Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Farid Chemale Junior, Ernesto Luiz Correa Lavina, Julierme Justin Carassai, Tiago Jonatan Girelli, Cristiano Lana. Andean orogenic signature in the Quaternary sandy barriers of Southernmost Brazilian Passive Margin-Paradigm as a source area[J]. Geoscience Frontiers, 2021, 12(4): 101119. doi: 10.1016/j.gsf.2020.11.015
Citation: Farid Chemale Junior, Ernesto Luiz Correa Lavina, Julierme Justin Carassai, Tiago Jonatan Girelli, Cristiano Lana. Andean orogenic signature in the Quaternary sandy barriers of Southernmost Brazilian Passive Margin-Paradigm as a source area[J]. Geoscience Frontiers, 2021, 12(4): 101119. doi: 10.1016/j.gsf.2020.11.015

Andean orogenic signature in the Quaternary sandy barriers of Southernmost Brazilian Passive Margin-Paradigm as a source area

doi: 10.1016/j.gsf.2020.11.015
Funds:

We would like to acknowledge the Brazilian Scholarship Agency (CAPES) for the scholarship to the second author (JJC) and the National Council for Scientific and Technological Development-CNPq for the financial support (grant #305053/2014-0). We would like to thank the Microanalysis Laboratory of the Universidade Federal de Ouro Preto for SEM-EDS analyses.

  • Received Date: 2020-06-09
  • Rev Recd Date: 2020-11-28
  • Multiple source provenance of sediments and submarine fan formation are herein investigated based on Quaternary sandy barriers of the Brazilian Southernmost Coastal Plain. LA-ICP-MS dating on 1625 detrital zircons from marine and aeolian facies sands of four successive lagoon-barrier systems are analyzed. The characterization of Archean to Pleistocene zircons into a younger Andean (22 ±4 Ma to 1 ±1 Ma, 48 from 1625), Mesozoic to Paleozoic, and Mesoproterozoic (479 from 1622) populations suggest that the main feeding of sediments to the coastal plain occurred through the La Plata River drainage system. The significant contribution of sediments is transported from the mouth of La Plata River northward by longshore circulation (littoral drift). Minor contributions are also recognized as. a farther source associated with the Patagonia drainage and nearby source related to the Uruguay/Rio Grande do Sul Shield and the Paraná Basin, drained by the Camaquã and Jacuí rivers. The latter one is recognized by the contribution from Neoproterozoic to Early Paleozoic, and some Paleoproterozoic and Archean zircon grains. The definition of the sources of clastic sediments allows inferences about the origination of Rio Grande Fan where both the cold Falkland and the warm Brazil currents played a major role.

  • loading
  • [1]
    Abre, P., Blanco, G., Gaucher, C., Frei, D., Frei, R., 2020. Provenance of the Late Ediacaran Rocha Formation Cuchilla Dionisio Terrane, Uruguay:Tectonic implications on the assembly of Gondwana. Precambrian Res. 342, 105704. https://doi.org/10.1016/j.precamres.2020.105704.
    [2]
    Ayup, R., 1987. Intercâmbio sedimentar entre o Rio de la Plata Exterior e a Plataforma Continental Adjacente. Pesquisas em Geociências 19 (19), 105-126 (in Portuguese).
    [3]
    Babinski, M., Chemale Jr., F., Hartmann, L.A., Van Schmus, W.R., Silva, L.C., 1996. Juvenile accretion at 750-700 Ma in southern Brazil. Geology 24, 439-442.
    [4]
    Babinski, M., Chemale Jr., F., VanSchmus, W.R., Hartmann, L.A., daSilva, L.C., 1997. U-Pb and Sm-Nd geochronology of the Neoproterozoic granitic-gneissic Dom Feliciano Belt, southern Brazil. J. South Am. Earth Sci. 10 (3-4), 263-274.
    [5]
    Bahlburg, H., Vervoort, J.D., Du Frane, S.A., Bock, B., Augustsson, C., Reimann, C., 2009.Timing of crust formation and recycling in accretionary orogens:Insights learned from the western margin of South America. Earth-Science Rev. 97, 215-241.https://doi.org/10.1016/j.earscirev.2009.10.006.
