Volume 12 Issue 1
Dec.  2020
Turn off MathJax
Article Contents
Yuanku Meng, Walter D. Mooney, Runlong Fan, Jinqing Liu, Youqing Wei. Identification of the Early Jurassic mylonitic granitic pluton and tectonic implications in Namling area, southern Tibet[J]. Geoscience Frontiers, 2021, 12(1): 13-28. doi: 10.1016/j.gsf.2020.07.010
Citation: Yuanku Meng, Walter D. Mooney, Runlong Fan, Jinqing Liu, Youqing Wei. Identification of the Early Jurassic mylonitic granitic pluton and tectonic implications in Namling area, southern Tibet[J]. Geoscience Frontiers, 2021, 12(1): 13-28. doi: 10.1016/j.gsf.2020.07.010

Identification of the Early Jurassic mylonitic granitic pluton and tectonic implications in Namling area, southern Tibet

doi: 10.1016/j.gsf.2020.07.010
Funds:

This study was co-supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2019QD002), the National Natural Science Foundation of China (Grant No. 41902230), the Key Laboratory of DeepEarth Dynamics of Ministry of Natural Resources (Grant No. J1901-16), the Young innovative projects of Shandong Province (Grant No. 2019KJH004) and the research foundation of China Geological Survey (JYYWF20181702).

  • Received Date: 2020-03-31
  • Rev Recd Date: 2020-06-02
  • A number of studies revealed that the Gangdese magmatic belt of southern Tibet was closely related to the northward subduction of the Neo-Tethys oceanic lithosphere and Indo-Asian collision. However, pre-Cretaceous magmatism is still poorly constrained in the Gangdese magmatic belt, southern Tibet. Here, we conducted systematically geochronology and geochemistry studies on a newly-identified granitic pluton in the middle Gangdese magmatic belt (Namling area), southern Tibet. Zircon SHRIMP II U–Pb dating for one representative sample gives a weighted age of 184.2±1.8 Ma (MSWD = 1.11), corresponding to emplacement and crystallization age of the granitic pluton in the Early Jurassic (Pliensbachian). High SiO2 (68.9–72.1 wt.%) contents and intermediate Mg# values (35–38) together suggest that the newly-identified granitic pluton was probably formed by partial melting of crustal material with minor injection of mantle-derived magma, precluding an origin from melting of metasedimentary rocks that are characterized by low Mg# and high zircon δ18O values (>8‰). Geochemically, the newly-identified granitic pluton belongs to typical I-type granitic affinity, whereas this is inconsistent with aluminium saturation index (ASI = A/CNK ratios) and geochemical signatures. This suggests that zircon oxygen isotopes (4.30‰–5.28‰) and mineral features (lacking Al-rich minerals) are reliable indicators for discriminating granitic origin. Significantly depleted whole-rock Sr-Nd-Hf isotopic compositions and zircon εHf(t) values indicate that the granitic pluton was derived from partial melting of depleted arc-type lavas. In addition, the granitic pluton shows zircon δ18O values ranging from 4.30‰ to 5.28‰ (with a mean value of 4.77‰) that are consistent with mantle-derived zircon values (5.3‰ 0.6‰) within the uncertainties, indicating that the granitic pluton might have experienced weak short-living high-temperature hydrous fluid-rock interaction. Combined with the Sr-Nd-Hf-O isotopes and geochemical signatures, we propose that the newly-identified granitic pluton was originated from partial melting of depleted mafic lower crust, and experienced only negligible wall-rock contamination during ascent. Integrated with published data, we also propose that the initial subduction of the Neo-Tethys oceanic lithosphere occurred no later than the Pliensbachian of the Early Jurassic.

  • loading
  • [1]
    Aitchison, J.C., McDermid, I.R.C., Ali, J.R., Davis, A.M., Zyabrev, S.V., 2007. Shoshonites in southern Tibet record late Jurassic rifting of a Tethyan intraoceanic island arc.J. Geol. 115, 197-213.
    [2]
    Aitchison, J.C., Zhu, B.D., Davis, A.M., Liu, J.B., Luo, H., Malpas, J.G., McDermid, I.R.C., Wu, H.Y., Ziabrev, S.V., Zhou, M.F., 2000. Remnants of a Cretaceous intraoceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth Planet Sci. Lett. 183, 231-244.
    [3]
    Allégre, C.J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature 307, 17-22.
    [4]
    Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb.Chem. Geol. 192 (1-2), 59-79.
    [5]
    Atherton, M.P., Petford, N., 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362 (6416), 144-146.
    [6]
    Baker, M.B., Hirschmann, M.M., Ghiorso, M.S., Stolper, E.M., 1995. Compositions of near solidus peridotite melts from experiments and thermodynamic calculations. Nature 375 (6529), 308-311.
