Volume 12 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
A. Prajith, Abhishek Tyagi, P. John Kurian. Geochemistry of core sediments from the southeastern Bay of Bengal: Inferences on weathering and early diagenetic changes[J]. Geoscience Frontiers, 2021, 12(2): 495-504. doi: 10.1016/j.gsf.2020.08.011
Citation: A. Prajith, Abhishek Tyagi, P. John Kurian. Geochemistry of core sediments from the southeastern Bay of Bengal: Inferences on weathering and early diagenetic changes[J]. Geoscience Frontiers, 2021, 12(2): 495-504. doi: 10.1016/j.gsf.2020.08.011

Geochemistry of core sediments from the southeastern Bay of Bengal: Inferences on weathering and early diagenetic changes

doi: 10.1016/j.gsf.2020.08.011

We gratefully acknowledge Director, NCPOR for the encouragement and support provided in undertaking this work. We thank Dr. M. Tiwari and Mr. Vikash Kumar for their help with ICP-OES facility, Dr. W. Rahman for ICP-MS facility, Ms. Sahina Gazi for FESEM-EDS analyses, Mr. Ashish for TIC analyses, Mr. Deepak Kumar Agarwal and Mr. Chandrakant Rathore for XRF analyses, Mr. Bijesh and Dr. Vidya for support in preparation of sediment core location and circulation map. This work was undertaken as part of the EEZ mapping program funded by MoES (Grant No. MoES/EC/EEZ/32/2012-PCⅡ). This is NCPOR contribution J-59/2020-21#.

  • Received Date: 2019-12-11
  • Rev Recd Date: 2020-06-26
  • A sediment core (ABP24/05), collected at a water depth of 3520 m from the southeastern Bay of Bengal was studied to determine the change in chemical weathering during the last glacial to deglacial periods and the factors of sedimentary environment which controlled earliest diagenetic changes in the sediment after its deposition. High ratios of K/Rb, Ti/Al and Zr/Rb during ~45 to ~18 cal kyr B.P. in the core sediments may be attributed to the stronger physical erosion and turbidity currents activity during this period. This might have brought a higher quantity of unaltered minerals to the study area. Low ratios of K/Rb, Zr/Rb, and Ti/Al and increase of SiO2/TiO2, Rb/Al and Cs/Al from ~18 cal kyr B.P. to present may be indicating an increase in the rate of chemical weathering during this period. The time of increased chemical weathering in the study area is consistent with deglaciation warming in the tropical Indian Ocean and strengthening of river runoff into the Andaman Sea. Climate change during the interglacial period by increased solar insolation thereby strengthened the summer monsoon which might have led to intensified chemical weathering in the source region since ~18 cal kyr B.P. The low organic carbon (OC), high Mn/Al, Fe/Al and the Mn-oxides minerals precipitation indicate prevailing of oxic conditions during ~11 cal kyr B.P. in the core sediments, which is contradictory to suboxic conditions developed in the deep ocean sediments in the western Bay of Bengal and the equatorial Indian Ocean. The low terrigenous influx and export of less OC to the bottom sediments might have created a favorable condition for the formation of Mn-oxides in the study area during Holocene.
  • loading
  • [1]
    Ahmad, S.M., Anil Babu, G., Padmakumari, V.M., Dayal, A.M., Sukhija, B.S., Nagabhushanam, P., 2005. Sr, Nd isotopic evidence of terrigenous flux variations in the Bay of Bengal: implications of monsoons during the last ~34,000 years. Geophys.Res. Lett. 32, 1-4.
    Barnola, J.M., Raynaud, D., Lorius, C., Barkov, N.I., 2003. Historical CO2 record from the Vostok ice core. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, U.S.Department of Energy, Oak Ridge, Tennessee, USA. http://cdiac.esd.ornl.gov/trends/co2/vostok.html.
    Bau, M., Dulski, P., 1996. Distribution of yttrium and rare earth elements in the Penge and Kuruman iron formations, Transvaal Super group, South Africa. Precambrian Res. 79, 37-55.
    Bejugam, P., Nayak, G.N., 2017. Source and depositional processes of the surface sediments and their implications on productivity in recent past off Mahanadi to Pennar River mouths, western Bay of Bengal. Palaeogeogr. Palaeoclimatol.Palaeoecol. 483, 58-69. https://doi.org/10.1016/j.palaeo.2016.12.006.