    [6]
    Baker, R.G.V., Haworth, R.J., 2000. Smooth or oscillating late Holocene Sea-level curve? Evidence from the palaeozoology of fixed biological indicators in East Australia and beyond. Mar. Geol. 163, 367-386.
    [7]
    Barboza, E.G., Rosa, M.L.C. Da C., Aypup-Zouain, R.N., 2008. Cronoestratigrafia da Bacia de Pelotas:uma revisão das sequências deposicionais. Gravel 6, 125-138 (in Portuguese).
    [8]
    Blanco, G., Rajesh, H.M., Gaucher, C., Germs, G.J.B., Chemale Junior, F., 2009. Provenance of the Arroyo del Soldado Group (Ediacaran to Cambrian, Uruguay):Implications for the paleogeographic evolution of southwestern Gondwana. Precambrian Res. 171 (1-4), 57-73. https://doi.org/10.1016/j.precamres.2009.03.003.
    [9]
    Bueno, G.V., Zacharias, A.A., Oreiro, S.G., Cupertino, J.A., Falkenhein, F.U.H., Martins-Neto, M.A., 2007. Bacia de Pelotas. Boletim de Geociências da Petrobrás. 15, 551-559 (in Portuguese). https://doi.org/10.1111/j.1365-246X.2005.02726.x.
    [10]
    Carassai, J.J., Lavina, E.L.C., Chemale Jr., F., Girelli, T.J., 2019. Provenance of heavy minerals for the Quaternary coastal plain of Southernmost Brazil (Rio Grande do Sul State).J. Coast. Res. 35 (2), 295-304. https://doi.org/10.2112/JCOASTRES-D-18-00066.1.
    [11]
    Castillo, L.L.A., Kazmierczak, T.S., Chemale, F., 2009. Rio Grande Cone tectono-stratigraphic model-Brazil:Seismic sequences. Earth Sci. Res. J. 13, 40-53.
    [12]
    Castro, J.W.A., Suguio, K., Seoane, J.C.S., Cunha, A.M., Dias, F.F., 2014. Sea-level fluctuations and coastal evolution in the state of Rio de Janeiro, southeastern Brazil. An. Acad. Bras.Ciênc. 86 (2), 671-683.
    [13]
    Cavalloto, J.L., Violante, R.A., Parker, G., 2004. Sea-level fluctuations during the last 8600 years in the de la Plata river (Argentina). Quat. Int. 114, 155-165.
    [14]
    Chemale Jr., F., 2000. Evolução Geológica do Escudo Sul-Rio-Grandense. In:Holz, M., De Ros, L.F. (Eds.), Geologia do Rio Grande do Sul. Editora UFRGS, Porto Alegre, pp. 13-52 (in Portuguese).
    [15]
    Chemale, F., Philipp, R.P., Dussin, I.A., Formoso, M.L.L., Kawashita, K., Berttotti, A.L., 2011.Lu-Hf and U-Pb age determination of Capivarita Anorthosite in the Dom Feliciano Belt, Brazil. Precambrian Res. 186, 117-126. https://doi.org/10.1016/j.precamres.2011.01.005.
    [16]
    Cordani, U.G., Ramos, V.A., Fraga, L.M., Cegarra, M., Delgado, I., Souza, K.G., Gomes, F.E.M., Schobbenhaus, C., 2016. Tectonic Map of South America. Commission for the Geological Map of the World, Paris, France.
    [17]
    Dias, J.L., Sad, A.R.E., Fontana, R.L., Feijó, F.J., 1994. Bacia de Pelotas:Boletim de Geociências da Petrobrás. 8 p.
    [18]
    Dillenburg, S.R., Barboza, E.G., 2014. The strike-fed sandy coast of Southern Brazil. Geol.Soc. London Spec. Publ. 388, 333-352. https://doi.org/10.1144/SP388.16.
    [19]
    Fontana, R.L., 1996. Geotectônica e Sismoestratigrafia da Bacia de Pelotas e Plataforma de Florianópolis. Tese de Doutorado. UFRGS, Porto Alegre, RS 214p, (in Portuguese).
    [20]
    Gastal, M.C.P., Lafon, J.M., Hartmann, L.A., Koester, E., 2005. Sm-Nd isotopic compositions as a proxy for magmatic processes during the Neoproterozoic of the southern Brazilian shield. J. South Am. Earth Sci. 18, 255-276.
