Volume 12 Issue 1
Dec.  2020
Turn off MathJax
Article Contents
S. Selvam, P. Muthukumar, Sruthy Sajeev, S. Venkatramanan, S. Y. Chung, K. Brindha, D. S. Suresh Babu, R. Murugan. Quantification of submarine groundwater discharge (SGD) using radon, radium tracers and nutrient inputs in Punnakayal, south coast of India[J]. Geoscience Frontiers, 2021, 12(1): 29-38. doi: 10.1016/j.gsf.2020.06.012
Citation: S. Selvam, P. Muthukumar, Sruthy Sajeev, S. Venkatramanan, S. Y. Chung, K. Brindha, D. S. Suresh Babu, R. Murugan. Quantification of submarine groundwater discharge (SGD) using radon, radium tracers and nutrient inputs in Punnakayal, south coast of India[J]. Geoscience Frontiers, 2021, 12(1): 29-38. doi: 10.1016/j.gsf.2020.06.012

Quantification of submarine groundwater discharge (SGD) using radon, radium tracers and nutrient inputs in Punnakayal, south coast of India

doi: 10.1016/j.gsf.2020.06.012
  • Received Date: 2019-12-20
  • Rev Recd Date: 2020-04-17
  • The present study focused on the estimation of submarine groundwater discharge (SGD) and the effects of nutrient fluxes due to the SGD process. The parameters of SGD such as magnitude, character, and nutrient flux in Punnakayal region of South East coast of India were evaluated using multiple tracers of groundwater inputs in 2019. It was found that the elevated values for the tracers in the study area, displayed a gradational change in the values as move from estuarine part to the offshore. Simultaneous occurrence of fresh and saline SGD is observed on the study sites. Also, indicated that the SGD fluxes ranged from 0.04 to 0.12 m3 m-2 d-1 at the estuary and 0.03–0.15 m3 m-2 d-1 at the groundwater site. A substantially increased value for 222Rn activities is distinguished in the estuary to values over 312 dpm L-1. Nutrient embellishments were generally greatest at locations with substantial meteoric elements in groundwater; however, the recirculation of saltwater through the geological formation could provide a way of transferring terrestrially-derived nutrients to the coastal zone at many places.

  • loading
  • [1]
    Atlas, E.L., Hager, S.W., Gordos, L.I., Park, K., 1971. A Practical Manual for the Use of the Technicon Auto Analyzer in Seawater Nutrient Analyses, Revised. Dep. Ocean-Ogr.Oregon State Univ. Ref, 71/22, 49.
    [2]
    Balasubramanaian, A.R., Thirugnana, S., Chellaswamy, R., Radhakrishnan, V., 1993.Numerical modeling for prediction and control of saltwater enchroment in the coastal aquifers of Tuticorin, Tamil Nadu. Tech. Report. UGC, New Delhi, p. 21.
    [3]
    Befus, K.M., Kroeger, K.D., Smith, C.G., Swarzenski, P.W., 2017. The magnitude and origin of groundwater discharge to Eastern U.S. and Gulf of Mexico Coastal Waters.Geophys. Res. Letters 44, 396-406.
    [4]
    Boehm, A.B., Shellenbarger, G.G., Paytan, A., 2004. Groundwater discharge:a potential association with faecal indicator bacteria in the surf zone. Environ. Sci. Technol. 38, 3558-3566.
    [5]
    Bokuniewicz, H., 1980. Groundwater seepage into Great South Bay, New York. Estuar.Coast Mar. Sci. 10, 437-444.
    [6]
    Broecker, W.S., 1965. An application of natural radon to problems in oceanic circulation.In:Proc. Symp. on Diffusion in the Oceans and Freshwaters. Lamont Geological Observatory, New York, pp. 116-145.
    [7]
    Burnett, W.C., Bokuniewicz, H., Huettel, M., Moore, W.S., Taniguchi, M., 2003.Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66, 3-33.
    [8]
    Burnett, W.C., Cowart, J.B., Deetae, S., 1990. Radium in the Suwanne river and Estuary:spring and river input to the Gulf of Mexico. Biogeochemistry 10 (3), 237-255.
    [9]
    Burnett, W.C., Dulaiova, H., 2003. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J. Environ. Radioact. 69, 21-35.
