Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Katerina Ruzickova, Jan Ruzicka, Jan Bitta. A new GIS-compatible methodology for visibility analysis in digital surface models of earth sites[J]. Geoscience Frontiers, 2021, 12(4): 101109. doi: 10.1016/j.gsf.2020.11.006
Citation: Katerina Ruzickova, Jan Ruzicka, Jan Bitta. A new GIS-compatible methodology for visibility analysis in digital surface models of earth sites[J]. Geoscience Frontiers, 2021, 12(4): 101109. doi: 10.1016/j.gsf.2020.11.006

A new GIS-compatible methodology for visibility analysis in digital surface models of earth sites

doi: 10.1016/j.gsf.2020.11.006

This work was financially supported by project 133/2016/RPP-TO-1/b "Teaching of advanced techniques for geodata processing for follow-up study of geoinformatics". The authors wish to thank Mrs. Gabriela Chudasova, Alena Kasparkova, Mr. Mark Landry and City Hills Proofreading for proofreading the manuscript.

  • Received Date: 2019-06-28
  • Rev Recd Date: 2020-09-11
  • Publish Date: 2021-07-17
  • As a GIS tool, visibility analysis is used in many areas to evaluate both visible and non-visible places. Visibility analysis builds on a digital surface model describing the terrain morphology, including the position and shapes of all objects that can sometimes act as visibility barriers. However, some barriers, for example vegetation, may be permeable to a certain degree. Despite extensive research and use of visibility analysis in different areas, standard GIS tools do not take permeability into account. This article presents a new method to calculate visibility through partly permeable obstacles. The method is based on a quasi-Monte Carlo simulation with 100 iterations of visibility calculation. Each iteration result represents 1% of vegetation permeability, which can thus range from 1% to 100% visibility behind vegetation obstacles. The main advantage of the method is greater accuracy of visibility results and easy implementation on any GIS software. The incorporation of the proposed method in GIS software would facilitate work in many fields, such as architecture, archaeology, radio communication, and the military.