    [21]
    Gaucher, C., Frimmel, H.E., Germs, G.J.B., 2009. Tectonic events and palaeogeographic evolution of Southwestern Gondwana in the Neoproterozoic and Cambrian. In:Gaucher, C., Sial, A.N., Halverson, G.P., Frimmel, H.E. (Eds.), Neoproterozoic-Cambrian tectonics, global change and evolution:a focus on southwestern Gondwana. Developments in Precambrian Geology. 16. Elsevier, pp. 295-316.
    [22]
    Gaucher, C., Frei, R., Chemale, F., Frei, D., Bossi, J., Martínez, G., Chiglino, L., Cernuschi, F., 2011. Mesoproterozoic evolution of the Río de la Plata Craton in Uruguay:at the heart of Rodinia? Int. J. Earth Sci. 100, 273-288. https://doi.org/10.1007/s00531-010-0562-x.
    [23]
    Ghignone, J.Í., 1960. Reconhecimento gravi-magnético na bacia de pelotas. Boletim Técnico da Petrobrás 3, 73-79 (in Portuguese).
    [24]
    Girelli, T.J., Chemale Jr., F., Lavina, E.L.C., Laux, J.H., Bongiolo, E.M., Lana, C., 2018. Granulite accretion to Rio de la Plata Craton, based on zircon U-Pb-Hf isotopes:Tectonic implications for Columbia Supercontinent reconstruction. Gondwana Res. 56, 105-118.
    [25]
    Gresse, P.G., Chemale Jr., F., Silva, L.C., Walraven, F., Hartmann, L.A., 1996. Late- to postorogenic basins of the Pan-African -Brasiliano collision orogen in southern Africa and southern Brazil. Basin Res. 8, 157-171.
    [26]
    Hartmann, L.A., Pinero, D., Bossi, J., Leite, J.A.D., McNaughton, N.J., 2000. Zircon U-Pb SHRIMP dating of Palaeoproterozoic Isla Mala granitic magmatism in the Rio de la Plata Craton, Uruguay. J. South Am. Earth Sci. 13, 105-113.
    [27]
    Hartmann, L.A., Campal, N., Santos, J.O.S., McNaughton, N.J., Bossi, J., Schipilov, A., Lafon, J.-M., 2001. Archean crust in the Rio de la Plata Craton, Uruguay-SHRIMP U-Pb zircon reconnaissance geochronology. J. South Am. Earth Sci. 14, 557-570. https://doi.org/10.1016/S0895-9811(01)00055-4.
    [28]
    Hartmann, L.A., Chemale Jr., F., Philipp, R.P., 2007. Evolução geotectônica do Rio Grande do Sul no Pré-Cambriano. In:Iannuzzi, R., Frantz, J.C. (Eds.), 50 Anos de Geologia:Instituto de Geociências. Contribuições. Porto Alegre, Comunicação e Identidade, pp. 97-123 (in Portuguese).
    [29]
    Hartmann, L.A., Liu, D., Wang, Y., Massonne, H.-J., Santos, J.O.S., 2008. Protolith age of Santa Maria Chico granulites dated on zircons from an associated amphibolitefacies granodiorite in southernmost Brazil. Anais da Academia Brasileira de Ciências 80, 543-551.
    [30]
    Hartmann, L.A., Philipp, R.P., Santos, J.O.S., McNaughton, N.J., 2011. Time frame of the 753-680 Ma juvenile accretion during the São Gabriel orogeny, southern Brazilian shield. Gondwana Res. 19, 84-99.
    [31]
    Horstwood, M.S.A., Košler, J., Gehrels, G., Jackson, S.E., McLean, N.M., Paton, C., Pearson, N.J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J.F., Condon, D.J., Schoene, B., 2016. Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology -uncertainty propagation, age interpretation and data reporting. Geostand.Geoanalytical Res. 40, 311-332. https://doi.org/10.1111/j.1751-908X.2016.00379.x.
    [32]
    Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211, 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017.