    Bookhagen, B., Thiede, R.C., Strecker, M.R., 2005. Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 33, 149-152.
    Calvert, S.E., Pedersen, T.F., 1993. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar. Geol. 113, 67-88.
    Calvert, S.E., Price, N.B., 1972. Diffusion and reaction profiles of dissolved manganese in the pore waters of marine sediments. Earth Planet Sci. Lett. 16, 245-249.
    Canfield, D.E., 1989. Reactive iron in marine sediments. Geochem. Cosmochim. Acta 53, 619-632.
    Chandana, K.R., Bhushan, R., Jull, A.J.T., 2017. Evidence of poor bottom water ventilation during LGM in the equatorial Indian ocean. Front. Earth Sci. 5, 1-10.https://doi.org/10.3389/feart.2017.00084.
    Chauhan, O.S., Rao, C.M., 1999. Influence of sedimentation on enrichment of manganese and growth of ferromanganese micronodules, Bengal Fan, India. Mar. Geol. 161, 39-47.
    Chauhan, O.S., Gujar, A.R., Rao, Ch.M., 1994. On the occurrence of ferromanganese micronodules from the sediments of the Bengal Fan: a high terrigenous sediment input region. Earth Planet Sci. Lett. 128, 563-573.
    Chen, J., An, Z., Head, J., 1999. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quat. Res. 51, 215-219.
    Chen, J., Chen, Y., Liu, L., Ji, J., Balsam, W., Sun, Y., Lu, H., 2006. Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength. Geochem. Cosmochim. Acta 70, 1471-1482. https://doi.org/10.1016/j.gca.2005.11.029.
    Clemens, S., Prell, W., Murray, D., Shimmield, G., Weedon, G., 1991. Forcing mechanisms of the Indian Ocean monsoon. Nature 353, 720-725.
    Clift, P.D., Wan, S., Blusztajn, J., 2014. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies. Earth Sci. Rev. 130, 86-102. https://doi.org/10.1016/j.earscirev.2014.01.002.
    Colin, C., Kissel, C., Blamart, D., Turpin, L., 1998. Magnetic properties of sediments in the Bay of Bengal and the Andaman Sea: impact of rapid North Atlantic ocean climatic events on the strength of the Indian monsoon. Earth Planet Sci. Lett. 160, 623-635.
    Colin, C., Turpin, L., Bertaux, J., Desprairies, A., Kissel, C., 1999. Erosional history of the Himalayan and Burman ranges during the last two glacial-interglacial cycles. Earth and Planetary Science 171, 647-660.
    Colin, C., Turpin, L., Blamart, D., Frank, N., Kissel, C., Duchamp, S., 2006. Evolution of weathering patterns in the Indo-Burman Ranges over the last 280 kyr: effects of sediment provenance on 87Sr/86Sr ratios tracer. G-cubed 7 (3), 1-16. https://doi.org/10.1029/2005GC000962.
    Da Silva, R., Mazumdar, A., Mapder, T., Peketi, A., Joshi, R.K., Shaji, A., Maha, P., Sawant, B., Naik, B.G., Carvalho, Molletti, S.K., 2018. Salinity stratification controlled productivity variation over 300 ky in the Bay of Bengal. Sci. Rep. 8 (1), 6038. https://doi.org/10.1038/s41598-017-14781-3.
    Damodararao, K., Singh, S.K., Rai, V.K., Ramaswamy, V., Rao, P.S., 2016. Lithology, monsoon and sea-surface current control on the provenence, dispersal and deposition of sediments over the Andaman Continental Shelf. Frontiers in Marine Science 3, 118.https://doi.org/10.3389/fmars.2016.00118.
    Ergin, M., 1994. Possible sources and mechanisms of manganese enrichment in the deepsea sediments of the Marmara Trough depressions (NE-Mediterranean, Turkey).Oceanol. Acta 17, 535-546.
    Finney, B.P., Lyle, M.W., Heath, G.R., 1988. Sedimentation at MANOP site H (eastern equatorial Pacific) over the past 400,000 years: climatically induced redox variations and their effects on transition metal cycling. Paleoceanography 3, 169-189.
    Fralick, P.W., Kronberg, B.I., 1997. Geochemical discrimination of clastic sedimentary rock sources. Sediment. Geol. 113, 111-124.
    Garzanti, E., Ando, S., France-Lanord, C., Censi, P., Vignola, P., Galy, V., Lupker, M., 2011.Minerological and chemical variability of fluvial sediments 2. Suspended-load silt(GangaBrahmaputra, Bangladesh). Earth Planet Sci. Lett. 302, 107-120.