  • loading
  • [1]
    Arnot, R.H., Grant, K., 1981. The application of method of terrain analysis to functional land-capability assessment and aesthetic landscape appreciation. Landsc. Plan. 8(3), 269-300.
    Bartie, P., Reitsma, F., Kingham, S., Mills, S., 2010. Advancing visibility modelling algoriths for urban environments. Comput. Environ. Urban. Syst. 34 (6), 518-531.
    Bartie, P., Reitsma, F., Kingham, S., Mills, S., 2011. Incorporating vegetation into visual exposure modelling in urban environments. Int. J. Geogr. Inf. Sci. 25 (5), 851-868.
    Batty, M., 2001. Exploring isovist fields:space and shape in architectural and urban morphology. Environ. Plan. B 28, 123-150.
    Benedikt, M., 1979. To take hold of space:isovists and isovist fields. Environ. Plan. B 6, 47-65. https://doi.org/10.1068/b060047.
    Brabyn, L., 2015. Modelling landscape experience using "experions". Appl. Geogr. 62, 210-216.
    Brandtberg, T., 2007. Classifying individual tree species under leaf-off and leaf-on conditions using airborne lidar. ISPRS J. Photogramm. Remote Sens. 61 (5), 325-340.
    Burrough, P.A., 1986. Principles of geographical information systems for land resources assessment. Geocarto Int. 1 (3), 54.
    Caha, J., Rasova, A., 2015. Line-of-sight derived indices:viewing angle difference to a local horizon and the difference of viewing angle and the slope of line of sight. Lect. Not. Geoinf. Cartogr. 211, 61-72.
    Chamberlain, B.C., Meitner, M.J., 2013. A route-based visibility analysis for landscape management. Landsc. Urban Plan. 111 (1), 13-24.
    Chang, Y., Habib, A., Lee, D., Yom, J., 2008. Automatic classification of lidar data into ground and nonground points. Int. Archiv. Photogr. Rem. Sens. Spatial Inf. Sci. 37(B4), 457-462.
    Chapman, H., 2006. Landscape Archaeology and GIS. The History Press Ltd., London, pp. 1-191.
    Chen, Q., Baldocchi, D., Gong, P., Kelly, M., 2006. Isolating individual trees in a savanna woodland using small footprint LiDAR data. Photogramm. Eng. Remote. Sens. 72(8), 923-932.
    Cooper, G.R.J., 2005. Analysing potential field data using visibility. Comput. Geosci. 31 (7), 877-881.
    Coops, N.C., Hilker, T., Wulder, M.A., St-Onge, B.A., Newnham, G.J., Siggins, A., Trofymow, J.A., 2007. Estimating canopy structure of douglas-fir forest stands from discretereturn LiDAR. Trees Struct. Func. 21 (3), 295-310. https://doi.org/10.1007/s00468-006-0119-6.
    De Floriani, L., Magillo, P., 1999. Intervisibility on terrains. In:Longley, P.A., Goodchild, M.F., Maguire, D., Rhind, D.W. (Eds.), In Geographic Information Systems:Principles, Techniques, Managament and Applications, London, pp. 543-556.
    De Floriani, L., Manzano, P., Puppo, E., 1994. Line of sight communication on terrain models. Int. J. Geogr. Inf. Syst. 8, 329-342.
    De Floroani, L., Magillo, P., 1997. Visibility computation on hierarchical triangulated terrain models. GeoInformatica 1 (3), 219-250.
    Domingo-Santos, J.M., De Villaran, R.F., Rapp-Arraras, I., Corral-Pazos de Provens, E., 2011. The visual exposure in forest and rural landscapes:an algorithm and a GIS tool. Landsc. Urban Plan. 101 (1), 52-58.
    Duraciova, R., 2014. Implementation of the selected principles of the fuzzy set theory into spatial database systém and GIS. International Multidisciplinary Scientific GeoConference-SGEM Proccedings Bulgaria, pp. 627-634.
    El-Sheimy, N., Valeo, C., Habib, A., 2005. Digital terrain modelling acquisition, manipulation, and applications. Proc. SPIE Int. Soc. Optical Eng. 9323 (2) 93232Q-93232Q-6.
    ESRI, 2016. How Maximum Likelihood Classification Works. ArcMap Documentation.http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-maximum-likelihood-classification-works.htm (accessed 6 May.2018).
    ESRI, 2019. Multiple Ring Buffer. ArcGIS Pro Documentation. http://pro.arcgis.com/en/pro-app/tool-reference/analysis/multiple-ring-buffer.htm (accessed 18 February 2019).
    Fisher, P.F., 1993. Algorithm and implementation uncertainty in viewshed analysis. Int.J. Geogr. Inf. Syst. 7 (4), 331-347.
    Guth, P.L., 2009. Incorporating vegetation in Viewshed and Line-of-Site Algorithms.ASPRS/MAPPS 2009 Specialty Conference, San Antonio, Texas.
    Hindsley, P., Hamilton, S.E., Morgan, O.A., 2013. Gulf views:toward a better understanding of viewshed scope in hedonic property models. Working Pap. 47 (3), 489-505.https://doi.org/10.1007/s11146-012-9365-0.
    Immitzer, M., Atzberger, C., Koukal, T., 2012. Tree species classification with random forest using very high spatial resolution 8-band worldwiew-2 satelite data. Remote Sens. 4(9), 2661-2693. https://doi.org/10.3390/rs4092661.
    Kaucic, B., Zalik, B., 2002. Comparison of viewshed algorithms on regular spaced points. Proceedings of the 18th Spring Conference on Computer graphics (SCCG '02). ACM, pp. 177-183.
    Kim, Y.H., Rana, S., Wise, S., 2004. Exploring multiple viewshed analysis using terrain features and optimisation technigues. Comput. Geosci. 30 (9-10), 1019-1032.
    Klampfer, S., Mohorko, J., Cucej, Z., Chowdhury, A., 2011. Simulation of radio-visibility impact on the provided quality of service within the Wimax network. Informacije MIDEM Ljubljana 41 (3), 205-211.
    Kloucek, T., Langer, O., Simova, P., 2015. How does data accuracy influence the reliability of digital viewshed models? A case study with wind turbines. Appl. Geogr. 64, 46-54.
    Lange, E., 1990. Vista management in Acadia National Park. Landsc. Urban Plan. 19 (4), 353-376.
    Lee, J., Stucky, D., 1998. On applying viewshed analysis for determining least-cost paths on Digital Elevation Models. Int. J. Geogr. Inf. Sci. 13 (8), 891-905.
    Li, Z., Zhu, Q., Gold, Ch., 2005. Digital Terrain Modeling. Principles and Applications. 323. CRC Press.
    Llobera, M., 2007. Modelling visibility through vegetation. Int. J. Geogr. Inf. Sci. 21 (7), 799-810.
    Liu, L., Yhang, L.Q., Ma, J.T., Yhang, L., Yhang, X.M., Xiao, Z.Q., Yang, L., 2010. An improved line-of-sight method for visibility analysis in 3D complex landscapes. Sci. China Inf.Sci. 53 (11), 2185-2194.
    Magoc, T., Kassin, A., Romero, R., 2010. A line of sight algorithm using fuzzy measures. 2010 Annual Meeting of the North American Fuzzy Information Processing Society(NAFIPS), Toronto, Canada. The Institute of Electrical and Electronics Engineers(IEEE), Piscataway, NJ.
    Murgoitio, J.J., Shrestha, R., Glenn, N.F., Spaete, L.P., 2013. Improved visibility calculations with tree trunk obstruction modelling form aerial LiDAR. Int. J. Geogr. Inf. Sci. 27 (10), 1865-1883.
    Nackaerts, K., Govers, G., Van Orshoven, J., 1999. Accuracy assessment of probabilistic visibilities. Int. J. Geogr. Inf. Sci. 13 (7), 709-721.
    Natapov, A., Fisher-Gewirtzman, D., 2016. Visibility of urban activities and pedestrian routes:An experiment in a virtual environment. Comput. Environ. Urban. Syst. 58, 60-70.
    Natural Resources Canada, 2015. Species Identification and Typing.
    Nijhuis, S., Lammeren, R., Antrop, M., 2011. Exploring the Visual Landscape. Introduction. In:Nijhuis, S., Lammeren, R., Hoeven, F. (Eds.), Exploring the Visual Landscape. Advances in Physiognomic Landscape Research in the Netherlands. 2. Research in Urbanism Series, pp. 15-39 ISSN 1879-8217.
    Ogburn, D.E., 2006. Assessing the level of visibility of cultural objects in past landscapes. J. Archeol. Sci. 33 (3), 405-413.
    Paliou, E., 2011. The communicative potential of theran murals in late Bronze age Akrotiti:applying vewshed analysis in 3D townscapes. Oxf. J. Archaeol. 30 (3), 227-247.
    Rana, S., 2006. Isovist Analyst-An Arcview extension for planning visual surveillance. ESRI International User Conference 7-11 August, 2006, San Diego, CA, USA. http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-maximumlikelihood-classification-works.htm (accessed 30 Dcember 2020).
    Sarnowski, L., Podgorski, Z., Brykala, D., 2018. 3D viewshed modelling using aerial photographs. Dissert. Cult. Landsc. Comm. 39 (1), 5-24. https://doi.org/10.30450/201801.
    Smith, M.J., Goodchild, M.F., Longley, P.A., 2007. Geospatial analysis a comprehensive guide to principles techniques and software tools. Mandator 274-279.
    Sunak, Y., Madlener, R., 2016. The impact of wind farm visibility on property values:A spatial difference-in-differences analysis. Energy Econ. 55, 79-91.
    Supernant, K., 2014. Intervisibility and Intravisibility of rock feature sites:a method for testing viewshed within and outside the socio-spatial systém of the Lower Fraser Canyon, British Columbia. J. Archaeol. Sci. 50, 497-511.
    Tandy, C.R., 1967. The Isovist method of landscape survey. In:Murray, C.R. (Ed.), Method of Landscape Analysis. Landscape Research Group, London, pp. 9-10.
    Turner, A., Doxa, M., O'Sullivan, D., Penn, A., 2001. From isovists to visibility graphs:a methodology for the analysis of architectural space. Environ. Plan. B 28, 103-121.
    Wang, J., Liu, X., Yang, X., Lei, M., Ruan, S., Nie, K., Miao, Y., Liu, J., 2014. Development and evaluation of a new digital photography visiometer system for automated visibility observation. Atmos. Environ. 87, 19-25.
    Wassim, S., Thierry, J., Favier, E., 2011. 3D Urban Visibility Analysis With Vector GIS Data. Available at:. https://www.researchgate.net/publication/215999859_3D_Urban_Visibility_Analysis_with_Vector_GIS_Data (accessed 6 May, 2020).
    Williamson, C.A., McLin, L.N., 2015. Nominal ocular dazzle distance (NODD). Appl. Opt. 54(7), 1564-1572.
    Wilson, J.P., Gallant, J.C., 2000. Terrain Analysis. Principles and Applications. John Wiley & Sons, Inc., p. 479.
    Yang, P.P.Y., Putra, S.Y., Li, W., 2007. Viewsphere:a GIS based 3D visibility analysis for urban design evaluation. Environ. Plan. B 34 (6), 971-992.
    Yu, T.X., Xiong, L.Y., Cao, M., Wang, Z.H., 2016. A new algorithm based on Region Partitioning for Filtering candidate viewpoints of a multiple viewshed. Int. J. Geogr. Inf. Sci. 30 (11), 2171-2187.
    Zhang, K., Hu, B., 2012. Individual urban tree species classification using very high spatial resolution airborne multi-spectral imagery using longitudinal profiles. Remote Sens. 4, 1741-1757. https://doi.org/10.3390/rs4061741.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1137) PDF downloads(96) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint