Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Xiao-Wen Zeng, Ming Wang, Cai Li, Hang Li, Xian-Jin Zeng, Di Shen. Lower Cretaceous turbidites in the Shiquanhe-Namco Ophiolite Mélange Zone, Asa area, Tibet: Constraints on the evolution of the Meso-Tethys Ocean[J]. Geoscience Frontiers, 2021, 12(4): 101127. doi: 10.1016/j.gsf.2020.12.008
Citation: Xiao-Wen Zeng, Ming Wang, Cai Li, Hang Li, Xian-Jin Zeng, Di Shen. Lower Cretaceous turbidites in the Shiquanhe-Namco Ophiolite Mélange Zone, Asa area, Tibet: Constraints on the evolution of the Meso-Tethys Ocean[J]. Geoscience Frontiers, 2021, 12(4): 101127. doi: 10.1016/j.gsf.2020.12.008

Lower Cretaceous turbidites in the Shiquanhe-Namco Ophiolite Mélange Zone, Asa area, Tibet: Constraints on the evolution of the Meso-Tethys Ocean

doi: 10.1016/j.gsf.2020.12.008
Funds:

We thank the Professor Inna Safonova (associated editor) and two anonymous reviewers for their encouragement, comments, and suggestions throughout the preparation of this manuscript. We appreciate Dr. Xie Chao-Ming, Dr. Fan Jian-Jun, Mr. Wang Bin, Mr. Luo An-Bo for their help in the field. Hao Yu-Jie is thanked for the LA-ICP-MS zircon U-Pb dating analysis. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript. This research was supported by the National Natural Science Foundation of China (Grant No.41402190 and 41602230), the Program of China Geological Survey (Grant No.121201010000150014 and DD20160026) and Opening Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources (DBY-ZZ-18-06).

  • Received Date: 2020-01-02
  • Rev Recd Date: 2020-11-09
  • Turbidites from the Shiquanhe-Namco Ophiolite Mélange Zone (SNMZ) record critical information about the tectonic affinity of the SNMZ and the evolutionary history of the Meso-Tethys Ocean in Tibet. This paper reports sedimentologic, sandstone petrographic, zircon U-Pb geochronologic, and clastic rocks geochemical data of newly identified turbidites (Asa Formation) in the Asa Ophiolite Mélange. The youngest ages of detrital zircon from the turbiditic sandstone samples, together with ~115 Ma U-Pb concordant age from the tuff intercalation within the Asa Formation indicate an Early Cretaceous age. The sandstone mineral modal composition data show that the main component is quartz grains and the minor components are sedimentary and volcanic fragments, suggesting that the turbidites were mainly derived from a recycled orogen provenance with a minor addition of volcanic arc materials. The detrital U-Pb zircon ages of turbiditic sandstones yield main age populations of 170-120 Ma, 300-220 Ma, 600-500 Ma, 1000-700 Ma, 1900-1500 Ma, and ~2500 Ma, similar to the ages of the Qiangtang Terrane(age peak of 600-500 Ma, 1000-900 Ma, ~1850 Ma and ~2500 Ma) and the accretionary complex in the Bangong-Nujiang Ophiolite Zone (BNMZ) rather than the age of the Central Lhasa Terrane (age peak of ~300 Ma, ~550 Ma and ~1150 Ma). The mineral modal compositions, detrital U-Pb zircon ages, and geochemical data of clastic rocks suggest that the Asa Formation is composed of sediments primarily recycled from the Jurassic accretionary complex within the BNMZ with the secondary addition of intermediate-felsic island arc materials from the South Qiangtang Terrane. Based on our new results and previous studies, we infer that the SNMZ represents a part of the Meso-Tethys Suture Zone, rather than a southward tectonic klippe of the BNMZ or an isolated ophiolitic mélange zone within the Lhasa Terrane. The Meso-Tethys Suture Zone records the continuous evolutionary history of the northward subduction, accretion, arc-Lhasa collision, and Lhasa-Qiangtang collision of the Meso-Tethys Ocean from the Early Jurassic to the Early Cretaceous.

  • loading
  • [1]
    Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data. J. Sedimen. Res. 58, 820-829.