    Garzanti, E., Wang, J.G., Vezzoli, G., Limonta, M., 2016. Tracing provenance and sediment fluxes in the Irrawaddy River basin (Myanmar). Chem. Geol. 440, 73-90.https://doi.org/10.1016/j.chemgeo.2016.06.010.
    Gebregiorgis, D., Hathorne, E.C., Sijinkumar, A.V., Nath, B.N., Nürnberg, D., Frank, M., 2016. South Asian summer monsoon variability during the last ~54 kyrs inferred from surface water salinity and river runoff proxies. Quat. Sci. Rev. 138, 6-15.https://doi.org/10.1016/j.quascirev.2016.02.012.
    Hein, J.R., Conrad, T., Mizell, K., Banakar, V.M., Frey, F.A., Sager, W.W., 2016. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyest Ridge, Indian Ocean. Deep Sea Res. I 110, 1-19. https://doi.org/10.1016/j.dsr.2015.11.006.
    Hu, D., Böning, P., Köhler, C.M., Hillier, S., Pressling, N., Wan, S., Wan, S., Brumsack, H.J., Clift, P.D., 2012. Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14 ka in the South China Sea. Chem. Geol. 326-327, 1-18. https://doi.org/10.1016/j.chemgeo.2012.07.024.
    Hu, D., Clift, P.D., Wan, S., Böning, P., Hannigan, R., Hillier, S., Blusztajn, J., 2016. Testing chemical weathering proxies in Miocene-Recent fluvial-derived sediments in the South China Sea. Geological Society, London, Special Publication 429 (1), 45-72.https://doi.org/10.1144/SP429.5.
    Joussain, R., Colin, C., Liu, Z., Meynadier, L., Fournier, L., Fauquembergue, K., Zaragosi, S., Schmidt, F., Rojas, V., Bassinot, F., 2016. Climatic control of sediment transport from the Himalayas to the proximal NE Bengal Fan during the last glacialinterglacial cycle. Quat. Sci. Rev. 148, 1-16.
    Kamesh Raju, K.A., Ray, D., Mudholkar, A., Murty, G.P.S., Gahalaut, V.K., Samudrala, K., Paropkari, A.L., Ramacgandran, R., Surya Prakash, L., 2012. Tectonic and volcanic implications of a cratered seamount off nicobar island, Andaman Sea. J. Asian Earth Sci. 56, 42-53. https://doi.org/10.1016/j.jseaes.2012.04.018.
    Kessarkar, P.M., Rao, V.P., Ahmad, S.M., Patil, S.K., Kumar, A.A., Babu, G.A., Chakraborty, S., Rajan, R.S., 2005. Changing sedimentary environment during the Late Quaternary: sedimentological and isotopic evidence from the distal Bengal Fan.Deep Sea Res. 52, 1591-1615.
    Kessarkar, P.M., Rao, V.P., Naqvi, S.W.A., Karapurkar, S.G., 2013. Variation in the Indian summer monsoon intensity during the Bølling-Ållerød and Holocene.Paleoceanography 28, 413-425.
    Kudrass, H.R., Hofmann, A., Doose, H., Emeis, K., Erlenkeuser, H., 2001. Modulation and amplification of climatic changes in the Northern Hemisphere by the Indian summer monsoon during the past 80 k.y. Geology 29, 63-66.
    Kurian, S., Nath, B.N., Ramaswamy, V., Naman, D., Rao, G.T., Kamesh Raju, K.A., Selvaraj, K., Chen, C.T.A., 2008. Possible detrital, diagenetic and hydrothermal sources for Holocene sediments of the Andaman backarc basin. Mar. Geol. 247, 178-193. https://doi.org/10.1016/j.margeo.2007.09.006.
    Kutzbach, 1981. Monsoon climate of the early Holocene: climate experiment with the Earth’s orbital parameters for 9000 years ago. Science 214, 59-61.
    Li, J.R., Liu, S.f., Feng, X.L., Sun, X.Q., Shi, X.F., 2017. Major and trace element geochemistry of the mid-Bay of Bengal surface sediments: implications for provenance. Acta Oceanol. Sin. 36, 82-90. https://doi.org/10.1007/s13131-017-1041-z.
    Liu, L., Chen, J., Ji, J., Chen, Y., 2004. Comparison of paleoclimatic change from Zr/Rb ratios in Chinese loess with marine isotope records over the 2.6-1.2 Ma BP interval.Geophys. Res. Lett. 31, L15204. https://doi.org/10.1029/2004GL019693.
    Liu, X., Liu, Z., Kutzbach, J.E., Clemens, S.C., Prell, W.L., 2006. Hemispheric insolation forcing of the Indian Ocean and Asian Monsoon: local versus remote impacts.American Meteorological Society 19, 6195-6208.
    Liu, J., Zhu, Z., Xiang, R., Cao, Li, He, W., Liu, S., Shi, X., 2019. Geochemistry of core sediments along the active channel, northeastern Indian Ocean over the past 50,000 years: sources and climatic implications. Paleogeography, Paleoclimatology, Paleoecology 521, 151-160.
    Lo, F.L., Chen, H.F., Fang, J.N., 2017. Discussion of suitable chemical weathering proxies in sediments by comparing the dissolution rates of minerals in different rocks.J. Geol. 125 (1), 83-99. https://doi.org/10.1086/689184.
    Lupkar, M., France-Lanord, C., Galy, V., Lave, J., Kudrass, H., 2013. Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum. Earth Planet Sci. Lett. 365, 243-252. https://doi.org/10.1016/j.epsl.2013.01.038.
    Mason, J.A., Jacobs, P.M., 1998. Chemical and particle-size evidence for addition of fine dust to soil of Midwestern United States. Geology 26, 1135-1138.
    Mazumdar, A., Kocherla, M., Carvalho, M.A., Peketi, A., Joshi, R.K., Mahalaxmi, P., Joao, H.M., Jisha, R., 2015. Geochemical characterization of the Krishna-Godavari and Mahanadi offshore basin (Bay of Bengal) sediments: a comparative study of provenance. Mar. Petrol. Geol. 60, 18-33.
    Miriyala, P., Sukumaran, N.P., Nath, B.N., Ramamurty, P.B., Sijinkumar, A.V., Vijagopal, B., Ramaswamy, V., Sebastian, T., 2017. Increased chemical weathering during the deglacial to mid-Holocene summer monsoon intensification. Sci. Rep. 7, 44310. https://doi.org/10.1038/srep44310.
    Mohtadi, M., Prange, M., Steinke, S., 2016. Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 533, 191-199.
    Morford, J.L., Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochem. Cosmochim. Acta 63, 1735-1750.
    Muller, P.J., Suess, E., 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans-I. Organic carbon preservation. Deep-Sea Res. 26, 1347-1362.
    Murray, R.W., Leinen, M., 1996. Scavenged excess aluminium and its relationship to bulk titanium in biogenic sediment fom the central equatorial Pacific Ocean. Geochem.Cosmochim. Acta 60, 3869-3878.
    Naidu, P.D., Govil, P., 2010. New evidence on the sequence of deglacial warming in the tropical Indian Ocean. J. Quat. Sci. 25, 1138-1143. https://doi.org/10.1002/jqs.1392.
    Nath, B.N., Mudholkar, A.V., 1989. Early diagenetic processes affecting nutrients in the pore waters of central Indian Ocean cores. Mar. Geol. 86, 57-66.
    Nath, B.N., Raoo, V.P., Becker, K.P., 1989. Geochemical evidence of terrigenous influence in deep-sea sediments up to 8°S in the Central Indian Basin. Mar. Geol. 87, 301-313.
    Nath, B.N., Roelandts, I., Sudhakar, M., Pluger, W.L., 1992. Rare earth elements pattern of the central Indian Basin sediments related to their lithology. Geophys. Res. Lett. 5, 811-821.
    Nesbitt, H.W., Markovics, G., Price, R.C., 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochem. Cosmochim. Acta 44, 1659-1666.
    Overpeck, J., Anderson, D., Trumbore, S., Prell, W., 1996. The southwest Indian Monsoon over the last 18 000 years. J. Issue Climate Dynamics 12, 213-225.
    Panmei, C., Naidu, P.D., Naik, S.S., 2018. Variability of terrigenous input to the Bay of Bengal for the last ~80 kyr: implications on the Indian monsoon variability. Geo Mar.Lett. https://doi.org/10.1007/s00367-018-0538-6.
    Pattan, J.N., Masuzawa, T., Naidu, P.D., Parthiban, G., Yamamoto, M., 2003. Productivity fluctuations in the southeastern Arabian Sea during the last 140ka. Paleogeoagraphy, Paleoclimatology, Paleoecology 193, 575-590.