    [33]
    Laprida, C., Chapori, N.G., Chiessi, C.M., Violante, R.A., Watanabe, S., Totah, V., 2011. Middle Pleistocene Sea surface temperature in the Brazil-Malvinas Confluence Zone:Paleoceanographic implications based on planktonic foraminifera. Micropaleontology 57 (2), 183-195.
    [34]
    Lawrence, R.L., Cox, R., Mapes, R.W., Coleman, D.S., 2011. Hydrodynamic fractionation of zircon age populations. Geology 123 (1/2), 295-305.
    [35]
    Lentz, S.J., Fewings, M.R., 2012. The wind- and wave-driven inner-shelf circulation. Annu.Rev. Mar. Sci. 4 (1), 317-343.
    [36]
    Lopes, R.P., Kinoshita, A., Baffa, O., Figueiredo, A.M.G., Dillenburg, S.R., Schultz, C.L., Pereira, J.C., 2014. ESR dating of Pleistocene mammals & marine shells from the coastal plain of Rio Grande do Sul state, southern Brazil. Quat. Int. 352, 124-134. https://doi.org/10.1016/j.quaint.2013.07.020.
    [37]
    Ludwig, K.R., 2012. User's Manual for Isoplot 3.75, a geochronological toolkit for Microsoft Excel. 5. Berkeley Geochronology Center Special Publication, pp. 1-72.
    [38]
    Mallmann, G., Chemale, F., Ávila, J.N., Kawashita, K., Armstrong, R.A., 2007. Isotope geochemistry and geochronology of the Nico Pérez Terrane, Rio de la Plata Craton, Uruguay. Gondwana Res. 12, 489-508. https://doi.org/10.1016/j.gr.2007.01.002.
    [39]
    Martins, I. Da R., 1984. Modelo sedimentar do Cone de Rio Grande. Pesquisas em Geociências 16, 91-189 (in Portuguese).
    [40]
    Pepper, M., Gehrels, G., Pullen, A., Ibanez-Mejia, M., Ward, K.M., Kapp, P., 2016. Magmatic history and crustal genesis of western South America:Constraints from U-Pb ages and Hf isotopes of detrital zircons in modern rivers. Geosphere 12, 1532-1555.https://doi.org/10.1130/GES01315.1.
    [41]
    Peterson, R.G., Stramma, L., 1991. Upper-Ievel circulation in the South Atlantic Ocean.Progr Oceanogr. 26 (1), 1-73.
    [42]
    Philipp, R.P., Machado, R., 2005. The Neoproterozoic to Cambrian granitic magmatism of Pelotas Batholith, Southern Brazil. J. South Am. Earth Sci. 19, 461-478.
    [43]
    Philipp, R.P., Pimentel, M.M., Chemale Jr., F., 2016. Tectonic evolution of the Dom Feliciano Belt in Southern Brazil:Geological relationships and U-Pb geochronology. Braz.J. Geol. 46, 83-104. https://doi.org/10.1590/2317-4889201620150016.
    [44]
    Ramos, V.A., 2008. The basement of the Central Andes:the Arequipa and related terranes.Annu. Rev. Earth Planet. Sci. 36, 289-324. https://doi.org/10.1146/annurev.earth.36.031207.124304.
    [45]
    Rosa, M.L.C., Braboza, E.G., Abreu, V.S., Tomazelli, L.J., Dillenburg, S.R., 2014. Highfrequency sequences in the Quaternary of Pelotas Basin (coastal plain):a record of degradational stacking as a function of longer-term base-level fall. Braz. J. Geol. 47(2), 183-207.
    [46]
    Santos, M.M., Lana, C., Scholz, R., Buick, I., Schmitz, M.D., Kamo, S.L., Gerdes, A., Corfu, F., Tapster, S., Lancaster, P., Storey, C.D., Basei, M.A.S., Tohver, E., Alkmim, A., Nalini, H., Krambrock, K., Fantini, C., Wiedenbeck, M., 2017. A New Appraisal of Sri Lankan BB Zircon as a Reference Material for LA-ICP-MS U-Pb Geochronology and Lu-Hf Isotope Tracing. Geostandards and Geoanalytical Research, 1-24. https://doi.org/10.1111/ggr.12167.
    [47]
    Siegle, E., Asp, N.E., 2007. Wave refraction and longshore transport patterns along the Southern Santa Catarina Coast. Braz. J. Oceanogr. 55 (2), 109-120.
    [48]
    Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005.
    [49]
    Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207-221. https://doi.org/10.1016/0012-821X(75)90088-6.
    [50]
    Stramma, L., England, M., 1999. On the water masses and mean circulation of the South Atlantic Ocean. J. Geophys. Res. Ocean. 104, 20863-20883. https://doi.org/10.1029/1999JC900139.
    [51]
    Sutherland, B.R., Barrett, K.J., Gingras, M.K., 2014. Clay settling in fresh and salt water. Environ. Fluid Mech. 15, 147-160. https://doi.org/10.1007/s10652-014-9365-0.
    [52]
    Sverdrup, K., Duxbury, A., Duxbury, A., 2002. Fundamentals of Oceanography. 4th edition.McGraw Hill, New York, p. 344.
    [53]
    Tapias, J.G., Schobbenhaus, C., Montes Ramirez, N.E., 2019. Geological map of South America. http://rigeo.cprm.gov.br/jspui/handle/doc/21606.
    [54]
    Teixeira, W., D'Agrella-Filho, M.S., Hamilton, M.A., Ernst, R.E., Girardi, V.A.V., Mazzucchelli, M., Bettencourt, J.S., 2013. U-Pb (ID-TIMS) baddeleyite ages and paleomagnetism of 1.79 and 1.59 Ga tholeiitic dyke swarms, and position of the Rio de la Plata Craton within the Columbia supercontinent. Lithos 174, 157-174. https://doi.org/10.1016/j.lithos.2012.09.006.
    [55]
    Tomazelli, L.J., 1978. Minerais pesados da plataforma continental do Rio Grande do SulBrasil. Acta Geológica Leopoldense. 2 (5), 103-159.
    [56]
    Tomazelli, L.J., Villwock, J.A., 1992. Considerações sobre a ambiente praial e a deriva litorânea de sedimentos ao longo do litoral norte do Rio Grande do Su, Brasil.Pesquisas. 19, 3-12 (in Portuguese).
    [57]
    Tomazelli, L.J., Villwock, J.A., 2000. Late Quaternary geological history of Rio Grande do Sul coastal plain, Southern Brazil. Revista Brasileira de Geociências. 30, 470-472.
    [58]
    Tomazelli, L.J., Dillenburg, S.R., Villwock, J.A., Barboza, E.G., Bachi, F.A., Dehnhardt, B.A., Correa, M.L. Da C.R., 2007. Sistemas deposicionais e evolução geológica da Planície Costeira do Rio Grande do Sul:uma síntese. In:Iannuzzi, R., Frantz, J.C. (Eds.), 50 Anos de Geologia:Instituto de Geociências. Contribuições, Porto Alegre, pp. 327-340 (in Portuguese).
    [59]
    Corrêa, I., Ayup-Zouain, Weschenfelder, J., Tomazelli, L.J., 2019. Áreas Fontes dos Minerais Pesados e sua Distribuição sobre a Plataforma Continental Sul-brasileira, Uruguaia e Norte-argentina. Rev. Pesquisas em Geociências 35, 137-150 (in Portuguese).
    [60]
    Tye, A.R., Wolf, A.S., Niemi, N.A., 2019. Bayesian population correlation:A probabilistic approach to inferring and comparing population distributions for detrital zircon ages.Chem. Geol. 518, 67-78.
    [61]
    Urien, C.M., Ewing, M., 1974. Recent sediments an environment of Southern Brazil, Uruguay, Buenos Aires and Rio Negro continental shelf. In:Burk, C.A., Drake, C.L.(Eds.), The Geology of Continental Margins. Springer-Verlag, Berlin, pp. 157-177.
    [62]
    Villwock, J.A., Tomazelli, L.J., Loss, E.L., Dehnhardt, E.A., Horn, N.O., Bachi, F.A., Dehnhardt, B.A., 1986. Geology of the RS coastal province. Quaternary of South America and Antartic Península 4, 79-97.
    [63]
    Zerfass, G., Dos, De S., Chemale Jr., F., Moura, C.A.V., Costa, K.B., Kawashita, K., 2014. Strontium isotope stratigraphy of the Pelotas Basin. Brazilian J. Geol. 44, 23-38.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (35) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return