    [2]
    Amato, J.M., Pavlis, T.L., 2010. Detrital zircon ages from the Chugach terrane, southern Alaska, reveal multiple episodes of accretion and erosion in a subduction complex. Geology 38, 459-462.
    [3]
    An, W., Hu, X., Garzanti, E., BouDagher-Fadel, M.K., Wang, J., Sun, G., 2014. Xigaze forearc basin revisited (South Tibet):Provenance changes and origin of the Xigaze Ophiolite. Geol. Soc. Am. Bull. 126, 1595-1613.
    [4]
    Li, Cai, Anzhu, Z., 1993. Paleozoic Stratigraphy in the Qiangtang Region of Tibet:Relations of the Gondwana and Yangtze Continents and Ocean Closure Near the End of the Carboniferous. Int. Geol. Rev. 35, 797-804.
    [5]
    Barton, E.S., Altermann, W., Williams, I.S., Smith, C.B., 1994. U-Pb zircon age for a tuff in the Campbell Group, Griqualand West Sequence, South Africa:Implications for early Proterozoic rock accumulation rates. Geology 22, 343-346.
    [6]
    Baxter, A.T., Aitchison, J.C., Zyabrev, S.V., 2009. Radiolarian age constraints on Mesotethyan ocean evolution, and their implications for development of the Bangong-Nujiang suture, Tibet. J. Geol. Soc. 166, 689-694.
    [7]
    Bhatia, M.R., 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks:Provenance and tectonic control. Sediment. Geol. 45, 97-113.
    [8]
    Bhatia, M.R., Crook, K.A.W., 1986. Trace-element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol. 92, 181-193.
    [9]
    Buckman, S., Aitchison, J.C., Nutman, A.P., Bennett, V.C., Saktura, W.M., Walsh, J.M.J., Kachovich, S., Hidaka, H., 2018. The Spongtang Massif in Ladakh, NW Himalaya:An Early Cretaceous record of spontaneous, intra-oceanic subduction initiation in the Neotethys. Gondwana Res. 63, 226-249.
    [10]
    Burg, J.P., Proust, F., Tapponnier, P., 1983. Deformation phases and tectonic evolution of the Lhasa block (southern Tibet, China). Eclogae Geol. Helv. 76, 643-665.
    [11]
    Cao, S.H., Deng, S.Q., Xiao, Z.J., Liao, L.G., 2006. The archipelagic arc tectonic evolution of the Meso-Tethys in the western part of the Bangong Lake-Nujiang suture zone. Sediment. Geol. Tethyan Geol. 26, 25-32 (in Chinese with English abstract).
    [12]
    Cao, M., Qin, K., Li, G., Li, J., Zhao, J., Evans, N.J., Hollings, P., 2016. Tectono-magmatic evolution of Late Jurassic to Early Cretaceous granitoids in the west central Lhasa subterrane Tibet. Gondwana Research 39, 386-400.
    [13]
    Cao, H., Huang, Y., Li, G., Zhang, L., Wu, J., Dong, L., Dai, Z., Lu, L., 2018. Late Triassic sedimentary records in the northern Tethyan Himalaya:Tectonic link with Greater India. Geosci. Front. 9, 273-291.
    [14]
    Cawood, P.A., Hawkesworth, C.J., Dhuime, B., 2012. Detrital zircon record and tectonic setting. Geology 40, 875-878.
    [15]
    Corfu, F., 2003. Atlas of zircon textures. Rev. Mineral. Geochem. 53, 469-500.
    [16]
    Dickinson, W.R., 1985. Interpreting Provenance Relations from Detrital Modes of Sandstones. In:Zuffa, G.G. (Ed.), Provenance of Arenites. Springer Netherlands, Dordrecht, pp. 333-361.
    [17]
    Dickinson, W.R., 1995. Forearc basins. In:Busby, C.J., Ingersoll, R.V. (Eds.), Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, pp. 1-26.
    [18]
    Dickinson, W.R., Gehrels, G.E., 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata:a test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett. 288, 115-125.
    [19]
    Dong, C.Y., Li, C., Wan, Y.S., Wang, W., Wu, Y.W., Xie, H.Q., Liu, D.Y., 2011. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet:Constraint on tectonic affinity and source regions. Sci. China Earth Sci. 54, 1034-1042.
