Volume 12 Issue 1
Dec.  2020
Turn off MathJax
Article Contents
Haojie Wang, Limin Zhang, Kesheng Yin, Hongyu Luo, Jinhui Li. Landslide identification using machine learning[J]. Geoscience Frontiers, 2021, 12(1): 351-364. doi: 10.1016/j.gsf.2020.02.012
Citation: Haojie Wang, Limin Zhang, Kesheng Yin, Hongyu Luo, Jinhui Li. Landslide identification using machine learning[J]. Geoscience Frontiers, 2021, 12(1): 351-364. doi: 10.1016/j.gsf.2020.02.012

Landslide identification using machine learning

doi: 10.1016/j.gsf.2020.02.012
Funds:

This research is supported by the Research Grants Council of the Hong Kong SAR Government (Nos. 16205719, AoE/E-603/18 and-16206217).

  • Received Date: 2019-09-27
  • Rev Recd Date: 2019-12-10
  • Landslide identification is critical for risk assessment and mitigation. This paper proposes a novel machinelearning and deep-learning method to identify natural-terrain landslides using integrated geodatabases. First, landslide-related data are compiled, including topographic data, geological data and rainfall-related data. Then, three integrated geodatabases are established; namely, Recent Landslide Database (RecLD), Relict Landslide Database (RelLD) and Joint Landslide Database (JLD). After that, five machine learning and deep learning algorithms, including logistic regression (LR), support vector machine (SVM), random forest (RF), boosting methods and convolutional neural network (CNN), are utilized and evaluated on each database. A case study in Lantau, Hong Kong, is conducted to demonstrate the application of the proposed method. From the results of the case study, CNN achieves an identification accuracy of 92.5% on RecLD, and outperforms other algorithms due to its strengths in feature extraction and multi dimensional data processing. Boosting methods come second in terms of accuracy, followed by RF, LR and SVM. By using machine learning and deep learning techniques, the proposed landslide identification method shows outstanding robustness and great potential in tackling the landslide identification problem.