    [7]
    Ballard, J.R., Palin, J.M., Williams, I.S., Campbell, I.H., Faunes, A., 2001. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICM-MS and SHRIMP. Geology 29, 383-386.
    [8]
    Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., Foudoulis, C., 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 205, 115-140.
    [9]
    Blichert-Toft, J., Chauvel, C., Albaréde, F., 1997. Separation of Hf and Lu for high precision isotope analysis of rock samples by magnetic sector-multiple collector ICPMS. Contrib. Mineral. Petrol. 127, 248-260.
    [10]
    Boynton, W.V., 1984. Cosmo chemistry of the rare earth elements:meteorite studies. In:Henderson, P. (Ed.), Rare Earth Elements Geochemistry. Elsevier, Amsterdam, pp. 63-114.
    [11]
    Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and geochemistry of Camiguin Island, southern Philippines:insights to the source of adakites and other lavas in a complex arc setting. Contrib. Mineral. Petrol. 134 (1), 33-51.
    [12]
    Chappell, B.W., 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos 46, 535-551.
    [13]
    Chauvel, C., Lewin, E., Carpentier, M., Arndt, N.T., Marini, J.C., 2008. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nat. Geosci. 1 (1), 64.
    [14]
    Chen, X.J., Xu, Z.Q., Meng, Y.K., He, Z.Y., 2014. Petrogenesis of Miocene adakitic diorite porphyrite in Middle Gangdese Batholith, Southern Tibet:constraints from geochemistry, geochronology and Sr-Nd-Hf isotopes. Acta Petrol. Sin. 30 (8), 2253-2268 (in Chinese with English abstract).
    [15]
    Chu, M.F., Chung, S.L., O'Reilly, S.Y., Pearson, N.J., Wu, F.Y., Li, X.H., Liu, D.Y., Ji, J.Q., Chu, C.H., Lee, H.Y., 2011. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Trans Himalayan zircons and host rocks. Earth Planet Sci. Lett. 307, 479-486.
    [16]
    Chung, S.L., Liu, D.Y., Ji, J.Q., Chu, M.F., Lee, H.Y., Wen, D.J., Lo, C.H., Lee, T.Y., Qian, Q., Zhang, Q., 2003. Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet. Geology 31, 1021-1024.
    [17]
    Clemens, J.D., Stevens, G., Farina, F., 2011. The enigmatic sources of I-type granites:the peritectic connexion. Lithos 126, 174-181.
    [18]
    Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662-665.
    [19]
    Deng, K., Yang, S.Y., Bi, L., Chang, Y.P., Su, N., Frings, P., Xie, X.L., 2019. Small dynamic mountainous rivers in Taiwan exhibit large sedimentary geochemical and provenance heterogeneity over multi-spatial scales. Earth Planet Sci. Lett. 505, 96-109.
    [20]
    Dhuime, B., Hawkesworth, C., Cawood, P., 2011. When continents formed. Science 331, 154-155.
    [21]
    Dong, X., Zhang, Z.M., 2013. Genesis and tectonic significance of the Early Jurassic magmatic rocks from the southern Lhasa terrane. Acta Petrol. Sin. 29 (6), 1933-1948(in Chinese with English abstract).
    [22]
    Dong, X., Zhang, Z.M., Santosh, M., 2010. Zircon U-Pb chronology of the Nyingtri group, Southern Lhasa Terrane, Tibetan plateau:implications for grenvillian and PanAfrican provenance and Mesozoic-Cenozoic metamorphism. J. Geol. 118, 677-690.
    [23]
    Du, L., Zhang, Y.Y., Huang, Z.Y., Li, X.-P., Yuan, C., Wu, B., Long, X.P., 2019. Devonian to Carboniferous tectonic evolution of the Kangguer ocean in the eastern Tianshan, NW China:insights from three episodes of granitoids. Lithos 350, 105243.
    [24]
    Gao, P., Zheng, Y.F., Zhao, Z.F., 2016. Distinction between S-type and peraluminous Itype granites:zircon versus whole-rock geochemistry. Lithos 258-259, 77-91.
    [25]
    Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., Achterbergh, E.V., O'Reilly, S.Y., 2000. The Hf isotope composition of cratonic mantle:LAM-ICP-MS analysis of zircon megacrysts in kimberlites. Geochem. Cosmochim. Acta 64 (1), 133-147.
    [26]
    Guo, L., Zhang, H.F., Harris, N., Pan, F.B., Xu, W.C., 2013. Late Cretaceous (~81 Ma) high temperature metamorphism in the southeastern Lhasa terrane:implication for the Neo-Tethys ocean ridge subduction. Tectonophysics 608, 112-126.