    [10]
    Burnett, W.C., Kim, G., Lane-Smith, D., 2001a. A continuous radon monitors for assessment of radon in coastal ocean waters. J. Radioanal. NaCl. Chem. 249, 167-172.
    [11]
    Burnett, W.C., Taniguchi, M., Oberdorfer, J., 2001b. Measurement and significance of the direct discharge of groundwater into the coastal zone. J. Sea Res. 46, 109-116.
    [12]
    Burnett, B., Chanton, J., Christoff, J., Kontar, E., Krupa, S., Lambert, M., Moore, W., O'Rourke, D., Paulsen, R., Smith, C., Smith, L., Taniguchi, M., 2002. Assessing methodologies for measuring groundwater discharge to the ocean. EOS Trans. Am.Geophys. Union 83, 117-123.
    [13]
    Burnett, W., Kim, G., Lane-Smith, D., 2001. Use of a continuous radon monitor for assessment of radon in coastal ocean waters. J. Radioanal. Nucl. Chem. 249, 167-172.
    [14]
    Charette, M.A., Buesseler, K.O., Andrews, J.E., 2001. Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary. Limnol. Oceanogr. 46, 465-470.
    [15]
    Charette, M.A., Buesseler, K.O., 2004. Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay (Elizabeth River). Limnol.Oceanogr. 49, 376-385. https://doi.org/10.4319/lo.2004.49.2.0376.
    [16]
    Chung, S.Y., Venkatramanan, S., Park, K.H., Son, J.H., Selvam, S., 2018a. Source and remediation for heavy metals of soils at an iron mine of Ulsan City, Korea. Arab. J.Geosci 11 (24), 769-790.
    [17]
    Chung, S.Y., Venkatramanan, S., Selvam, S., Kim, T.H., 2018b. Time series analyses of hydrological parameter variations and their correlations at a coastal area in Busan, South Korea. Hydrogeol. J. 26 (6), 1875-1885. https://doi.org/10.1007/s10040-018-1739-9.
    [18]
    Corbett, D.R., Chanton, J., Burnett, W., Dillon, K., Rutkowski, C., Fourqurean, J., 1999.Patterns of groundwater discharge into Florida Bay. Limnol. Oceanogr. 44, 973-1185.
    [19]
    Diaz, R.J., Rosenberg, R., 1995. Marine benthic hypoxia:a review of its ecological effects and the behavioural responses of benthic macro fauna. Oceanogr. Mar. Biol. Annu.Rev. 33, 245-303.
    [20]
    Dulaiova, H., Peterson, R., Burnett, W.C., Lane-Smith, D., 2005. A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean. J. Radioanal. Nucl.Chem. 263 (2), 361-365.
    [21]
    Elsdon, T.S., Marthe, B., Nöel, J.D., Diepen Bronwyn, M.G., 2009. Extensive drought negates human influence on nutrients and water quality in estuaries. Sci. Total Environ. 407, 3033-3043.
    [22]
    Garrison, G.H., Glenn, C.R., McMurtry, G.M., 2003. Measurement of submarine groundwater discharge in Kahana Bay, O'ahu. Hawaii. Limnol. Oceanogr. 48, 920-928.
    [23]
    Urquidi-Gaume, M.U., Santos, I.R., Lechuga-Deveze, C., 2016. Submarine groundwater discharge as a source of dissolved nutrients to an arid coastal embayment (La Paz, Mexico). Environ. Earth Sci. 75, 154. https://doi.org/10.1007/s12665-015-4891-8.
    [24]
    Harvey, J., Odum, W., 1990. The influence of tidal marshes on upland groundwater discharge to estuaries. Biogeochem. 217-236.
    [25]
    Johannes, R., 1980. The ecological significance of the submarine discharge of groundwater. Mar. Ecol. Prog. Ser. 3, 365-373.
    [26]
    Kay, E.A., Lau, L.S., Stroup, E.D., Dollar, S.J., Fellows, D.P., Young, R.H.F., 1977.Hydrologic and ecologic inventories of the coastal waters of west Hawaii. Technical Report No. 105. Water Resources Center. University of Hawaii, Honolulu.
    [27]
    Kim, G., Jae, W.R., Dong, W.H., 2008. Radium tracing of submarine groundwater discharge (SGD) and associated nutrient fluxes in a highly-permeable bed coastal zone, Korea. Mar. Chem. 109, 307-317. https://doi.org/10.1016/j.marchem.2007.07.002.