  • loading
  • [1]
    AECOM, Lin, B., 2015.24-hour Probable Maximum Precipitation Updating Study. GEO Report No. 314. Geotechnical Engineering Office, Hong Kong Special Administration Region.
    [2]
    Barlow, J., Martin, Y., Franklin, S.E., 2003. Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains, British Columbia. Can. J. Rem. Sens. 29 (4), 510-517.
    [3]
    Chen, H.X., Zhang, S., Peng, M., Zhang, L.M., 2016. A physically-based multi-hazard risk assessment platform for regional rainfall-induced slope failures and debris flows. Eng.Geol. 203, 15-29.
    [4]
    Ching, J., Phoon, K.K., 2018. Constructing site-specific multivariate probability distribution model using Bayesian machine learning. J. Eng. Mech. 145 (1), 04018126.
    [5]
    Ding, A., Zhang, Q., Zhou, X., Dai, B., 2016. Automatic recognition of landslide based on CNN and texture change detection. In:Proceedings of the Chinese Association of Automation (YAC), Youth Academic Annual Conference, Wuhan, China, 11-13 November 2016. IEEE, pp. 444-448.
    [6]
    Friedman, J., Hastie, T., Tibshirani, R., 2000. Additive logistic regression:a statistical view of boosting. Ann. Stat. 28 (2), 337-407.
    [7]
    Friedman, J., Hastie, T., Tibshirani, R., 2001. The Elements of Statistical Learning.Springer Series in Statistics, New York.
    [8]
    Gao, L., Zhang, L.M., Lu, M., 2017. Characterizing the spatial variations and correlations of large rainstorms for landslide study. Hydrol. Earth Syst. Sci. 21 (9), 4573.
    [9]
    Gao, L., Zhang, L.M., Cheung, R.W.M., 2018. Relationships between natural terrain landslide magnitudes and triggering rainfall based on a large landslide inventory in Hong Kong. Landslides 15, 727-740.
    [10]
    Geo, 1996. Compilation of a Database on Landslide Consequence. Submitted by Mitchell, McFarlane, Brentnall & Partners Int. Ltd., Agreement No. GEO 8/95. Geotechnical Engineering Office, Hong Kong Special Administration Region.
    [11]
    Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S.R., Tiede, D., Aryal, J., 2019.Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Rem. Sens. 11 (2), 196.
    [12]
    Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press.
    [13]
    Griffiths, D.V., Huang, J., Fenton, G.A., 2011. Probabilistic infinite slope analysis.Comput. Geotech. 38 (4), 577-584.
    [14]
    Guzzetti, F., Mondini, A.C., Cardinali, M., Fiorucci, F., Santangelo, M., Chang, K.T., 2012.Landslide inventory maps:New tools for an old problem. Earth Sci. Rev. 112 (1-2), 42-66.
    [15]
    Haneberg, W.C., Cole, W.F., Kasali, G., 2009. High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA. Bull. Eng.Geol. Environ. 68 (2), 263-276.
    [16]
    James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Statistical Learning. Springer, New York.
    [17]
    Keyport, R.N., Oommen, T., Martha, T.R., Sajinkumar, K.S., Gierke, J.S., 2018.A comparative analysis of pixel-and object-based detection of landslides from very high-resolution images. Int. J. Appl. Earth Obs. Geoinf. 64, 1-11.
    [18]
    Lary, D.J., Alavi, A.H., Gandomi, A.H., Walker, A.L., 2016. Machine learning in geosciences and remote sensing. Geosci. Front. 7 (1), 3-10.
    [19]
    Li, X.J., Cheng, X.W., Chen, W.T., Chen, G., Liu, S.W., 2015. Identification of forested landslides using Lidar data, object-based image analysis, and machine learning algorithms. Rem. Sens. 7 (8), 9705-9726.
    [20]
    Li, X.Y., Zhang, L.M., Zhang, S., 2018. Efficient Bayesian networks for slope safety evaluation with large quantity monitoring information. Geosci. Front. 9 (6), 1679-1687.
    [21]
    Li, X.Y., Zhang, L.M., Xiao, T., Zhang, S., Chen, C., 2019. Learning failure modes of soil slopes using monitoring data. Probabilist. Eng. Mech. 56, 50-57.
    [22]
    Lo, M.K., Leung, A.Y., 2019. Bayesian updating of subsurface spatial variability for improved prediction of braced excavation response. Can. Geotech. J. 56 (8), 1169-1183. https://doi.org/10.1139/cgj-2018-0409.
    [23]
    Martha, T.R., Kerle, N., Jetten, V., van Westen, C.J., Kumar, K.V., 2010. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116 (1-2), 24-36.
    [24]
    Martha, T.R., Kerle, N., Van Westen, C.J., Jetten, V., Kumar, K.V., 2012. Object-oriented analysis of multi-temporal panchromatic images for creation of historical landslide inventories. ISPRS J. Photogrammetry Remote Sens. 67, 105-119.
    [25]
    Maunsell-Fugro Joint Venture, Geo, 2007. Final Report on Compilation of the Enhanced Natural Terrain Landslide Inventory (ENTLI), Maunsell-Fugro Joint Venture & Geotechnical Engineering Office. Hong Kong Special Administration Region.
    [26]
    McKean, J., Roering, J., 2004. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57 (3-4), 331-351.
    [27]
    Moosavi, V., Talebi, A., Shirmohammadi, B., 2014. Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method.Geomorphology 204, 646-656.
    [28]
    Naidu, S., Sajinkumar, K.S., Oommen, T., Anuja, V.J., Samuel, R.A., Muraleedharan, C., 2018. Early warning system for shallow landslides using rainfall threshold and slope stability analysis. Geosci. Front. 9 (6), 1871-1882.
    [29]
    Papaioannou, I., Straub, D., 2017. Learning soil parameters and updating geotechnical reliability estimates under spatial variability-theory and application to shallow foundations. Georisk 11 (1), 116-128.
    [30]
    Reichenbach, P., Rossi, M., Malamud, B.D., Mihir, M., Guzzetti, F., 2018. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 180, 60-91.
    [31]
    Van Den Eeckhaut, M., Kerle, N., Poesen, J., Hervás, J., 2012. Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data.Geomorphology 173, 30-42.
    [32]
    Wang, H.J., Xiao, T., Li, X.Y., Zhang, L.L., Zhang, L.M., 2019. A novel physically-based model for updating landslide susceptibility. Eng. Geol. 251, 71-80.
    [33]
    Xu, C., 2015. Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies:principles and case studies. Geosci. Front. 6 (6), 825-836.
    [34]
    Zhang, S., Zhang, L.M., Peng, M., Zhang, L.L., Zhao, H.F., Chen, H.X., 2012. Assessment of risks of loose landslide deposits formed by the 2008 Wenchuan earthquake. Nat.Hazards Earth Syst. Sci. 12 (5), 1381-1392.
    [35]
    Zhang, W., Goh, A.T., Zhang, Y., Chen, Y., Xiao, Y., 2015. Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines. Eng.Geol. 188, 29-37.
    [36]
    Zhang, W., Goh, A.T., 2016. Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geosci. Front. 7 (1), 45-52.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1821) PDF downloads(213) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return