Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Manoj K. Pandit, Hitesh Kumar, Wei Wang. Geochemistry and geochronology of A-type basement granitoids in the north-central Aravalli Craton: Implications on Paleoproterozoic geodynamics of NW Indian Block[J]. Geoscience Frontiers, 2021, 12(4): 101084. doi: 10.1016/j.gsf.2020.09.013
Citation: Manoj K. Pandit, Hitesh Kumar, Wei Wang. Geochemistry and geochronology of A-type basement granitoids in the north-central Aravalli Craton: Implications on Paleoproterozoic geodynamics of NW Indian Block[J]. Geoscience Frontiers, 2021, 12(4): 101084. doi: 10.1016/j.gsf.2020.09.013

Geochemistry and geochronology of A-type basement granitoids in the north-central Aravalli Craton: Implications on Paleoproterozoic geodynamics of NW Indian Block

doi: 10.1016/j.gsf.2020.09.013
Funds:

We would like to thank Erkum Xue for his help in analytical work. We also thank Rajesh Sharma and A.K. Singh for help and support in XRF and ICP-MS analysis of samples. We thank two anonymous reviewers for their useful comments that have helped in improving the paper. We thank Lily Wang and Vinod Samuel for excellent editorial handling of the manuscript. The geochemical plots were prepared with the help of open-access software GCD Kit.

  • Received Date: 2020-05-17
  • Rev Recd Date: 2020-08-25
  • The basement granite gneisses from the north-central Aravalli Craton in NW India were investigated for geochemistry and geochronology. In a peneplain terrain, the granite gneiss outcrops are scanty and samples were collected mainly from two small hills and several ground-level exposures in the Sakhun-Ladera region. Well-foliated granite gneiss is the dominant lithology that also hosts dark, lenticular enclaves, and is in turn, intruded by mafic dykes. The granite gneiss has silica content ranging from 61.37 wt.% to 68.27 wt.% that marks a slight overlap with the enclaves (54.32 wt.% to 62.17 wt.%). Both groups have a high K2O/Na2O ( ~2 or higher) ratio. Geochemically, the granite gneiss classify as granite-granodiorite, and enclaves as granodiorite-diorite. The In-situ LA-ICP-MS zircon U-Pb geochronology of granite gneiss has yielded a statistically valid 1721 ±9 Ma age that we interpret as the emplacement age for the granitic protolith. Geochemical characteristics of granite gneiss underline fractional crystallization of an I-type melt as the main process, and continuity of trends in enclaves underlines their mutual genetic link. The genetic association is further verified by a consistency in the trace element characteristics and REE patterns. The Nd-isotope signatures define a single grouping for both granite gneiss and enclaves, with εNd(t) values ranging from -6.38 to -6.61, further substantiating a common source. The geochemical tectonic discrimination schemes consistently point toward an extensional setting and A-type characteristics for granite gneiss and enclaves. These are analogous to the coeval (1.72-1.75 Ga), A-type granitoids from the Khetri and Alwar basin in the North Delhi Fold Belt, implying a much larger areal extent for the Paleoproterozoic anorogenic magmatism in the northern segment of the Aravalli Craton. The Paleoproterozoic age for the presumed ‘Archean’ basement in this region offers tacit evidence that the BGC-II is a stratigraphically younger terrane as compared to the Archean age, BGC-I.

  • loading
  • [1]
    Acharya, S.K., 2003. A plate tectonic model for Proterozoic crustal evolution of Central Indian Tectonic Zone. Gondwana Geol. Mag. Spec. Publ. 7, 9-31.
    [2]
    Ahmad, I., Mondal, M., 2016. Do the BGC-I and BGC-II domains of the Aravalli Craton, Northwestern India represent accreted terranes? Earth Sci. India 9, 167-175.
    [3]
    Ahmad, T., Tarney, J., 1994. Geochemistry and petrogenesis of late Archaean Aravalli volcanics, basement enclaves and granitoids, Rajasthan. Precam. Res. 65, 1-23.
    [4]
    Anderson, J.L., 1983. Proterozoic anorogenic granite plutonism of North America. In:Medaris Jr., L.G., Byers, C.W., Mickelson, D.M., Shanks, W.C. (Eds.), Proterozoic Geology. Geol. Soc. America, Mem. 161, pp. 133-154.
    [5]
    Ashwal, L.D., Demaiffe, D., Torsvik, T., 2002. Petrogenesis of Neoproterozoic granitoids and related rocks from the Seychelles:the case for an Andean-type Arc Origin. Jour. Petrol. 43, 45-83.
    [6]
    Bhowmik, S.K., 2019. The current status of orogenesis in the Central Indian Tectonic Zone:a view from its Southern margin. Geol. Jour. 54, 2912-2934.
    [7]
    Bhowmik, S.K., Dasgupta, S., 2012. Tectonothermal evolution of the Banded Gneissic complex in Central Rajasthan, NW India:Present status and correlation. Jour. Asian Earth Sci. 49, 339-348.
    [8]
    Bhowmik, S.K., Wilde, S.A., Bhandari, A., Pal, T., Pant, N.C., 2012. Growth of the Greater Indian Landmass and its assembly in Rodinia:geochronological evidence from the Central Indian Tectonic Zone. Gondwana Res. 22, 54-72.
    [9]
    Biju-Sekhar, S., Yokoyama, K., Pandit, M.K., Okudaira, T., Yoshida, M., Santosh, M., 2003. Late Paleoproterozoic magmatism in Delhi Fold Belt, NW India and its implication:evidence from EPMA chemical ages of zircons. Jour. Asian Earth Sci. 22, 189-207.
    [10]
    Boynton, W.V., 1984. Geochemistry of rare Earth elements:Meteorite Studies. In:Henderson, P. (Ed.), Rare Earth Element Geochemistry. Elsevier, New York, pp. 63-114.
    [11]
    Buick, I.S., Allen, C., Pandit, M., Rubatto, D., Hermann, J., 2006. The Proterozoic magmatic and metamorphic history of the Banded Gneissic complex, Central Rajasthan, India:LA-ICP-MS U-Pb zircon constraints. Precam. Res. 151, 119-142.
    [12]
    Buick, I.S., Clark, C., Rubatto, D., Hermann, J., Pandit, M., Hand, M., 2010. Constraints on the Proterozoic evolution of the Aravalli-Delhi Orogenic belt (NW India) from monazite geochronology and mineral trace element geochemistry. Lithos 120, 511-528.
    [13]
    Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types. Pacific Geol. 8, 173-174.
    [14]
    Chaudhri, N., Kaur, P., Okrusch, M., Schimrosczyk, A., 2003. Characterisation of the Dabla granitoids, North Khetri Copper Belt, Rajasthan, India:evidence of bimodal anorogenic felsic magmatism. Gondwana Res. 6, 879-895.
    [15]
    Chen, F., Li, X.-H., Wang, X.-L., Li, Q.-L., Siebel, W., 2007. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. Int. J. Earth Sci. 96, 1179-1194.
    [16]
    Chen, F., Zhu, Xi-Y, Wang, W., Wang, F., Hieu, P.T., Siebel, W., 2009. Single-grain detrital muscovite Rb-Sr isotopic composition as an indicator of provenance for the Carboniferous sedimentary rocks in northern Dabie, China. Geochem. Jour. 43, 257-273.
    [17]
    Collins, W.J., Beams, S.D., White, A.J.R., Chappell, B.W., 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 80, 189-200.
    [18]
    Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The Interpretation of Igneous Rocks. Allen and Unwin, London, 450p.
    [19]
    Crawford, A.R., Compston, W., 1970. The age of Vindhyan system of peninsular India. Quarterly Jour. Geol. Soc. London 125, 351-371.
    [20]
    Dey, B., Das, K., Dasgupta, N., Bose, S., Hidaka, H., Ghatak, H., 2019. Zircon U-Pb (SHRIMP) ages of the Jahazpur Granite and Mangalwar Gneiss from the Deoli-Jahazpur sector, Rajasthan, NW India:a preliminary reappraisal of stratigraphic correlation and implications to crustal growth. In:Mondal, M.E.A. (Ed.), Geological Evolution of the Precambrian Indian Shield. Springer, pp. 39-56.
    [21]
    Dharma Rao, C.V., Santosh, M., Purohit, R., Wang, J., Jiang, X., Kusky, T., 2011. LA-ICP-MS U-Pb zircon age constraints on the Paleoproterozoic and Neoarchean history of the Sandmata complex in Rajasthan within the NW Indian Plate. J. Asian Earth Sci. 42, 286-305.
    [22]
    D'Souza, J., Prabhakar, N., Xu, Y.-G., Sharma, K.K., Sheth, H., 2019. Mesoarchaean to Neoproterozoic (3.2-0.8 Ga) crustal growth and reworking in the Aravalli Craton, northwestern India:Insights from the Pur-Banera supracrustal belt. Precam. Res. 332, 1-18.
    [23]
    Eby, G.N., 1990. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26, 115-134.
    [24]
    Eby, G.N., 1992. Chemical subdivisions of the A-type granitoids:petrogenetic and tectonic implications. Geology 20, 641-644.
    [25]
    Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. Jour. Petrol. 47, 2033-2048.
    [26]
    Gopalan, K., MacDougall, J.D., Roy, A.B., Murali, A.K., 1990. Sm-Nd evidence for 3.3 Ga old rocks in Rajasthan, northwestern India. Precam. Res. 48, 287-297.
    [27]
    Guha, D.B., Bhattacharya, A.K., 1995. Metamorphic evolution and high-grade reworking of the Sandmata complex granulites. Mem. Geol. Soc. India 31, 163-198.
    [28]
    Gupta, B.C., 1934. The geology of central Mewar. Memoir Geol. Surv. India 65, 107-168.
    [29]
    Gupta, S.N., Arora, Y.K., Mathur, R.K., Iqballuddin Prasad, B., Sahai, T.N., Sharma, S.B., 1980.Lithostratigraphic Map of Aravalli Region, Southern Rajasthan and Northeastern Gujarat. Geol. Surv. Ind, Hyderabad.
    [30]
    Gupta, S.N., Arora, Y.K., Mathur, R.K., Iqbaluddin, Prasad B., Sahai, T.N., Sharma, S.B., 1997. The Precambrian geology of the Aravalli region, southern Rajasthan and northeastern Gujarat. Mem. Geol. Surv. India 123, 262.
    [31]
    Haapala, I., Rämö, O.T., 1999. Rapakivi granites and related rocks:an introduction. Precam.Res. 95, 89-107.
    [32]
    Haldar, D., Ghosh, R.N., 2000. Eruption of Bijawar lava:an example of Precambrian volcanicity under stable cratonic conditions. Geol. Surv. India. Spec. Publ. 57, 151-170.
    [33]
    Heron, A.M., 1953. The geology of Central Rajputana and adjacent districts. Memoir, Geol.Surv. India 79, 389.
    [34]
    Hill, B.M., Bickford, M.E., 2001. Paleoproterozoic rocks of Central Colorado:accreted arcs or extended older crust? Geology 29, 1015-1018.
    [35]
    Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211, 47-69.
    [36]
    Jensen, L.S., 1976. A New Cation Plot for Classifying Subalkalic Volcanic Rocks. Ontario Department of Ministry of Natural Resources, Toronto, pp. 1-66.
    [37]
    Jung, S., Pfänder, J., 2007. Source composition and melting temperatures of orogenic granitoids:constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Jour. Mineral. 19, 859-870.
    [38]
    Kaur, P., Chaudhri, N., Okrusch, M., Koepke, J., 2006. Palaeoproterozoic A-type felsic magmatism in the Khetri Copper Belt, Rajasthan, northwestern India:petrologic and tectonic implications. Mineral. Petrol. 87, 81-122.
    [39]
    Kaur, P., Chaudhri, N., Raczek, I., Kröner, A., Hofmann, A.W., 2007. Geochemistry, zircon ages and whole-rock Nd isotopic systematics for Palaeoproterozoic A-type granitoids in the northern part of the Delhi belt, Rajasthan, NW India:implications for late Palaeoproterozoic crustal evolution of the Aravalli craton. Geol. Mag. 144, 361-378.
    [40]
    Kaur, P., Chaudhri, N., Raczek, I., Kröner, A., Hofmann, A.W., Okrusch, M., 2011. Zircon ages of late Palaeoproterozoic (ca. 1.72-1.70 Ga) extension-related granitoids in NE Rajasthan, India:regional and tectonic significance. Gondwana Res. 19, 1040-1053.
    [41]
    Kaur, P., Chaudhri, N., Hofmann, A.W., Raczek, I., Okrusch, M., Skora, S., Baumgartner, L., 2012. Two-stage, extreme albitization of A-type granites from Rajasthan, NW India.Jour. Petrol. 53, 919-948.
    [42]
    Kaur, P., Eliyas, N., Chaudhri, N., 2017. Record of post-collisional A-type magmatism in the Alwar complex, Northern Aravalli Orogen. NW India. Current Sci. 112, 608-615.
    [43]
    Kaur, P., Zeh, A., Chaudhri, N., 2019. Archean crustal evolution of the Aravalli Banded Gneissic complex, NW India:Constraints from zircon U-Pb ages, Lu-Hf isotope systematics, and whole-rock geochemistry of granitoids. Precam. Res. 327, 81-102.
    [44]
    Khanna, P.P., Saini, N.K., Mukherjee, P.K., Purohit, K.K., 2009. An appraisal of ICP-MS technique for determination of REEs:Long term QC assessment of silicate rock analysis.Himalayan Geol. 30, 95-99.
    [45]
    de La Roche, H., Leterrier, J., Grandclaude, P., Marchal, M., 1980. A classification of volcanic and plutonic rocks using R1-R2-diagram and major element analyses-its relationships with current nomenclature. Chem. Geol. 29, 183-210.
    [46]
    Landenberger, B., Collins, W.J., 1996. Derivation of A-type Granites from a dehydrated charnockitic lower crust:evidence from the Chaelundi complex, Eastern Australia.Jour. Petrol. 37, 145-170.
    [47]
    Li, X.H., 1997. Timing of the Cathaysia Block formation:constraints from SHRIMP U-Pb zircon geochronology. Episodes 20, 188-192.
    [48]
    Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J., Chen, H., 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Sci.Bull. 55, 1535-1546.
    [49]
    Loiselle, M.C., Wones, D.R., 1979. Characteristics of anorogenic granites. Geol. Soc. America Abstracts with Programs. 11, p. 468.
    [50]
    Ludwig, K.R., 2003. Isoplot, rev. 3.75. A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication 5, 1-75.
    [51]
    Meert, J.G., Pandit, M.K., 2015. The Archaean and Proterozoic history of Peninsular India:Tectonic framework for Precambrian sedimentary basins in India. In:Mazumder, R., Eriksson, P.G. (Eds.), Precambrian Basins of India. Geol. Soc. London Mem vol. 43, pp. 29-54.
    [52]
    Naqvi, S.M., 2005. Geology and Evolution of the Indian Plate. Capital Publishing, New Delhi, 450p.
    [53]
    Pandit, M.K., Khatatneh, M.K., 1998. Geochemical constraints on anorogenic felsic plutonism in North Delhi Fold Belt, western India. Gondwana Res. 1, 247-255.
    [54]
    Pandit, M.K., Khatatneh, M.K., 2003. Alkali Exchange as a possible mechanism for genesis of low-K granite:evidence from Ajitgarh Pluton, Proterozoic Delhi Fold Belt, NW India. Jour. Geol. Soc. India. 62, 696-707.
    [55]
    Pearce, J.A., 1996. A user's guide to basalt discrimination diagrams. In:Wyman, D.A. (Ed.), Trace Element Geochemistry of Volcanic Rocks:applications for massive Sulphide Exploration, Geol. Assoc. Canada, Short Course Notes. 12, pp. 79-113.
    [56]
    Pisarevsky, S.A., Elming, S.-Å., Pesonen, L.J., Li, Z.-X., 2014. Mesoproterozoic paleogeography:Supercontinent and beyond. Precam. Res. 244, 207-225.
    [57]
    Rämö, O.T., Haapala, I., Vaasjoki, M., Yu, J., Fu, H., 1995. The 1700 Ma Shachang complex, Northeast China:Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust. Geology 23, 815-818.
    [58]
    Roy, A.B., Jakhar, S.R., 2002. Geology of Rajasthan (Northwest India), Precambrian to Recent. Scientific Publishers, India, Jodhpur, 421p.
    [59]
    Roy, A.B., Kröner, A., 1996. Single zircon evaporation ages constraining the growth of Archean Aravalli craton, northwestern Indian shield. Geol. Mag. 133, 333-342.
    [60]
    Roy, A.B., Kröner, A., Bhattacharya, P.K., Rathore, S., 2005. Metamorphic evolution and zircon geochronology of early Proterozoic granulites in the Aravalli Mountains of northwestern India. Geol. Mag. 142, 287-302.
    [61]
    Roy, A.B., Kröner, A., Rathore, S., Laul, V., Purohit, R., 2012. Tectonometamorphic and geochronologic studies from Sandmata Comples, northwest Indian Shield:Implications on exhumation of late Paleoproterozoic granulites in as Archean-early Paleoproterozoic granite-gneiss terrane. Jour. Geol. Soc. India 79, 323-334.
    [62]
    Saini, N.K., Mukherjee, P.K., Khanna, P.P., Purohit, K.K., 2007. A proposed amphibolite reference rock sample (AMH) from Himachal Pradesh. Jour. Geol. Soc. India 69, 799-802.
    [63]
    Sinha-Roy, S., 1984. Precambrian Crustal Interactions in Rajasthan, NW India. Indian Jour.Earth Sci, CEISM, pp. 84-91.
    [64]
    Sinha-Roy, S., Malhotra, G., Mohanty, M., 1998. Geology of Rajasthan. Geol. Soc. Ind, Bangalore, 278p.
    [65]
    Stein, H.J., Hannah, J., Zimmarman, A., Markey, R.J., Sarkar, S.C., Pal, A.B., 2004. A 2.5 Ga porphyry Cu-Mo-au deposit at Malanjkhand, Central India:implications for late Archean continental assembly. Precam. Res. 134, 189-226.
    [66]
    Sylvester, P.J., 1998. Post-collisional strongly peraluminous granites. Lithos 45, 29-44.
    [67]
    Turner, S.P., Foden, J.D., Morrison, R.S., 1992. Derivation of some A-type magmas by fractionation of basaltic magma:an example from the Padthaway Ridge, South Australia.Lithos 28, 151-179.
    [68]
    Wang, W., Cawood, P., Pandit, M., Zhou, M.-F., Chen, W., 2017. Zircon U-Pb age and Hf isotope evidence for an Eoarchaean crustal remnant and episodic crustal reworking in response to supercontinent cycles in NW India. Jour. Geol. Soc. 174, 759-772.
    [69]
    Wang, W., Cawood, P., Pandit, M., Xia, X., Zhao, J.-H., 2018. Coupled Precambrian crustal evolution and supercontinent cycles:Insights from in-situ U-Pb, O- and Hf-isotopes in detrital zircon. NW India. American Jour. Sci. 318, 989-1017.
    [70]
    Wang, W., Cawood, P.A., Pandit, M.K., Zhou, M.F., Zhao, J.H., 2019. Evolving passive- and active- margin tectonics of Paleoproterozoic Aravalli Basin. NW India. Geol. Soc.America Bull. 130, 426-443.
    [71]
    Wang, W., Cawood, P.A., Pandit, M.K., 2020. India in the Nuna to Gondwana supercontinent cycles:Clues from the North Indian and Marwar blocks. American Jour. Sci. 320 (in press).
    [72]
    Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Letts. 64, 295-304.
    [73]
    Weis, D., Kieffer, B., Maerschalk, C., Barling, J., Jong, J.d., Williams, G.A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J.S., Goolaerts, A., Friedman, R.M., Mahoney, J.B., 2006. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophy. Geosyst. 7, 1-30.
    [74]
    Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites:geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 95, 407-419.
    [75]
    Wiedenbeck, M., Goswami, J.N., Roy, A.B., 1996. Stabilization of the Aravalli Craton of northwestern India at 2.5 Ga:an ion microprobe zircon study. Chem. Geol. 129, 325-340.
    [76]
    Windley, B.F., 1993. Proterozoic anorogenic magmatism and its orogenic connections:Jour. Geol. Soc. London 150, 39-50.
    [77]
    Wood, D.A., Joron, J.L., Treuil, M., Norry, M., Tamey, J., 1979. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contrib. Mineral.Petrol. 70, 319-339.
    [78]
    Yu, J., Fu, H., Zhang, F., Wan, F., 1994. Petrogenesis of potassic alkaline volcanics associated with rapakivi granites in the Proterozoic rift of Beijing. China. Mineral. Petro. 50, 83-96.
    [79]
    Zhao, G.C., Sun, M., Wilde, S.A., Li, S.Z., 2004. A Paleo-Mesoproterozoic supercontinent:assembly, growth and breakup. Earth Sci. Rev. 67, 91-123.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (115) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return