    Pattan, J.N., Pearce, N.J.G., Mislankar, P.G., 2005. Constraints in using cerium anomaly of bulk sediments as an indicator of paleo bottom water redox environment: a case study from the Central Indian Ocean Basin. Chem. Geol. 221, 260-278.
    Pattan, J.N., Parthiban, G., Prakashbabu, C., Khadge, N., 2008. A note on geochemistry of surface sediments from Krishna-Godavari basin, East coast of India. J. Geol. Soc. India 71, 107-114.
    Pattan, J.N., Mir, I.A., Parthiban, G., Karapurkar, S.G., Matta, V.M., Naidu, P.D., Naqvi, S.W.A., 2013. Coupling between suboxic condition in sediments of the western Bay of Bengal and southwest monsoon intensification: a geochemical study.Chem. Geol. 343, 55-66.
    Pedersen, T.F., Calvert, S.E., 1990. Anoxia vs. productivity: what controls the formation of organic carbon rich sediments and sedimentary rocks. The American Association of Petrolium Geologists Bulletin 4, 454-466.
    Phillips, S.C., Johnson, J.E., Giosan, L., Rose, K., 2014. Monsoon-influenced variation in productivity and lithogenic sediment flux since 110 ka in the offshore Mahanadi Basin, northern Bay of Bengal. Mar. Petrol. Geol. 58, 502-525.
    Prajith, A., Tyagi, A., Kurian, P.J., 2018. Changing sediment sources in the Bay of Bengal:evidence of summer monsoon intensification and ice-melt over Himalaya during the late Quaternary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 511, 309-318. https://doi.org/10.1016/j.palaeo.2018.08.016.
    Prakashbabu, C.P., Ramaswamy, V., 2018. Processes controlling enrichment of transition elements in the surficial sediments of the western Bay of Bengal. Curr. Sci. 114, 2161-2167.
    Prasanna Kumar, S., Muraleedharan, P.M., Prasad, T.G., Gauns, M., Ramaiah, N., de Souza, S.N., Sardesai, S., Madhupratap, M., 2002. Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea? Geophys. Res.Lett. 29 (24), 2-5. https://doi.org/10.1029/2002GL016013.
    Prasanna Kumar, S., Nuncio, M., Narvekar, J., Kumar, A., Sardesai, S., de Souza, S.N., Gauns, M., Ramaiah, N., Madhupratap, 2004. Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal? Geophys. Res. Lett. 31, 2-6. https://doi.org/10.1029/2003GL019274.
    Rao, V.P., Reddy, N.P., Rao, C.H., 1988. Clay mineral distribution in the shelf sediments off the northern part of the east coast of India. Continent. Shelf Res. 8, 145-151.
    Rashid, H., Flower, B.P., Poore, R.Z., Quinn, T.M., 2007. A ~25 ka Indian Ocean monsoon variability record from the Andaman Sea. Quat. Sci. Rev. 26, 2586-2597.
    Rashid, H., England, E., Thompson, L., Polyak, L., 2011. Late Glacial to Holocene Indian summer monsoon variability based upon sediment records taken from the Bay of Bengal. Terr. Atmos. Ocean Sci. 22, 215-228.
    Raza, T., Ahmad, S.M., 2013. Surface and deep water variations in the northeast Indian Ocean during 34-6 ka BP: evidence from carbon and oxygen isotopes of fossil foraminifera. Quat. Int. 298, 37-44.
    Raza, T., Ahmad, S.M., Steinke, S., Raza, W., Lone, M.A., Beja, S.K., Suseela, G., 2017.Glacial to Holocene changes in sea surface temperatures and seawater δ18O in the northern Indian Ocean. Paleogeography, Paleoclimatology, Paleoecology 485, 697-705.
    Reichart, G.J.A., Schenau, S.J., de Lange, G.J., Zachariasse, W.J., 2002. Synchroneity of oxygen minimum zone intensity on the Oman and Pakistan Margins at subMilankovitch time scales. Mar. Geol. 185, 403-415.
    Saraswat, R., Lea, D.W., Nigam, R., Mackensen, A., Naik, D.K., 2013. Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections. Earth Planet Sci. Lett. 375, 166-175.
    Sarkar, A., Ramesh, R., Bhattacharya, S.K., Rajagopalan, G., 1990. Oxygen isotope evidence for a stronger winter monsoon current during the last glaciations. Nature 343, 549-551.