    [27]
    Guo, Z.F., Wilson, M., Liu, J.Q., 2007. Post-collisional adakites in south Tibet:products of Partial melting of subduction-modified lower crust. Lithos 96 (1-2), 205-224.
    [28]
    Hao, L.L., Wang, Q., Wyman, D.A., Ma, L., Wang, J., Xia, X.P., Qu, Q., 2019. First identification of postcollisional A-type magmatism in the Himalayan-Tibetan orogen.Geology 47, 187-190.
    [29]
    He, Z.H., Yang, D.M., Zheng, C.Q., Huang, Y.C., 2005. Geochemistry of the Indosinian granitoids in the Mamba area, Gangdise belt, Tibet and its tectonic significance. Geol.
    [30]
    Bull. China 24 (4), 354-359 (in Chinese with English abstract).
    [31]
    He, Z.H., Yang, D.M., Zheng, C.Q., Wang, T.W., 2006. Isotopic dating of the Mamba granitoid in the Gangdise tectonic belt and its constraint on the subduction time of the Neotethys. Geol. Rev. 52 (1), 100-106 (in Chinese with English abstract).
    [32]
    Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 53, 27-62.
    [33]
    Hou, Z.Q., Duan, L.F., Lu, Y.J., Zheng, Y.C., Zhu, D.C., Yang, Z.M., Yang, Z.S., Wang, B.D., Pei, Y.R., Zhao, Z.D., Mccuaig, T.C., 2015. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Econ. Geol. 110, 1541-1575.
    [34]
    Hou, Z.Q., Gao, Y.F., Qu, X.M., Rui, Z.Y., Mo, X.X., 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci. Lett. 220, 139-155.
    [35]
    Hu, Z.C., Liu, Y.S., Gao, S., Xiao, S.Q., Zhao, L.S., Günther, D., Li, M., Zhang, W., Zong, K.Q., 2012a. A "wire" signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochim. Acta B 78, 50-57.
    [36]
    Hu, Z.C., Liu, Y.S., Gao, S., Liu, W.G., Yang, L., Zhang, W., Tong, X.R., Lin, L., Zong, K.Q., Li, M., Chen, H.H., Zhou, L., 2012b. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. At.Spectrom. 27, 1391-1399.
    [37]
    Ickert, R.B., Hiess, J., Williams, I.S., Holden, P., Ireland, T.R., Lanc, P., Schram, N., Foster, J.J., Clement, S.W., 2008. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II:analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chem. Geol. 257, 114-128.
    [38]
    Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8 (5), 523-548.
    [39]
    Ishihara, S., Hashimoto, M., Machida, M., 2000. Magnetite/ilmenite-series classification and magnetic susceptibility of the Mesozoic-Cenozoic batholiths in Peru. Resour.Geol. 50 (2), 123-129.
    [40]
    Ji, W.Q., Wu, F.Y., Zhong, S.L., Liu, C.Z., 2009. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Sci. China Earth Sci. 52 (9), 1240-1261.
    [41]
    Kelemen, P.B., Johnson, K.T.M., Kinzler, R.J., Irving, A.J., 1990. High-field-strength element depletions in arc basalts due to mantle-magma interaction. Nature 345(6275), 521-524.
    [42]
    Keto, L.S., Jacobsen, S.B., 1987. Nd and Sr isotopic variations of Early Paleozoic oceans.Earth Planet Sci. Lett. 84, 27-41.
    [43]
    Kuno, H., 1968. Differentiation of basalt magmas. In:Hess, H.H., Poldervaart, A.A. (Eds.), Basalts:the Poldervaart Treatise on Rocks of Basaltic Composition, 2. Interscience, New York, pp. 623-688.
    [44]
    Lang, X.H., Wang, X.H., Deng, Y.L., Tang, J.X., Xie, F.W., Zhou, Y., Huang, Y., Li, Z., Yin, Q., Jiang, K., 2019. Early Jurassic volcanic rocks in the Xiongcun district, southern Lhasa subterrane, Tibet:implications for the tectono-magmatic events associated with the early evolution of the Neo-Tethys Ocean. Lithos 340-341, 166-180.
    [45]
    Leake, B.E., 1990. Granite magmas:their sources, initiation and consequences of emplacement. J. Geol. Soc. 147 (4), 579-589.
    [46]
    Li, C.F., Li, X.H., Li, Q.L., Guo, J.H., Li, X.H., 2011a. Directly determining 143Nd/144Nd isotope ratios using thermal ionization mass spectrometry for geological samples without separation of Sm-Nd. J. Anal. Atomic Spectrom. 26, 2012-2022.
    [47]
    Li, C.F., Li, X.H., Li, Q.L., Guo, J.H., Li, X.H., Tao, L., 2011b. An evaluation of a single-step extraction chromatography separation method for Sm-Nd isotope analysis of micro samples of silicate rocks by high-sensitivity thermal ionization mass spectrometry.Anal. Chim. Acta 706, 297-304.
    [48]
    Li, S.M., Wang, Q., Zhu, D.C., Stern, R.J., Cawood, P.A., Sui, Q.L., Zhao, Z., 2018. One or two early Cretaceous arc systems in the Lhasa Terrane, southern Tibet. J. Geophys.Res.:Solid Earth 123, 3391-3413.
    [49]
    Liu, W.L., Zhong, Y., Sun, Z.L., Yakymchuk, C., Gu, M., Tang, G.J., Zhong, L.F., Cao, H., Liu, H.F., Xai, B., 2020. The late Jurassic Zedong ophiolite:a remnant of subduction initiation within the Yarlung Zangbo Suture zone (southern Tibet) and its tectonic implications. Gondwana Res. 78, 172-188.
    [50]
    Li, C., Yan, J., Yang, C., Song, C.Z., Wang, A.G., Zhang, D.Y., 2020. Generation of leucogranites via fractional crystallization:a case study of the Jurassic Bengbu granite in the southeastern North China Craton. Lithos 352-353, 105271. https://doi.org/10.1016/j.lithos.2019.105271.
    [51]
    Liu, Z.C., Ding, L., Zhang, L.Y., Wang, C., Qiu, Z.L., Wang, J.G., Shen, X.L., Deng, X.Q., 2018. Sequence and petrogenesis of the Jurassic volcanic rocks (Yeba formation) in the Gangdese arc, southern Tibet:implications for the Neo-Tethyan subduction.Lithos 312-313, 72-88.
    [52]
    Lu, Y.J., Loucks, R.R., Fiorentini, M.L., Yang, Z.M., Hou, Z.Q., 2015. Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet.Geology 43, 583-586.
    [53]
    Ludwig, K.R., 2003. Isoplot 3.00:a Geochronological Tool for Microsoft Excel. Berkeley Geochronology Center Special Publications, pp. 1-70.
    [54]
    Ma, X.X., Xu, Z.Q., Zhao, Z.B., Yi, Z.Y., 2019a. Identification of a new source for the Triassic Langjiexue Group:evidence from a gabbro-diorite complex in the Gangdese magmatic belt and zircon microstructures from sandstones in the Tethyan Himalaya, southern Tibet. Geosphere 16, 1-28.
    [55]
    Ma, L., Kerr, A.C., Wang, Q., Jiang, Z.Q., Tang, G.J., Yang, J.H., Xia, X.P., Hu, W.L., Yang, Z.Y., Sun, P., 2019b. Nature and evolution of crust in southern Lhasa, Tibet:transformation from microcontinent to juvenile terrane. J. Geophys. Res.:Solid Earth 124 (7), 6452-6474.
    [56]
    Ma, L., Wang, Q., Li, Z.X., Wyman, D.A., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F., 2013a. Early late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area eastern Gangdese:lithosphere-asthenosphere interaction during slab roll-back and an insight into early late Cretaceous (ca. 100-80 Ma) magmatic ‘flare-up’ in southern Lhasa (Tibet). Lithos 172-173, 17-30.
    [57]
    Ma, L., Wang, Q., Wyman, D.A., Jiang, Z.Q., Yang, J.H., Li, Q.L., Gou, G.N., Guo, H.F., 2013b. Late Cretaceous crustal growth in the Gangdese area, southern Tibet:petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro. Chem.Geol. 349-350 (4), 54-70.
    [58]
    Ma, L., Wang, Q., Wyman, D.A., Jiang, Z.Q., Wu, F.Y., Li, X.H., Yang, J.H., Gou, G.N., Guo, H.F., 2015. Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet:geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases. J. Geophys. Res.:Solid Earth 120 (9), 6159-6181.
    [59]
    Ma, X.X., Meert, J.G., Xu, Z.Q, Yi, Z.Y, 2018. Late Triassic intra-oceanic arc system within Neotethys:Evidence from cumulate appinite in the Gangdese belt, southern Tibet.Lithosphere 10 (4), 545-565.
    [60]
    Ma, S.W., Meng, Y.K., Xu, Z.Q., Liu, X.J., 2017. The discovery of late Triassic mylonitic granite and geologic significance in the middle Gangdese batholiths, southern Tibet.J. Geodyn. 104, 49-64.
    [61]
    Mahoney, J.J., Frei, R., Tejada, M.L.G., Mo, X.X., Leat, P.T., Nägler, T.F., 1998. Tracing the Indian Ocean mantle domain through time:isotopic results from old West Indian, East Tethyan, and South Pacific seafloor. J. Petrol. 39, 1285-1306.
    [62]
    Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geol. Soc. Am. 101, 635-643.
    [63]
    Marini, J.C., Chauvel, C., Maury, R.C., 2005. Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source. Contrib. Mineral.Petrol. 149, 216-232.
    [64]
    Meng, Y.K., Xu, Z.Q., Santosh, M., Ma, X.X., Chen, X.J., Guo, G.L., Liu, F., 2016a. Late Triassic crustal growth in southern Tibet:evidence from the Gangdese magmatic belt.Gondwana Res. 37, 449-464.
    [65]
    Meng, Y.K., Dong, H.W., Cong, Y., Xu, Z.Q., Cao, H., 2016b. The early-stage evolution of the Neo-Tethys Ocean:evidence from granitoids in the middle Gangdese batholith, southern Tibet. Journal of Geodyanamics 94-95, 34-49.
    [66]
    Meng, Y.K., Xu, Z.Q., Ma, S.W., Yang, F.F., 2016c. The 40Ar/39Ar geochronological constraints on the Xaitongmoin-Quxu ductile shear zone in the Gangdese batholith, southern Xizang (Tibet). Geol. Rev. 62 (4), 795-806 (in Chinese with English abstract).
    [67]
    Meng, Y.K., Xu, Z.Q., Ma, S.W., Liu, X.J., 2016d. Application of the kinematic vorticity in the Xaitongmoin-Quxu ductile shear zone in the Middle Gangdese magmatic belt, southern Tibet. Acta Geol. Sin. 90 (11), 3023-3038 (in Chinese with English abstract).
    [68]
    Meng, Y.K., Xu, Z.Q., Ma, S.W., Yang, F.F., Ma, X.X., 2016e. Deformational characteristics and geochronological constraints of Quxu ductile shear zone in Middle Gangdese magmatic belt, South Tibet. Earth Sci. 41 (7), 1081-1098 (in Chinese with English abstract).
    [69]
    Meng, Y.K., Xu, Z.Q., Gao, S., Xu, Y., Li, R.H., 2018a. The identification of the Eocene magmatism and tectonic significance in the middle Gangdese belt, southern Tibet.Acta Petrol. Sin. 34 (3), 513-546 (in Chinese with English abstract).
    [70]
    Meng, Y.K., Ma, S.W., Xu, Z.Q., Chen, X.J., Ma, X.X., 2018b. Geochronology, geochemistry and petrogenesis of the granitoid porphyries from Jiama ore deposit in Gangdese belt. Earth Sci. 43 (4), 1142-1163 (in Chinese with English abstract).
    [71]
    Meng, Y.K., Santosh, M., Mao, G.Z., Lin, P.J., Liu, J.Q., Ren, P., 2020. New constraints on the tectono-magmatic evolution of the central Gangdese belt from Late Cretaceous magmatic suite in southern Tibet. Gondwana Res. 80, 123-141.
    [72]
    Meng, Y.K., Xiong, F.H., Xu, Z.Q., Ma, X.X., 2019. Petrogenesis of Late Cretaceous mafic enclaves and their host granites in the Nyemo region of southern Tibet:implications for the tectonic-magmatic evolution of the Central Gangdese Belt. J. Asian Earth Sci. 176, 27-41.
    [73]
    Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 37, 215-224.
    [74]
    Mo, X.X., Hou, Z.Q., Niu, Y.L., Dong, G.C., Qu, X.M., Zhao, Z.D., Yang, Z.M., 2007. Mantle contributions to crustal thickening during continental collision:evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96 (1-2), 225-242.
    [75]
    Mo, X.X., Niu, Y.L., Dong, G.C., Zhao, Z.D., Hou, Z.Q., Zhou, S., Ke, S., 2008. Contribution of syncollisional felsic magmatism to continental crust growth:a case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chem. Geol. 250 (1-4), 49-67.
    [76]
    Mo, X.X., Zhao, Z.D., Deng, J.F., Dong, G.C., Zhou, S., Guo, T.Y., Zhang, S.Q., Wang, L.L., 2003. Response of volcanism to the India-Asia collision. Earth Sci. Front. 35 (2), 131-146 (in Chinese with English abstract).
    [77]
    Mo, X.X., Zhao, Z.D., Zhu, D.C., Yu, X.H., Dong, G.C., Zhou, S., 2009. On the lithosphere of Indo-Asia collision zone in southern Tibet:petrological and geochemical constraints. Earth Sci. 34 (1), 17-27 (in Chinese with English abstract).
    [78]
    Nasdala, L., Hofmeister, W., Norberg, N., Mattinson, J.M., Corfu, F., Dor, W., Kamo, S.L., Allen, K., Kennedy, A.K., Kronz, A., Reiners, P.W., Frei, D., Kosler, J., Wan, Y.S., Goze, J., Hoer, T., Kröner, A., Valley, J.W., 2008. Zircon M257-a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostand.Geoanal. Res. 32, 247-265.
    [79]
    O'Neil, J.R., Chappell, B.W., 1997. Oxygen and hydrogen isotope relations in the Berridale Batholith. J. Geol. Soc. Lond. 133, 559-571.
    [80]
    Pan, G., Ding, J., Yao, D., Wang, L., 2004. Geological Map of the Qinghai-Xizang (Tibet)Plateau and Adjacent Areas. Chengdu Cartographic Publishing House, Chengdu (in Chinese).
    [81]
    Pan, G.T., Mo, X.X., Hou, Z.Q., Zhu, D.C., Wang, L.Q., Li, G.M., Zhao, Z.D., Geng, Q.R., Liao, Z.L., 2006. Spatial-temporal framework of the Gangdese orogenic belt and its evolution. Acta Petrol. Sin. 22, 521-533 (in Chinese with English abstract).
    [82]
    Pan, G.T., Wang, L.Q., 2013. Tectonic Units and Specification of the Qinghai-Tibet Plateau and its Adjacent Regions. Geological Publishing House, Beijing (in Chinese).
    [83]
    Patiño Douce, A.E., 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society, London, Special Publications 168, 55-75.
    [84]
    Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In:Thorpe, R.S. (Ed.), Andesites:Orogenic Andesites and Related Rocks.John Wiley and Sons, pp. 528-548.
    [85]
    Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol. 58, 63-81.
    [86]
    Pitcher, W.S., Atherton, M.P., Cobbing, E.J., Beckinsale, R.D., 1985. Magmatism at a Plate Edge:the Peruvian Andes. Spring, Glasgow, pp. 1-328.
    [87]
    Qi, X.X., Li, H.B., Wu, C.L., Chen, S.Y., 2005. Constraints of ductile shear deformation on rock geochemical behavior-an example from the Bashikaogong ductile shear zone in the northern Altyn Tagh. Geol. Bull. China 24 (3), 252-257 (in Chinese with English abstract).
    [88]
    Qiu, J.S., Wang, R.Q., Zhao, J.L., Yu, S.B., 2015. Petrogenesis of the Early Jurassic gabbrogranite complex in the middle segment of the Gangdese belt and its implications for tectonic evolution of Neo-Tethys:a case study of the Dongga pluton in Xigaze. Acta Petrol. Sin. 31 (12), 3569-3580 (in Chinese with English abstract).
    [89]
    Rapp, R.P., Watson, E.B., 1995. Dehydration melting of meta-basalt at 8-32 kbar:implications for continental growth and crust-mantle recycling. J. Petrol. 36, 891-931.
    [90]
    Rudnick, R., Gao, S., 2003. Composition of the continental crust. In:Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. 3. Elsevier, Amsterdam, pp. 1-64.
    [91]
    Rudnick, R.L., 1992. Xenoliths samples of the lower continental crust. In:Fountain, D.M., Arculus, K.R. (Eds.), Continental Lower Crust. Elsevier, pp. 269-316.
    [92]
    Saunders, A.D., Storey, M., Kent, R.W., Norry, M.J., 1992. Consequences of plumelithosphere interactions. Geol. Soc. Lond. Spec. Publ. 68 (1), 41-60.
    [93]
    Söderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci. Lett. 219, 311-324.
    [94]
    Song, S.W., Liu, Z., Zhu, D.C., Wang, Q., Zhang, L.X., Zhang, L.L., Zhao, Z.D., 2014. Zircon U-Pb chronology and Hf isotope of the late Triassic andesitic magmatism in Dajiacuo, Tibet. Acta Petrol. Sin. 30 (10), 3100-3112 (in Chinese with English abstract).
    [95]
    Song, Z.G., Han, C., Liu, H., Han, Z.Z., Yan, J.L., Zhong, W.J., Gao, L.H., Du, Q.X., Han, M., Li, J.J., 2019. Early-Middle Ordovician intermediate-mafic and ultramafic rocks in central Jilin Province, NE China:geochronology, origin, and tectonic implications.Mineral. Petrol. 113, 393-415.
    [96]
    Song, Z.G., Han, Z.Z., Gao, L.H., Geng, H.Y., Li, X.P., Meng, F.X., Han, M., Zhong, W.J., Li, J.J., Du, Q.X., Yan, J.L., Liu, H., 2020. Permo-Triassic evolution of the southern margin of the central Asian orogenic belt revisited:insights from late Permian igneous suite in the Daheishan Horst, NE China. Gondwana Res. 56, 23-50.
    [97]
    Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geological Society, London, Special Publications 42, 313-345.
    [98]
    Sun, T., Zhou, X.M., Chen, P.R., Li, H.M., Zhou, H.Y., Wang, Z.C., Shen, W.Z., 2003.Strongly peraluminous granites of Mesozoic in Eastern Nanling Region, southern China and implications for tectonics. Science in China (Series D) 33 (12), 1209-1218.
    [99]
    Valley, J.W., Kinny, P.D., Schulze, D.J., Spicuzza, M.J., 1998. Zircon megacrysts from kimberlite:oxygen isotope variability among mantle melts. Contrib. Mineral. Petrol. 133 (1-2), 1-11.
    [100]
    Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., Peck, W.H., Sinha, A.K., Wei, C.S., 2005.4.4 billion years of crustal maturation:oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561-58.
    [101]
    Vervoort, J.D., Plank, T., Prytulak, J., 2011. The Hf-Nd isotopic composition of marine sediments. Geochem. Cosmochim. Acta 75 (20), 5903-5926.
    [102]
    Wan, Y.S., Zhang, Y.H., Williams, I.S., Liu, D.Y., Dong, C.Y., Fan, R.L., Shi, Y.R., Ma, M.Z., 2013. Extreme zircon O isotopic compositions from 3.8 to 2.5 Ga magmatic rocks from the Anshan area, North China Craton. Chem. Geol. 352, 108-124.
    [103]
    Wang, C., Ding, L., Zhang, L.Y., Kapp, P., Pullen, A., Yue, Y.H., 2016. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane:implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos 262, 320-333.
    [104]
    Wang, C., Wei, Q.R., Liu, X.N., Ding, P.F., Bu, T., Sun, J., Zhang, X.Q., Wang, J.Y., 2014.Post-collision related late Indosinian granites of Gangdise Terrane:evidences from zircon U-Pb geochronology and petrogeochemistry. J. China Univ. Geosci. (9), 1277-1288 (in Chinese with English abstract).
    [105]
    Wang, H.Q., Ding, L., Kapp, P., Cai, F.L., Clinkscales, C., Xu, Q., Yue, Y.H., Li, S., Fan, S.Q., 2018. Earliest Cretaceous accretion of Neo-Tethys oceanic subduction along the Yarlung Zangbo suture zone, Sangsang area, southern Tibet. Tectonophysics 744, 373-389.
    [106]
    Wang, S.J., Schertl, H.P., Pang, Y.M., 2020. Geochemistry, geochronology and Sr-Nd-Hf isotopes of Two Types of early Cretaceous granite porphyry dykes in the Sulu orogenic belt, eastern China. Can. J. Earth Sci. 57 (2), 249-266.
    [107]
    Wang, X.C., Liu, W.L., Zhong, Y., Hu, X.C., Xia, B., Huang, W., 2017. Geochemical and zircon U-Pb age constraints on the origin of the Mesozoic Xigaze ophiolite, Yarlung Zangbo suture zone, SW China. Int. Geol. Rev. 60 (10), 1267-1289.
    [108]
    Wei, Y.Q., Zhao, Z.D., Niu, Y.L., Zhu, D.C., Liu, D., Wang, Q., Hou, Z.Q., Mo, X.X., Wei, J.C., 2017. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet:initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane. Lithos 278-281, 477-490.
    [109]
    Weis, D., Kieffer, B., Hanano, D., Silva, I.N., Barling, J., Pretorius, W., Claude, M., Nadine, M., 2007. Hf isotope compositions of U.S. geological survey reference materials. G-cubed 8 (6), 57-77.
    [110]
    Wen, D.R., Chung, S.L., Song, B., Iizuka, Y., Yang, H.J., Ji, J., Liu, D., Gallet, S., 2008. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:petrogenesis and tectonic implications. Lithos 105, 1-11.
    [111]
    Whalen, J., Currie, K., Chappell, B., 1987. A-type granites:geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 95, 407-419.
    [112]
    Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In:McKibben, M.A., Shanks, W.C., Ridley, W.I. (Eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Review of Economic Geology, Society of Economic Geologists, vol. 7, pp. 1-35.
    [113]
    Wright, J.B., 1969. A simple alkalinity ratio and its application to questions of nonorogenic granite genesis. Geol. Mag. 106 (4), 370-384.
    [114]
    Wu, C.D., Zheng, Y.C., Xu, B., Hou, Z.Q., 2018. The genetic relationship between JTA-like magmas and typical adakites:an example from the Late Cretaceous Nuri complex, southern Tibet. Lithos 320-321, 265-279.
    [115]
    Xiong, F.H., Meng, Y.K., Yang, J.S., Liu, Z., Xu, X.Z., Eslami, A., Zhang, R., 2020.Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite:implications for evolution of the western Yarlung-Tsangpo suture zone, Tibet. Geosci.Front. 11, 277-292.
    [116]
    Xu, W., Zhu, D.C., Wang, Q., Weinberg, R.F., Wang, R., Li, S.M., Zhang, L.L., Zhao, Z.D., 2019. Constructing the early Mesozoic Gangdese crust in southern Tibet by hornblende-dominated magmatic differentiation. J. Petrol. 60 (3), 515-552.
    [117]
    Xu, W.C., Zhang, H.F., Luo, B.J., Guo, L., Yang, H., 2015. Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas:an example from the Late Cretaceous magmatism in Gangdese belt, southern Tibet.Lithos 232, 197-210.
    [118]
    Yang, J.H., Chung, S.L., Wilde, S.A., Wu, F.Y., Chu, M.F., Lo, C.H., Fan, H.R., 2005.Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China:geochronological, geochemical and Nd-Sr isotopic evidence. Chem. Geol. 214, 99-125.
    [119]
    Yang, J.S., Xu, Z.Q., Li, Z.L., Xu, X.Z., Li, T.F., Ren, Y.F., Li, H.Q., Chen, S.Y., Robinson, P.T., 2009. Discovery of an eclogite belt in the Lhasa block, Tibet:a new border for Paleo-Tethys? J. Asian Earth Sci. 34 (1), 76-89.
    [120]
    Yang, Z.M., Goldfarb, R., Chang, Z.S., 2016. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate. In:Richards, J.P. (Ed.), Tectonics and Metallogeny of the Tethyan Orogenic Belt, vol. 19. Society of Economic Geologists Special Publication, pp. 279-300.
    [121]
    Yin, A., Harrison, T.M., 2000. Geologic evolution of the Himalayan Tibetan orogen. Annu.Rev. Earth Planet. Sci. Lett. 28, 211-280.
    [122]
    Zhang, H.F., Xu, W.C., Guo, J.Q., Zong, K.Q., Cai, H.M., Yuan, H.L., 2007. Indosinian orogenesis the Gangdise Terrane, evidences from zircon U-Pb dating and petrogenesis of granitoids. Earth Sci. J. China Univ. Geosci. 32 (2), 155-166 (in Chinese with English abstract).
    [123]
    Zhang, Z.M., Ding, H.X., Palin, R.M., Dong, X., Tian, Z.L., Chen, Y.F., 2020a. The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continental crust. Gondwana Res. 77, 136-146.
    [124]
    Zhang, L.P., Li, H., Wang, K., 2020b. Plate subduction and porphyry Cu-Au mineralization. Acta Petrol. Sin. 36 (1), 113-124 (in Chinese with English abstract).
    [125]
    Zhang, S.B., Zheng, Y.F., 2013. Time and space of Neoproterozoic low δ18O magmatic rocks in South China. Chin. Sci. Bull. 58, 2344-2350.
    [126]
    Zhang, S.Q., Mahoney, J.J., Mo, X.X., Ghazi, A.M., Milani, L., Crawford, A.J., Guo, T.Y., Zhao, Z.D., 2005. Evidence for a widespread Tethyan upper mantle with IndianOceantype isotopic characteristics. J. Petrol. 46, 829-858.
    [127]
    Zhang, Z.M., Ding, H.X., Dong, X., Tian, Z.L., 2019. Formation and evolution of the Gangdese magmatic arc, southern Tibet. Acta Petrol. Sin. 35, 257-294 (in Chinese with English abstract).
    [128]
    Zhang, Z.M., Zhao, G.C., Santosh, M., Wang, J.L., Dong, X., Shen, K., 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet:evidence for Neo-Tethyan mid-ocean ridge subduction?Gondwana Res. 17, 615-631.
    [129]
    Zhao, Z.F., Zheng, Y.F., 2003. Calculation of oxygen isotope fractionation in magmatic rocks. Chem. Geol. 193, 59-80.
    [130]
    Zhu, D.C., Zhao, Z.D., Niu, Y., Dilek, Y., Hou, Z.Q., Mo, X.X., 2013. The origin and preCenozoic evolution of the Tibetan Plateau. Gondwana Res. 23, 1429-1454.
    [131]
    Zhu, D.C., Zhao, Z.D., Niu, Y.L., Mo, X.X., Chung, S.L., Hou, Z.Q., Wang, L.Q., Wu, F.Y., 2011. The Lhasa terrane:record of a microcontinent and its histories of drift and growth. Earth Planet Sci. Lett. 301 (1-2), 241-255.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (466) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return