    [20]
    Fan, J.J., Li, C., Xie, C.M., Wang, M., 2014. Petrology, geochemistry, and geochronology of the Zhonggang Ocean island, northern Tibet:implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys. Int. Geol. Rev. 56, 1504-1520.
    [21]
    Fan, J.J., Li, C., Liu, Y.M., Xu, J.X., 2015. Age and nature of the late Early Cretaceous Zhaga Formation, northern Tibet:constraints on when the Bangong-Nujiang Neo-Tethys Ocean closed. Int. Geol. Rev. 57, 342-353.
    [22]
    Fan, J.J., Li, C., Wang, M., Liu, Y.M., Xie, C.M., 2017. Remnants of a Late Triassic ocean island in the Gufeng area, northern Tibet:Implications for the opening and early evolution of the Bangong-Nujiang Tethyan Ocean. J. Asian Earth Sci. 135, 35-50.
    [23]
    Fan, J.J., Li, C., Wang, M., Xie, C.M., 2018a. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau. Int. J. Earth Sci. 107, 231-249.
    [24]
    Fan, J.J., Li, C., Sun, Z.M., Xu, W., Wang, M., Xie, C.M., 2018b. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet:evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean. J. Asian Earth Sci. 154, 187-201.
    [25]
    Floyd, P.A., Leveridge, B.E., 1987. Tectonic environments of Devonian Gramscatho basin, South Cornwall:framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc. London 144, 181-204.
    [26]
    Fu, X.J., Wang, J., Wang, Z.J., Chen, W.X., 2008. U-Pb age and geochemical characteristics of volcanic rocks from the Juhua Mountain area in the northern Qiangtang Basin, northern Xizang (Tibet). Geol. Rev. 54, 232-243 (in Chinese with English abstract).
    [27]
    Gehrels, G., Kapp, P., DeCelles, P.G., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., McQuarrie, N., 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 30, C5016..
    [28]
    Girardeau, J., Marcoux, J., Allègre, C.J., Bassoullet, J.P., Youking, T., Xuchang, X.C., Yougong, Z., Xibin, W., 1984. Tectonic environment and geodynamic significance of the NeoCimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature 307, 27-31.
    [29]
    Girardeau, J., Marcoux, J., Fourcade, E., Bassoullet, J.P., Youking, T., 1985. Xainxa ultramafic rocks, central Tibet, China:Tectonic environment and geodynamic significance. Geology 13, 330-333.
    [30]
    Gromet, L., Dymek, R., Haskin, L., Korotev, R., 1984. The ‘north American shale composite’-its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta 48, 2469-2482.
    [31]
    Gu, X.X., Liu, J.M., Zheng, M.H., Tang, J.X., Qi, L., 2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China:Geochemical evidence. J. Sediment. Res. 72, 393-407.
    [32]
    Guynn, J., Martin, A., McQuarrie, N., Yin, A., 2011. Detrital zircon geochronology of preTertiary strata in the Tibetan-Himalayan orogen. Tectonics 30, 5016.
    [33]
    Hao, L.L., Wang, Q., Zhang, C., Ou, Q., Yang, J.H., Dan, W., Jiang, Z.Q., 2018. Oceanic plateau subduction during closure of the Bangong-Nujiang Tethyan Ocean:Insights from central Tibetan volcanic rocks. GSA Bulletin 131, 864-880.
    [34]
    Hoskin, P.W.O., Black, L.P., 2000. Metamorphic zircon Formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol. 18, 423-439.
    [35]
    Hsü, K.J., Guitang, P., Sengör, A.M.C., 1995. Tectonic evolution of the Tibetan Plateau:a working hypothesis based on the Archipelago Model of Orogenesis. Int. Geol. Rev. 37, 473-508.
    [36]
    Hu, X., Garzanti, E., Moore, T., Raffi, I., 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ±1 Ma). Geology 43, 859-862.
    [37]
    Hu, P.Y., Zhai, Q.G., Jahn, B.M., Wang, J., Li, C., Chung, S.L., Lee, H.Y., Tang, S.H., 2017. Late Early Cretaceous magmatic rocks (118-113 Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan Plateau:Evidence of lithospheric delamination. Gondwana Res. 44, 116-138.
    [38]
    Huang, T.T., 2017. The Geochemical Constraints of the Late Mesozoic Tectonic Evolution of the Mid-Western Bangong-Nujiang Suture Zone. Ph.D. dissertation. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,153pp (in Chinese with English abstract).
    [39]
    Huang, T.T., Xu, J.F., Chen, J.L., Wu, J.B., Zeng, Y.C., 2016. Sedimentary record of Jurassic northward subduction of the Bangong-Nujiang Ocean:insights from detrital zircons. Int. Geol. Rev. 59, 166-184.
    [40]
    Ineson, J.R., 1989. Coarse-grained submarine fan and slope apron deposits in a cretaceous back-arc basin, Antarctica. Sedimentology 36, 793-819.
    [41]
    Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D., Sares, S.W., 1984. The effect of grain size on detrital modes:a test of the Gazi-Dickinson pointcounting method. J. Sediment. Petrol. 54, 103-116.
    [42]
    Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211, 47-69.
    [43]
    Jiang, Q.Y., Li, C., Su, L., Hu, P.Y., Xie, C.M., Wu, H., 2015. Carboniferous arc magmatism in the Qiangtang area, northern Tibet:Zircon U-Pb ages, geochemical and Lu-Hf isotopic characteristics, and tectonic implications. J. Asian Earth Sci. 100, 132-144.
    [44]
    Kane, I.A., Kneller, B.C., Dykstra, M., Kassem, A., McCaffrey, W.D., 2007. Anatomy of a submarine channel-levee:an example from Upper Cretaceous slope sediments, Rosario Formation, Baja California, Mexico. Mar. Pet. Geol. 24, 540-563.
    [45]
    Kapp, P., DeCelles, P.G., 2019. Mesozoic-Cenozoic geological evolution of the HimalayanTibetan orogen and working tectonic hypotheses. Am. J. Sci. 319, 159-254.
    [46]
    Kapp, P., Murphy, M.A., Yin, A., Harrison, T.M., Ding, L., Guo, J., 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics 22(4), 4, 1029.
    [47]
    Kapp, P., DeCelles, P.G., Gehrels, G.E., Heizler, M., Ding, L., 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol.Soc. Am. Bull. 119, 917-933.
    [48]
    Lai, W., Hu, X., Garzanti, E., Xu, Y., Ma, A., Li, W., 2019. Early Cretaceous sedimentary evolution of the Northern Lhasa Terrane and the timing of initial Lhasa-Qiangtang collision. Gondwana Res. 73, 136-152.
    [49]
    Li, G.W., Sandiford, M., Liu, X., Xu, Z., Wei, L., Li, H., 2014. Provenance of Late Triassic sediments in Central Lhasa terrane, Tibet and its implication. Gondwana Res. 25, 1680-1689.
    [50]
    Li, S., Ding, L., Guilmette, C., Fu, J., Xu, Q., Yue, Y., Henrique-Pinto, R., 2017a. The subduction-accretion history of the Bangong-Nujiang Ocean:Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet. Tectonophysics 702, 42-60.
    [51]
    Li, S., Guilmette, C., Ding, L., Xu, Q., Fu, J.J., Yue, Y.H., 2017b. Provenance of Mesozoic clastic rocks within the Bangong-Nujiang suture zone, central Tibet:Implications for the age of the initial Lhasa-Qiangtang collision. J. Asian Earth Sci. 147, 469-484.
    [52]
    Li, X.K., Chen, J., Wang, R.C., Li, C., 2018a. Temporal and spatial variations of Late Mesozoic granitoids in the SW Qiangtang, Tibet:Implications for crustal architecture, MesoTethyan evolution and regional mineralization. Earth Sci. Rev. 185, 374-396.
    [53]
    Li, S.M., Wang, Q., Zhu, D.C., Stern, R.J., Cawood, P.A., Sui, Q.L., Zhao, Z., 2018b. One or two Early Cretaceous arc systems in the Lhasa Terrane, Southern Tibet. J. Geophys. Res. Solid Earth 123, 3391-3413.
    [54]
    Li, S., Yin, C., Guilmette, C., Ding, L., Zhang, J., 2019. Birth and demise of the BangongNujiang Tethyan Ocean:a review from the Gerze area of central Tibet. Earth-Sci. Rev. 198, 102907.
    [55]
    Li, H., Wang, M., Zeng, X.-W., Luo, A.-B., Yu, Y.-P., Zeng, X.-J., 2020a. Generation of Jurassic high-Mg diorite and plagiogranite intrusions of the Asa area, Tibet:Products of intraoceanic subduction of the Meso-Tethys Ocean. Lithos 362-363.
    [56]
    Li, C., Wang, G.H., Zhao, Z.B., Du, J.X., Ma, X.X., Zheng, Y.L., 2020b. Late Mesozoic tectonic evolution of the central Bangong-Nujiang Suture Zone, central Tibetan Plateau. Int. Geol. Rev. 62, 2300-2323.
    [57]
    Liu, W.L., Huang, Q.T., Gu, M., Zhong, Y., Zhou, R., Gu, X.D., Zheng, H., Liu, J.-N., Lu, X.X., Xia, B., 2018a. Origin and tectonic implications of the Shiquanhe high-Mg andesite, western Bangong suture, Tibet. Gondwana Res. 60, 1-14.
    [58]
    Liu, Y., Wang, M., Li, C., Li, S., Xie, C., Zeng, X., Dong, Y., Liu, J., 2018b. Late cretaceous tectono-magmatic activity in the Nize region, central Tibet:evidence for lithospheric delamination beneath the Qiangtang-Lhasa collision zone. Int. Geol. Rev. 61 (5), 562-583.
    [59]
    Liu, Y., Xie, C., Li, C., Li, S., Santosh, M., Wang, M., Fan, J., 2018c. Breakup of the northern margin of Gondwana through lithospheric delamination:evidence from the Tibetan Plateau. GSA Bulletin 131, 675-697.
    [60]
    Liu, D.L., Shi, M., Jiang, S.Y., 2019. Dating Oceanic Subduction in the Jurassic Bangong-Nujiang Oceanic Arc:a Zircon U-Pb Age and Lu-Hf Isotopes and Al-in-Hornblende Barometry Study of the Lameila Pluton in Western Tibet, China. Minerals 9, 754.
    [61]
    Ludwig, K.R., 2011. Isoplot/ex Version 4:A Geochronological Toolkit for Microsoft Excel. Geochronology Center, Berkeley, pp. 1-157.
    [62]
    Ma, A., Hu, X., Garzanti, E., Han, Z., Lai, W., 2017. Sedimentary and tectonic evolution of the southern Qiangtang basin:Implications for the Lhasa-Qiangtang collision timing. J. Geophys. Res. Solid Earth 122, 4790-4813.
    [63]
    Ma, A., Hu, X., Kapp, P., Han, Z., Lai, W., BouDagher-Fadel, M., 2018. The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area):Implications for the tectonic uplift of central Tibet. Paleogeogr. Paleoclimatol. Paleoecol. 506, 30-47.
    [64]
    Matte, P., Tapponnier, P., Amaud, N., Bourjot, L., Avouac, J.P., Vidal, P., Qing, L., Yusheng, P., Yi, W., 1996. Tectonics of Western Tibet, between the Tarim and the Indus. Earth Planet. Sci. Lett. 142, 311-330.
    [65]
    Mattern, F., 2005. Ancient sand-rich submarine fans:depositional systems, models, identification, and analysis. Earth Sci. Rev. 70, 167-202.
    [66]
    McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chem. Geol. 120, 223-253.
    [67]
    McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Papers 284, 21-40.
    [68]
    Metcalfe, I., 2013. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 66, 1-33.
    [69]
    Morris, E.A., Hodgson, D.M., Flint, S.S., Brunt, R.L., Butterworth, P.J., Verhaeghe, J., 2014. Sedimentology, stratigraphic architecture, and depositional context of submarine frontal-lobe complexes. J. Sediment. Res. 84, 763-780.
    [70]
    Mutti, E., Ricci Lucchi, F., 1978. Turbidites of the northern Apennines:introduction to facies analysis. Int. Geol. Rev. 20, 125-166.
    [71]
    Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715-717.
    [72]
    Pan, G., Wang, L., Li, R., Yuan, S., Ji, W., Yin, F., Zhang, W., Wang, B., 2012. Tectonic evolution of the Qinghai-Tibet Plateau. J. Asian Earth Sci. 53, 3-14.
    [73]
    Pullen, A., Kapp, P., Gehrels, G.E., Ding, L., Zhang, Q.H., 2011. Metamorphic rocks in central Tibet:lateral variations and implications for crustal structure. Geol. Soc. Am. Bull. 123, 585-600.
    [74]
    Roser, B.P., Korsch, R.J., 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol. 67, 119-139.
    [75]
    Rudnick, R.L., Gao, S., 2003. 3.01-Composition of the Continental Crust A2-Holland, Heinrich D. In:Turekian, K.K. (Ed.), Treatise on Geochemistry. Pergamon, Oxford, pp. 1-64.
    [76]
    Saktura, W.M., Buckman, S., Nutman, A.P., Bennett, V.C., 2020. Late Jurassic Changmar Complex from the Shyok ophiolite, NW Himalaya:a prelude to the Ladakh Arc. Geol. Mag. https://doi.org/10.1017/S0016756820000400.
    [77]
    Schneider, W., Mattern, F., Wang, P.J., Li, C., 2003. Tectonic and sedimentary basin evolution of the eastern Bangong-Nujiang zone (Tibet):a Reading cycle. Int. J. Earth Sci. 92, 228-254.
    [78]
    Sengör, A.M.C., 1984. The Cimmeride orogenic system and the tectonics of Eurasia. Geological Society of America Special Paper 195, 1-82.
    [79]
    Shi, R., Yang, J., Xu, Z., Qi, X., 2008. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone. Journal of Asian Earth Sciences 32, 438-457.
    [80]
    Sun, G., Hu, X., Sinclair, H.D., 2017. Early Cretaceous palaeogeographic evolution of the Coqen Basin in the Lhasa Terrane, southern Tibetan Plateau. Paleogeogr. Paleoclimatol. Paleoecol. 485, 101-118.
    [81]
    Sun, G., Hu, X., Xu, Y., BouDagher-Fadel, M.K., 2019. Discovery of Middle Jurassic trench deposits in the Bangong-Nujiang suture zone:Implications for the timing of LhasaQiangtang initial collision. Tectonophysics 750, 344-358.
    [82]
    Tang, F.L., Huang, J.C., Luo, X.C., Huang, C.G., 2004. The Discovery and Significance of the Asuo Structural Melanges in North Tibet. J. East China Inst. Technol. 27, 245-250(in Chinese with English abstract).
    [83]
    Tang, Y., Lee, H.Y., Wang, H.T., Song, B., Xiao, X.C., Wang, J., Hu, P.Y., Chung, S.L., Zhai, Q.G., 2020. First mid-ocean ridge-type ophiolite from the Meso-Tethys suture zone in the north-central Tibetan plateau. GSA Bulletin 132 (9-10), 2202-2220.
    [84]
    Tang, Y., Zhai, Q., Hu, P., Xiao, X., Wang, H., 2018. Petrology, geochemistry and geochronology of the Zhongcang ophiolite, northern Tibet:implications for the evolution of the Bangong-Nujiang Ocean. Geosci. Front. 9, 1369-1381.
    [85]
    Taylor, S., McLennan, S., 1985. The Continental Crust:Its Composition and Evolution. Blackwell, Oxford, p. 311.
    [86]
    Underwood, M.B., Moore, G.F., 1995. Trenches and Trench-slope Basins. In:Busby, C.J., Ingersoll, R.V. (Eds.), Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, pp. 179-220.
    [87]
    Walsh, J.M.J., Buckman, S., Nutman, A.P., Zhou, R., 2019. Age and Provenance of the Nindam Formation, Ladakh, NW Himalaya:Evolution of the Intraoceanic Dras Arc Before Collision with India. Tectonics 38, 3070-3096.
    [88]
    Wang, J., Wang, Z., Chen, W., Fu, X., 2007. New evidences for the age assignment of the NadiKangri Formation in the North Qiangtang depression, northern Tibet, China. Geol. Bull. China 26, 404-409 (in Chinese with English abstract).
    [89]
    Wang, B.D., Wang, L.Q., Chung, S.L., Chen, J.L., Yin, F.G., Liu, H., Li, X.B., Chen, L.K., 2016. Evolution of the Bangong-Nujiang Tethyan ocean:Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos 245, 18-33.
    [90]
    Wang, M., Li, C., Zeng, X.W., Li, H., Fan, J.J., Xie, C.M., Hao, Y.J., 2019. Petrogenesis of the southern Qiangtang mafic dykes, Tibet:link to a late Paleozoic mantle plume on the northern margin of Gondwana? GSA Bulletin 131, 1907-1919.
    [91]
    Wang, M., Zeng, X.W., Xie, C.M., Danzeng, A., Li, C., Fan, J.J., Li, H., 2020. Dating of detrital zircon grains and fossils from Late Palaeozoic sediments of the Baruo area, Tibet:constraints on the Late Palaeozoic evolution of the Lhasa terrane. Int. Geol. Rev. 62, 465-478.
    [92]
    Winn, R.D., Dott, R.H., 1979. Deep-water fan-channel conglomerates of Late Cretaceous age, southern Chile. Sedimentology 26, 203-222.
    [93]
    Wu, Y., Zheng, Y., 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Sci. Bull. 49, 1554-1569.
    [94]
    Wu, H., Li, C., Xu, M., Li, X., 2015. Early Cretaceous adakitic magmatism in the Dachagou area, Northern Lhasa Terrane, Tibet:Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean. J. Asian Earth Sci. 97, 51-66.
    [95]
    Wu, H., Li, C., Yu, Y., Chen, J., 2018a. Age, origin, and geodynamic significance of high-Al plagiogranites in the Labuco area of central Tibet. Lithosphere 10, 351-363.
    [96]
    Wu, H., Sun, S., Liu, H., Chu, H., Ding, W., 2018b. An early cretaceous slab window beneath central Tibet, SW China:evidence from OIB-like alkaline gabbros in the Duolong area. Terr. Nova 31, 67-75.
    [97]
    Xie, C.M., Li, C., Fan, J.J., Su, L., 2017. Ordovician sedimentation and bimodal volcanism in the Southern Qiangtang terrane of northern Tibet:Implications for the evolution of the northern Gondwana margin. Int. Geol. Rev. 59, 2078-2105.
    [98]
    Xu, M., Li, C., Zhang, X., Wu, Y., 2014a. Nature and evolution of the Neo-Tethys in Central Tibet:synthesis of ophiolitic petrology, geochemistry, and geochronology. Int. Geol. Rev. 56, 1072-1096.
    [99]
    Xu, M., Li, C., Xu, W., Xie, C., Hu, P., Wang, M., 2014b. Petrology, geochemistry and geochronology of gabbros from the Zhongcang ophiolitic mélange, Central Tibet:Implications for an intra-oceanic subduction zone within the Neo-Tethys Ocean. J. Earth Sci. 25, 224-240.
    [100]
    Xu, W., Li, C., Wang, M., Fan, J.J., Wu, H., Li, X., 2017. Subduction of a spreading ridge within the Bangong Co-Nujiang Tethys Ocean:evidence from Early Cretaceous mafic dykes in the Duolong porphyry Cu-Au deposit, western Tibet. Gondwana Res. 41, 128-141.
    [101]
    Yan, Z., Wang, Z., Yan, Q., Wang, T., Guo, X., 2012. Geochemical Constraints on the Provenance and Depositional Setting of the Devonian Liuling Group, East Qinling Mountains, Central China:Implications for the Tectonic Evolution of the Qinling Orogenic Belt. J. Sediment. Res. 82, 9-20.
    [102]
    Yang, T.N., Zhang, H.R., Liu, Y.X., Wang, Z.L., Song, Y.C., Yang, Z.S., Tian, S.H., Xie, H.Q., Hou, K.J., 2011. Permo-Triassic arc magmatism in central Tibet:evidence from zircon U-Pb geochronology, Hf isotopes, rare earth elements, and bulk geochemistry. Chem. Geol. 284, 270-282.
    [103]
    Yin, A., Harrison, T.M., 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 28, 211-280.
    [104]
    Yuan, Y., Yin, Z., Liu, W., Huang, Q., Jianfeng, L.I., Liu, H., Wan, Z., Cai, Z., Xia, B., 2015. Tectonic Evolution of the Meso-Tethys in the Western Segment of Bangonghu-Nujiang Suture Zone:Insights from Geochemistry and Geochronology of the Lagkor Tso Ophiolite. Acta Geologica Sinica (English edition) 89, 369-388.
    [105]
    Zeng, M., Zhang, X., Cao, H., Ettensohn, F.R., Cheng, W., Lang, X., 2016. Late Triassic initial subduction of the Bangong-Nujiang Ocean beneath Qiangtang revealed:stratigraphic and geochronological evidence from Gaize, Tibet. Basin Res. 28, 147-157.
    [106]
    Zeng, X.W., Wang, M., Fan, J.J., Li, C., Xie, C.M., Liu, Y.M., Zhang, T.Y., 2018a. Geochemistry and geochronology of gabbros from the Asa Ophiolite, Tibet:Implications for the early Cretaceous evolution of the Meso-Tethys Ocean. Lithos 320-321, 192-206.
    [107]
    Zeng, Y.C., Xu, J.F., Chen, J.L., Wang, B.D., Kang, Z.Q., Huang, F., 2018b. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau. Lithos 300-301, 250-260.
    [108]
    Zhai, Q.G., Zhang, R.Y., Jahn, B.M., Li, C., Song, S.G., Wang, J., 2011. Triassic eclogites from central Qiangtang, northern Tibet, China:Petrology, geochronology and metamorphic P-T path. Lithos 125, 173-189.
    [109]
    Zhai, Q.G., Wang, J., Hu, P.Y., Lee, H.Y., Tang, Y., Wang, H.T., Tang, S.H., Chung, S.L., 2018. Late Paleozoic granitoids from central Qiangtang, northern Tibetan plateau:a record of Paleo-Tethys Ocean subduction. J. Asian Earth Sci. 167, 139-151.
    [110]
    Zhang, Y., 2007. Tectonic Evolution of the Middle-Western Bangong-Nujiang Suture, Tibet. Ph.D. dissertation. Guangzhou Institute of Geochemistry, Academy of Sciences, pp. 1-257 (In Chinese with English abstract).
    [111]
    Zhang, K.J., Zhang, Y.X., Li, B., Zhong, L.F., 2007. Nd isotopes of siliciclastic rocks from Tibet, western China:Constraints on provenance and pre-Cenozoic tectonic evolution. Earth Planet. Sci. Lett. 256, 604-616.
    [112]
    Zhang, K.J., Zhang, Y.X., Tang, X.C., Xia, B., 2012. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth Sci. Rev. 114, 236.
    [113]
    Zhang, K.J., Xia, B., Zhang, Y.X., Liu, W.L., Zeng, L., Li, J.F., Xu, L.F., 2014. Central Tibetan Meso-Tethyan oceanic plateau. Lithos 210-211, 278-288.
    [114]
    Zhong, Y., Xia, B., Liu, W.-L., Yin, Z.-X., Hu, X.-C., Huang, W., 2015. Geochronology, petrogenesis and tectonic implications of the Jurassic Namco-Renco ophiolites Tibet. Int. Geol. Rev. 57, 508-528.
    [115]
    Zhu, D.C., Mo, X.X., Niu, Y., Zhao, Z.D., Wang, L., Liu, Y.S., Wu, F.Y., 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chem.Geol. 268, 298-312.
    [116]
    Zhu, D.C., Zhao, Z.D., Niu, Y., Mo, X.X., Chung, S.L., Hou, Z.Q., Wang, L.Q., Wu, F.Y., 2011a. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 301, 241-255.
    [117]
    Zhu, D.C., Zhao, Z.D., Niu, Y.L., Dilek, Y., Mo, X.X., 2011b. Lhasa terrane in southern Tibet came from Australia. Geology 39, 727-730.
    [118]
    Zhu, D.C., Zhao, Z.D., Niu, Y., Dilek, Y., Hou, Z.Q., Mo, X.X., 2013. The origin and preCenozoic evolution of the Tibetan Plateau. Gondwana Res. 23, 1429-1454.
    [119]
    Zhu, D.C., Li, S.M., Cawood, P.A., Wang, Q., Zhao, Z.D., Liu, S.A., Wang, L.Q., 2016. Assembly of the Lhasa and Qiangtang terranes in Central Tibet by divergent double subduction. Lithos 245, 7-17.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (284) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return