    Sarkar, A., Bhattacharya, S.K., Sarin, M.M., 1993. Geochemical evidence for anoxic deep water in the Arabian Sea during the last deglaciation. Geochem. Cosmochim. Acta 57, 1009-1016.
    Schenau, S.J., Reichart, G.J., de Lange, G.J., 2002. Oxygen minimum zone controlled Mn redistribution in Arabian Sea sediments during the late Quaternary.Paleoceanography 17 (4), 1058. https://doi.org/10.1029/2000PA000621.
    Schnetger, B., Brumsack, H.J., Schale, H., Hinrichs, J., Dittert, L., 2000. Geochemical characteristics of deep-sea sediments from the Arabian Sea: a high-resolution study.Deep-Sea Research Ⅱ 47, 2735-2768.
    Schulte, S., Rostek, F., Bard, E., Rullkotter, J., Marchal, O., 1999. Variations of oxygenminimum and primary productivity recorded in sediments of the Arabian Sea. Earth Planet Sci. Lett. 173, 205-221.
    Sebastian, T., Nath, B.N., Venkateshwarlu, M., Miriyala, P., Prakash, A., Linsy, P., Kocherla, M., Kazip, A., Sijinkumar, A.V., 2019. Impact of the Indian Summer Monsoon variability on the source area weathering in the Indo-Burman ranges during the last 21 kyr-a sediment record from the Andaman Sea. Palaeogeogr.Palaeoclimatol. Palaeoecol. 516, 22-34. https://doi.org/10.1016/j.palaeo.2018.11.035.
    Segall, M.P., Kuehl, S.A., 1992. Sedimentary processes on the Bengal continental shelf as revealed by clay-size mineralogy. Continent. Shelf Res. 12, 517-541.
    Shakun, J.D., Clark, P.U., He, F., Marcott, S.A., Mix, A.C., Liu, Z., Otto-Bliesner, B., Schmittner, A., Bard, E., 2012. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484 (7392), 49-54.https://doi.org/10.1038/nature10915.
    Shetye, S.R., Gouveia, A.D., Shenoi, S.S.C., Sundar, D., Michael, G.S., Nampoothiri, G., 1993. The western boundary current of the seasonal subtropical gyre in the Bay of Bengal. J. Geophys. Res. 98, 945-954.
    Shimmield, G.B., Prince, N.B., 1986. The behavior of molybdenum and manganese during early diagenesis-offshore Baja California, Mexico. Mar. Chem. 19, 261-280.
    Shimmield, G.B., Mowbray, S.R., Weedon, G.P., 1990. A 350ka history of the Indian southwest monsoon: evidence from deep-sea cores, northwest Arabian Sea. Trans. R.Soc. Edinb. Earth Sci. 81, 289-299.
    Sijinkumar, A.V., Nath, B.N., Clemens, S., 2016. North Atlantic climatic changes reflected in the Late Quaternary foraminiferal abundance record of the Andaman Sea, northeastern Indian Ocean. Paleogeography, Paleoclimatology, Paleoecology 446, 11-18.
    Sirocko, F., Schonberg, D.G., Devey, C., 2000. Processes controlling trace element geochemistry of Arabian Sea sediments during the last 25,000 years. Global Planet.Change 26, 217-303.
    Stuiver, M., Reimer, P.J., 1993. Extended 14C data base and revised calib 3.0 14C age calibration program. Radiocarbon 35, 215-230.
    Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol. 232, 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012.
    Tripathy, R.G., Kumar, S.K., Bhushan, R., Ramaswamy, V., 2011. Sr-Nd isotope composition of the Bay of Bengal sediments: impact of climate on erosion in Himalaya. Geochem. J. 45, 175-186.
    Tripathy, R.G., Kumar, S.K., Ramaswamy, V., 2014. Major and trace element geochemistry of Bay of Bengal sediments: implications to provenances and their controlling factors. Palaeogeogr. Palaeoclimatol. Palaeoecol. 397, 20-30.
    Vinayachandran, P.N., Masumoto, Y., Mikawa, T., Yamagata, T., 1999. Intrusion of the southwest monsoon current into the Bay of Bengal. J. Geophys. Res. 104, 11077-11085.
    Wedepohl, K.H., 1995. The composition of the continental crust. Geochem. Cosmochim.Acta 59, 1217-1232.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (508) PDF downloads(9) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint