
    Mortazavi, M., Moussavi-Harami, R., Brenner, R.L., Mahboubi, A., Nadjafi, M., 2013. Stable isotope record in pedogenic carbonates in northeast Iran:Implications for Early Cretaceous (Berriasian-Barremian) paleovegetation and paleoatmospheric P(CO2) levels. Geoderma 211-212, 85-97.
    [113]
    Neymark, L.A., Paces, J.B., Marshall, B.D., Peterman, Z.E., Whelan, J.F., 2005. Geochemical and C, O, Sr, and U-series isotopic evidence for the meteoric origin of calcrete at Solitario Wash, Crater flat, Nevada, USA. Environmental Geology 48, 450-465.
    [114]
    Nordt, L., Atchley, S., Dworkin, S.I., 2002. Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous-Tertiary boundary. Geology 30, 703-706.
    [115]
    Parcerisa, D., Gómez-Gras, D., Martín-Martín, J.D., 2006. Calcretes, oncolites, and lacustrine limestones in Upper Oligocene alluvial fans of the Montgat area (Catalan Coastal Ranges, Spain). In:Alonso-Zarza, a.M., Tanner, L.H., (Eds.), Paleoenvironmental Record and applications of Calcretes and Palustrine Carbonates. Geological Society of America Special Paper 416, 105-117.
    [116]
    Platt, N.H., 1989. Lacustrine carbonates and pedogenesis:sedimentology and origin of palustrine deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N Spain. Sedimentology 36, 665-684.
    [117]
    Plummer, T., Bishop, L.C., Ditchfield, P., Hicks, J., 1999. Research on late Pliocene Oldowan sites at Kanjera South, Kenya. Journal of Human Evolution 36, 151-170.
    [118]
    Poage, M.A., Chamberlain, C.P., 2001. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters:considerations for studies of paleoelevation change. American Journal of Sciences 901, 1-18.
    [119]
    Potts, A.J., Midgley, J.J., Harris, C., 2009. Stable isotope and 14C study of biogenic calcrete in a termite mound, Western Cape, South Africa, and its palaeoenvironmental significance. Quaternary Research 72, 258-264.
    [120]
    Pucéat, E., Lécuyer, Ch., Sheppard, S.M.F., Dromart, G., Reboulet, S., Grandjean, P., 2003.
    [121]
    Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18, 1029. https://doi.org/10.1029/2002PA000823.
    [122]
    Quade, J., Cerling, T.E., 1995. Expansion of C4 grasses in the late Miocene of northern Pakistan:evidence from stable isotopes of paleosols. Paleogeogr. Paleoclimatol.Paleoecol. 115, 91-116.
    [123]
    Quade, J., Solounias, N., Cerling, T.E., 1994. Stable isotopic evidence from paleosol carbonates and fossil teeth in Greece for forest or woodlands over the past 11 Ma.Paleogeogr. Paleoclimatol. Paleoecol. 108, 41-53.
    [124]
    Quade, J., Rech, J.A., Latorre, C., Betancourt, J.L., Gleeson, E., Kalin, M.T.K., 2007. Soils at the hyperarid margin:the isotopic composition of soil carbonate from the Atacama Desert. Northern Chile. Geochim. Cosmochim. Acta 71, 3772-3795.
    [125]
    Quinn, R.L., Lepre, C.J., Wright, J.D., Feibel, C.S., 2007. Paleogeographic variations of pedogenic carbonate δ13C values from Koobi Fora, Kenya:implications for floral compositions of Plio-Pleistocene hominin environments. Journal of Human Evolution 53, 560-573.
    [126]
    Retallack, G.J., Wynn, J.G., Fremd, T.J., 2004. Glacial-interglacial-scale paleoclimatic change without large ice sheets in the Oligocene of Central Oregon. Geology 32 (4), 297-300.
    [127]
    Ringrose, S., Harris, C., Huntsman-Mapila, P., Vink, B.W., Diskins, S., Vanderpost, C., Matheson, W., 2009. Origins of strandline duricrust around the Makgadikgadi Pans(Botswana Kalahari) as deduced from their chemical and isotope composition. Sediment. Geol. 219, 262-279.
    [128]
    Robinson, S.A., Andrews, J.E., Hesselbo, S.P., Radley, J.D., Dennis, P.F., Harding, I.C., Allen, P., 2002. Atmospheric pCO2 and depositional environment from stable-isotope geochemistry of calcrete nodules (Barremian, lower Cretaceous, Wealden Beds, England). Journal of the Geological Society, London 159, 215-224.
    [129]
    Rowe, P.J., Maher, B.A., 2000. ‘Cold’ stage formation of calcrete nodules in the Chinese Loess Plateau:evidence from U-series dating and stable isotope analysis. Paleogeogr.Paleoclimatol. Paleoecol. 157, 109-125.
    [130]
    Salomons, W., Goudie, A., Mook, W.G., 1978. Isotopic composition of calcrete deposits from Europe, Africa and India. Earth Surface Processes 3, 43-57.
    [131]
    Sandler, A., 2006. Estimates of atmospheric CO2 levels during the mid-Turonian derived from stable isotope composition of paleosol calcite from Israel. In:Alonso-Zarza, A.M., Tanner, L.H. (Eds.), Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates. Geological Society of America Special Paper 416, 75-88.
    [132]
    Schlesinger, W.H., 1985. The formation of caliche in soils of the Mojave Desert. California.Geochim. Cosmochim. Acta 49, 57-66.
    [133]
    Schmid, S.M., Pfiffner, O.A., Froitzheim, N., Schönborn, G., Kissling, E., 1996. Geophysicalgeological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 15(5), 1036-1064.
    [134]
    Scotese, C.R., 2014a. Atlas of Early Cretaceous Paleogeographic Maps. PALEOMAP Atlas for ArcGIS, volume 2, The Cretaceous https://doi.org/10.13140/2.1.4099.4560.
    [135]
    Scotese, C.R., 2014b. Atlas of Late Cretaceous Paleogeographic Maps. PALEOMAP Atlas for ArcGIS, volume 2, The Cretaceous https://doi.org/10.13140/2.1.4691.3284.
    [136]
    Scotese, C.R., 2014c. Atlas of Paleogene Paleogeographic Maps (Molweide Projection).PALEOMAP Atlas for ArcGIS, volume 1, the Cenozoic https://doi.org/10.13140/2.1.3417.6961.
    [137]
    Scotese, C.R., 2014d. Atlas of Neogene Paleogeographic Maps (Molweide Projection).PALEOMAP Atlas for ArcGIS, volume 1, the Cenozoic https://doi.org/10.13140/2.1.4151.3922.
    [138]
    Scotese, C.R., Golonka, J., 1992. PALEOMAP Paleogeographic Atlas. PALEOMAP Progress Report #20, Dept. of Geology, University of Texas at Arlington. https://doi.org/10.13140/RG.2.1.1058.9202.
    [139]
    Sewall, J.O., van de Wal, R.S.W., van der Zwan, K., van Oosterhout, C., Dijkstra, H.A., Scotese, C.R., 2007. Climate model boundary conditions for four Cretaceous time slices. Climate of the Past 3, 647-657.
    [140]
    Sheldon, N.D., 2018. Using carbon isotope equilibrium to screen pedogenic carbonate oxygen isotopes:Implications for paleoaltimetry and paleotectonic studies. Geofluids 2018, 5975801. https://doi.org/10.1155/2018/5975801.
    [141]
    Sheldon, N.D., Tabor, N.J., 2009. Quantitative paleo-environmental and paleoclimatic reconstruction using paleosols. Earth-Sci. Rev. 95, 1-52.
    [142]
    Sikes, N.E., Potts, R., Behrensmeyer, A.K., 1997. Isotopic study of Pleistocene paleosols from the Olorgesailie Formation, southern Kenya rift. Journal of Human Evolution 37, 721-746.
    [143]
    Sinha, A., Stott, L.D., 1994. New atmospheric pCO2 estimates from paleosols during the late Paleocene/early Eocene global warming interval. Glob. Planet. Change 9, 297-307.
    [144]
    Sinha, R., Tandon, S.K., Sanyal, P., Gibling, M.R., Stuben, D., Berner, Z., Ghazanfari, P., 2006.Calcretes from a late Quaternary interfluve in the Ganga Plains, India:Carbonate types and isotopic systems in a monsoonal setting. Paleogeogr. Paleoclimatol.Paleoecol. 242, 214-239.
    [145]
    Srivastava, P., 2001. Paleoclimatic implications of pedogenic carbonates in Holocene soils of the Gangetic Plains. India. Paleogeogr. Paleoclimatol. Paleoecol. 171, 207-222.
    [146]
    Strömberg, C.A.E., 2011. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39, 517-544.
    [147]
    Suguio, K., Berenholc, M., Salati, E., 1975. Composição química e isotópica dos calcários e ambiente de sedimentação da formação Bauru. Boletin IG-USP 6 (in Portuguese).
    [148]
    Tandon, S.K., Sood, A., Andrews, J.E., Dennis, P.F., 1995. Palaeoenvironments of the dinosaur-bearing Lameta Beds (Maastrichtian), Narmada Valley, Central India.Paleogeogr. Paleoclimatol. Paleoecol. 117, 153-184.
    [149]
    Tapponnier, P., Xu, Z.Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., Yang, J.S., 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science 294, 1671-1677.
    [150]
    Tippett, J.M., Kamp, P.J.J., 1995. Geomorphic evolution of the Southern Alps. New Zealand.Earth Surf. Process. Landf. 20, 177-192.
    [151]
    Tripati, A., Darby, D., 2018. Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic Sea ice. Nat. Commun. 9, 1038. https://doi.org/10.1038/s41467-018-03180-5.
    [152]
    Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chem. Geol. 312-313, 190-194.
    [153]
    Wang, Y., Deng, T., 2005. A 25 m.y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau. Earth Planet. Sci. Lett. 236, 322-338.
    [154]
    Wang, Y., Zheng, S.-H., 1989. Paleosol nodules as Pleistocene paleoclimatic indicators, Luochuan, P.R. China. Paleogeogr. Paleoclimatol. Paleoecol. 76, 39-44.
    [155]
    Wang, Y.D., Huang, C.M., Sun, B.N., Quan, C., Wu, J.Y., Lin, Z.C., 2014. Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth-Sci. Rev. 129, 136-147.
    [156]
    Wernicke, B.P., Christiansen, R.L., England, P.C., Sonder, L.J., 1987. Tectonomagmatic evolution of Cenozoic extension in the north American Cordillera. In:Coward, M.P., Dewey, J.F., Hancock, P.L. (Eds.), Continental Extensional Tectonics. Geological Society of London Special Publication, London 28, 203-221.
    [157]
    Wessel, P., Smith, W.H.F., 1991. Free software helps map and display data. EOS Transactions American Geophysical Union 72 (441), 445-446.
    [158]
    Willett, S.D., Schlunegger, F., Picotti, V., 2006. Messinian climate change and erosional destruction of the central European Alps. Geology 34 (8), 613-616.
    [159]
    Wynn, J.G., 2000. Paleosols, stable carbon isotopes, and paleoenvironmental interpretation of Kanapoi, Northern Kenya. Journal of Human Evolution 39, 411-432.
    [160]
    Wynn, J.G., 2004. Influence of Plio-Pleistocene aridification on human evolution:evidence from paleosols of the Turkana Basin, Kenya. American Journal of Physical Anthropology 123, 106-118.
    [161]
    Yonkee, W.A., Weil, A.B., 2015. Tectonic evolution of the Sevier and Laramide belts within the north American Cordillera orogenic system. Earth-Sci. Rev. 150, 531-593.
    [162]
    Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693.
    [163]
    Zeebe, R.E., 2001. Seawater pH and isotopic paleotemperatures of Cretaceous oceans. Paleogeogr. Paleoclimatol. Paleoecol. 170, 49-57.
    [164]
    Ziegler, A.M., Rowley, D.B., Lottes, A.L., Sahagian, D.L., Hulver, M.L., Gierlowski, T.C., 1985. Paleogeographic interpretation:with an example from the Mid-Cretaceous. Annu. Rev. Earth Planet. Sci. 13, 385-428.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (134) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return