    [28]
    Lau, L.S., Mink, J.F., 2006. Hydrology of the Hawaiian Islands. University of Hawai'i Press, Honolulu.
    [29]
    Lee, D., 1977. A device for measuring seepage flux in lake and estuaries. Limnol.Oceanogr. 22, 140-147.
    [30]
    Lecher, A., Mackey, K., 2018. Synthesizing the effects of submarine groundwater discharge on marine biota. Hydrology 5, 60.
    [31]
    Li, L., Barry, D.A., Stagnitti, F., Parlange, J.Y., 1999. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour. Res. 35, 3253-3259.
    [32]
    Luijendijk, E., Gleeson, T., Moosdorf, N., 2020. Fresh groundwater discharge insignificant for the world's oceans but important for coastal ecosystems Nat. Commun. 11, 1260.https://doi.org/10.1038/s41467-020-15064-8.
    [33]
    MacIntyre, S., Wanninkhof, R., Chanton, J.P., 1995. Trace gas exchange across the air-sea interface in freshwater and coastal marine environments. In:Matson, P.A., Harris, R.C. (Eds.), Biogenic Trace Gases:Measuring Emissions from Soil and Water.Blackwell Sci. Mass, Malden, pp. 52-97.
    [34]
    Martin, J.B., Cable, J.E., Smith, C., Roy, M., Cherrier, J., 2007. Magnitudes of submarine groundwater discharge from marine and terrestrial sources:Indian River Lagoon, Florida. Water Resour. Res. 43 (5), W05440. https://doi.org/10.1029/2006WR005266.
    [35]
    Martin, J.B., Cable, J.E., Swarzenski, P.W., Lindenberg, M., 2004. Mixing of groundwater and surface water:influences on groundwater discharge and contaminant transport.Ground Water 42, 1000-1010.
    [36]
    Mathieu, G., Biscayne, P., Lupton, R., Hammond, D., 1988. System for measurements of 222Rn at low levels in natural waters. Health Phys. 55, 989-992.
    [37]
    Moore, W.S., 1976. Sampling 228Ra in the deep ocean. Deep-Sea Res. 23, 647-651.
    [38]
    Moore, W.S., 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichment. Nature 380, 612.
    [39]
    Moore, W.S., 1997. High fluxes of radium and barium from the mouth of the GangesBrahmaputra River during low river discharge suggest a large groundwater source.Earth Planet Sci. Lett. 150, 141-150.
    [40]
    Moore, W.S., 1999. The subterranean estuary:a reaction zone of groundwater and seawater. Mar. Chem. 65, 111-125.
    [41]
    Moore, W.S., 2003. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry 66 (1-2), 75-93.
    [42]
    Moore, W.S., Arnold, R., 1996. Measurements of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. J. Geophys. Res. 101, 1321-1329.
    [43]
    Moosdorf, N., Oehler, T., 2017. Societal use of fresh submarine groundwater discharge:an overlooked water resource. Earth Sci. Rev. 171, 338-348.
    [44]
    Oberdorfer, J.A., Valentino, M.A., Smith, S.B., 1990. Groundwater contribution to the nutrient budget of Tomales Bay, California. Biogeochemistry 10, 199-216.
    [45]
    Oliviera, J., Burnett, W.C., Mazilli, B.P., Braga, E.S., Farias, L.A., Christoff, J., Furtado, V.V., 2003. Reconnaissance of submarine groundwater discharge at Ubatuba coast, Brazil, using 222Rn as a natural tracer. J. Environ. Radioact. 69, 37-52.
    [46]
    Ouyang, Y., 2012. Estimation of shallow groundwater discharge and nutrient load into a river. Ecol. Eng. 38, 101-104.
    [47]
    Paytan, A., Shellenbarger, G.G., Street, J.H., Gonneea, M.E., Davis, K., Young, M.B., Moore, W.S., 2006. Submarine groundwater discharge:an important source of new inorganic nitrogen to coral reef ecosystems. Limnol. Oceanogr. 51 (1), 343-348.
    [48]
    Prakash, R., Srinivasamoorthy, K., Gopinath, S., Saravanan, K., 2018. Measurement of submarine groundwater discharge using diverse methods in Coleroon Estuary, Tamil Nadu, India. Appl Water Sci. 8, 13. https://doi.org/10.1007/s13201-018-0659-0.
    [49]
    Presto, M.K., Ogston, A.S., Storlazzi, C.D., Field, M.E., 2006. Temporal and Spatial Variability in the Flow and Dispersal of Suspended-Sediment on a Fringing Reef Flat, Molokai, Hawaii. Estuarine, Coast. And Shelf Sci, vol. 67, pp. 67-81.
    [50]
    Rabalais, N.N., Turner, R.E., Quary, D., Wisemen, W.J., Sen Gupta, B.K., 1996. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19, 386-407.
    [51]
    Robinson, C., Li, L., Barry, D.A., 2007. Effect of tidal forcing on a subterranean estuary.Adv. Water Resour. 30, 851-865.
    [52]
    Santos, I.R., Eyre, B.D., Huettel, M., 2012. The driving forces of porewater and groundwater flow in the permeable coastal sediments:a review. Estuar. Coast. Shelf Sci. 98, 1-15.
    [53]
    Sashikkumar, M.C., Selvam, S., Karthikeyan, N., Ramanamurthy, J., Venkatramanan, S., Singaraja, C., 2017a. Remote sensing for recognition and monitoring of vegetation affected by soil properties. J. Geol. Soc. India 90, 609-615.
    [54]
    Sashikkumar, M.C., Selvam, S., Lenin Kalyanasundaram, V., Colins Johnny, J., 2017b. GIS based groundwater modeling study to assess the effect of artificial recharge:a case study from Kodaganar River Basin, Dindigul District, Tamil Nadu. J. Geol. Soc. India 89, 57-64.
    [55]
    Schlüter, M., Sauter, E., Andersen, C., Dahlgaard, H., Dando, P., 2004. Spatial distribution and budget for submarine groundwater discharge in Eckernförde Bay (Western Baltic Sea). Limnol. Oceanogr. 49, 157-167. https://doi.org/10.4319/lo.2004.49.1.0157.
    [56]
    Soetaer, K., Middelburg, J.J., 2006. Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, The Netherlands). Limnol. Oceanogr. 51(1-2), 409-423.
    [57]
    Seitzinger, S.P., Mayorga, E., Bouwman, A.F., Kroeze, C., Beusen, A.H.W., Billen, G., Van Drecht, G., Dumont, E., Fekete, B.M., Garnier, J., Harrison, J.A., 2010. Global river nutrient export:a scenario analysis of past and future trends. Global Biogeochem.Cycles 24, GB0A08.
    [58]
    Selvam, S., 2014. Irrigational feasibility of groundwater and evaluation of hydrochemistry facies in the SIPCOT industrial area, South Tamilnadu, India:a GIS approach. Water Quality Expo. Health 7, 265-284. https://doi.org/10.1007/s12403-014-0146-2.
    [59]
    Selvam, S., Manimaran, G., Sivasubramanian, P., 2013. Hydrochemical characteristics and GIS-based assessment of groundwater quality in the coastal aquifers of Tuticorin corporation, Tamilnadu. India. Appl. Water Sci. 3, 145-159. https://doi.org/10.1007/s13201-012-0068-8.
    [60]
    Selvam, S., Venkatramanan, S., Singaraja, C., 2015. A GIS based assessment of water quality pollution indices for heavy metal contamination in Tuticorin corporation, Tamil Nadu, India. Arab. J. Geosci. 8, 10611-10623. https://doi.org/10.1007/s12517-015-1968-3.
    [61]
    Selvam, S., Venkatramanan, S., Sivasubramanian, P., Chung, S.Y., Singaraja, C., 2017.Geochemical characteristics and evaluation of minor and trace elements pollution in groundwater of Tuticorin City, Tamil Nadu, India using geospatial techniques.J. Geol. Soc. India 90 (1), 62-68.
    [62]
    Selvam, S., Singaraja, C., Venkatramanan, S., Chung, S.Y., 2018. Geochemical appraisal of groundwater quality in Ottapidaram Taluk, Thoothukudi District, Tamil Nadu using graphical and numerical method. J. Geol. Soc. India 92, 313-320.
    [63]
    Singaraja, C., Chidambaram, S., Srinivasamoorthy, K., Anandhan, P., Selvam, S., 2015.A study on assessment of credible sources of heavy metal pollution vulnerability in groundwater of Thoothukudi Districts, Tamilnadu, India. Water Qual. Expo. Health 7, 459-467. https://doi.org/10.1007/s12403-015-0162-x.
    [64]
    Singaraja, C., Chidambaram, S., Jacob, Noble, Selvam, S., Prasanna, M.V., 2016. Tidal effects on groundwater dynamics in shallow coastal aquifers southeast coast of Tamilnadu, India. Arab. J. Geosci 9, 467.
    [65]
    Storlazzi, C.D., Jaffe, B.E., 2003. Coastal Circulation and Sediment Dynamics along West Maui, Hawaii, Part I. U.S. Geological Survey Open-File Report 03-482, p. 28.
    [66]
    Stewart, B.T., Santos, I.R., Tait, D.R., Macklin, P.A., Maher, D.T., 2015. Submarine groundwater discharge and associated fluxes of alkalinity and dissolved carbon into Moreton Bay (Australia) estimated via radium isotopes. Mar. Chem. 174, 1-12.
    [67]
    Street, J.H., Knee, K.L., Grossman, E.E., Paytan, A., 2008. Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawai'i. Mar. Chem. 109 (3-4), 355-376.
    [68]
    Suresh Babu, D.S., Anish, M., Vivekanandan, K.L., Ramanujam, N., Murugan, K.N., Ravindran, A., 2009. An account of submarine groundwater discharge of SW Indian coastal zone. J. Coast Res. 25, 91-104.
    [69]
    Swarzenski, P.W., Reich, C.D., Spechler, R.M., Kindinger, J.L., Moore, W.S., 2007. Using multiple geochemical tracers to characterize the hydrogeology of the submarine spring off Crescent Beach, Florida. Chem. Geol. 179, 187-202.
    [70]
    Taniguchi, M., Burnett, W.C., Cable, J.E., Turner, J.V., 2002. Investigation of submarine groundwater discharge. Hydrol. Process. 16 (11), 2115-2129.
    [71]
    Turner, S.M., Malin, G., Nightingale, P.D., Liss, P.S., 1996. Seasonal variation of dimethyl sulphide in the North Sea and an assessment of fluxes to the atmosphere. Mar. Chem. 54, 245-262.
    [72]
    Valiela, I., Costa, J., Foreman, K., Teal, J.M., Howes, B., Aubrey, D., 1990. Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters.Biogeochemistry 10 (3), 177-197.
    [73]
    Varma, S., Turner, J., Underschultz, J., 2010. Estimation of submarine groundwater discharge into Geographe Bay, Bunbury, western Australia. J. Geochem. Explor. 106, 197-210.
    [74]
    Venkatramanan, S., Chung, S.Y., Kim, T.H., Kim, B., Selvam, S., 2016. Geostatistical techniques to evaluate groundwater contamination and its sources in Miryang City.Korea Environ. Earth Sci. 75, 994-999. https://doi.org/10.1007/s12665-016-5813-0.
    [75]
    Venkatramanan, S., Chung, S.Y., Selvam, S., Lee, S.Y., Elzain, H.M., 2017. Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS. Environ. Sci. Pollut. Res. 24, 23679-23693.
    [76]
    Wang, X., Du, J., Ji, T., Wen, T., Liu, S., Zhang, J., 2014. An estimation of nutrient fluxes via submarine groundwater discharge into the Sanggou Bay-a typical multi-species culture ecosystem in China. Mar. Chem. 167, 113-122.
    [77]
    Wilson, J., Rocha, C., 2012. Regional scale assessment of Submarine Groundwater Discharge in Ireland combining medium resolution satellite imagery and geochemical tracing techniques. Rem. Sens. Environ. 119, 21-34. https://doi.org/10.1016/j.rse.2011.11.018.
    [78]
    Zhou, Y.Q., Befus, K.M., Sawyer, A.H., David, C.H., 2018. Opportunities and challenges in computing fresh groundwater discharge to continental coastlines:a multimodel comparison for the United States Gulf and Atlantic Coasts. Water Resour. Res. 54, 8363-8380.
    [79]
    Zhou, Y., Sawyer, A.H., David, C.H., Famiglietti, J.S., 2019. Fresh submarine groundwater discharge to the near-global coast. Geophys. Res. Lett. 46, 5855-5863.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (238) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return