Volume 10 Issue 4
Jan.  2021
Turn off MathJax
Article Contents
Yong-Fei Zheng. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10(4): 1223-1254. doi: 10.1016/j.gsf.2019.02.003
Citation: Yong-Fei Zheng. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10(4): 1223-1254. doi: 10.1016/j.gsf.2019.02.003

Subduction zone geochemistry

doi: 10.1016/j.gsf.2019.02.003
Funds:

This study was supported by funds from the Chinese Academy of Sciences (XDB18020303), the Chinese Ministry of Science and Technology (2015CB856100) and the National Natural Science Foundation of China (41590620).

  • Received Date: 2018-11-14
  • Rev Recd Date: 2019-02-14
  • Crustal recycling at convergent plate boundaries is essential to mantle heterogeneity. However, crustal signatures in the mantle source of basaltic rocks above subduction zones were primarily incorporated in the form of liquid rather than solid phases. The physicochemical property of liquid phases is determined by the dehydration behavior of crustal rocks at the slab-mantle interface in subduction channels. Because of the significant fractionation in incompatible trace elements but the full inheritance in radiogenic isotopes relative to their crustal sources, the production of liquid phases is crucial to the geochemical transfer from the subducting crust into the mantle. In this process, the stability of specific minerals in subducting crustal rocks exerts a primary control on the enrichment of given trace elements in the liquid phases. For this reason, geochemically enriched oceanic basalts can be categorized into two types in terms of their trace element distribution patterns in the primitive mantle-normalized diagram. One is island arc basalts (IAB), showing enrichment in LILE, Pb and LREE but depletion in HFSE such as Nb and Ta relative to HREE. The other is ocean island basalts (OIB), exhibiting enrichment in LILE and LREE, enrichment or non-depletion in HFSE but depletion in Pb relative to HREE. In either types, these basalts show the enhanced enrichment of LILE and LREE with increasing their incompatibility relative to normal mid-ocean ridge basalts (MORB).
    The thermal regime of subduction zones can be categorized into two stages in both time and space. The first stage is characterized by compressional tectonism at low thermal gradients. As a consequence, metamorphic dehydration of the subducting crust prevails at forearc to subarc depths due to the breakdown of hydrous minerals such as mica and amphibole in the stability field of garnet and rutile, resulting in the liberation of aqueous solutions with the trace element composition that is considerably enriched in LILE, Pb and LREE but depleted in HFSE and HREE relative to normal MORB. This provides the crustal signature for the mantle sources of IAB. The second stage is indicated by extensional tectonism at high thermal gradients, leading to the partial melting of metamorphically dehydrated crustal rocks at subarc to postarc depths. This involves not only the breakdown of hydrous minerals such as amphibole, phengite and allanite in the stability field of garnet but also the dissolution of rutile into hydrous melts. As such, the hydrous melts can acquire the trace element composition that is significantly enriched in LILE, HFSE and LREE but depleted in Pb and HREE relative to normal MORB, providing the crustal signature for the mantle sources of OIB. In either case, these liquid phases would metasomatize the overlying mantle wedge peridotite at different depths, generating ultramafic metasomatites such as serpentinized and chloritized peridotites, and olivine-poor pyroxenites and hornblendites. As a consequence, the crustal signatures are transferred by the liquid phases from the subducting slab into the mantle.
  • loading
  • [1]
    Abers, G.A., van Keken, P.E., Kneller, E.A., Ferris, A., Stachnik, J.C., 2006. The thermal structure of subduction zones constrained by seismic imaging:implications for slab dehydration and wedge flow. Earth and Planetary Science Letters 241, 387-397.
    [2]
    Abers, G.A., van Keken, P.E., Hacker, B.R., 2017. The cold and relatively dry nature of mantle forearcs in subduction zones. Nature Geoscience 10, 333-337.
    [3]
    Agard, P., Vitale-Brovarone, A., 2013. Thermal regime of continental subduction:the record from exhumed HP-LT terranes (New Caledonia, Oman, Corsica). Tectonophysics 601, 206-215.
    [4]
    Ali, K.A., Stern, R.J., Manton, W.I., Kimura, J.-I., Khamees, H.A., 2009. Geochemistry, Nd isotopes and UePb SHRIMP zircon dating of Neoproterozoic volcanic rocks from the Central Eastern Desert of Egypt:new insights into the ~750 Ma crustforming event. Precambrian Research 171, 1-22.
    [5]
    Allègre, C.J., Ben Othman, D., Polve, M., Richard, P., 1979. The Nd-Sr isotopic correlation in mantle materials and geodynamic consequences. Physics of the Earth and Planetary Interiors 19, 293-306.
    [6]
    Allègre, C.J., 1982. Chemical geodynamics. Tectonophysics 81, 109-132.
    [7]
    Allègre, C.J., Turcotte, D.L., 1986. Implications of a two component marble-cake mantle. Nature 323, 123-127.
    [8]
    Allègre, C.J., Lewin, E., 1989. Chemical structure and history of the Earth:evidence from global non-linear inversion of isotopic data in a three-box model. Earth and Planetary Scieice Letters 96, 61-88.
    [9]
    Amstrong, R.L., 1968. A model for Sr and Pb isotope evolution in a dynamic Earth.Reviews of Geophysics 6, 175-199.
    [10]
    Angiboust, S., Wolf, S., Burov, E., Agard, P., Yamato, P., 2012. Effect of fluid circulation on subduction interface tectonic processes:insights from thermo-numerical modelling. Earth and Planetary Science Letters 357-358, 238-248.
    [11]
    Antignano, A., Manning, C.E., 2008. Rutile solubility in H2O, H2O-SiO2, and H2ONaAlSi3O8 fluids at 0.7-2.0 GPa and 700-1000℃:implications for mobility of nominally insoluble elements. Chemical Geology 255, 283-293.
    [12]
    Arculus, R.J., Lapierre, H., Jaillard, E., 1999. Geochemical window into subduction and accretion processes; Raspas metamorphic complex, Ecuador. Geology 27, 547-550.
    [13]
    Armstrong, R.L., 1968. A model for the evolution of strontium and lead isotopes in a dynamic Earth. Review of Geophysics 6, 175-199.
    [14]
    Audetat, A., Keppler, H., 2005. Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell. Earth and Planetary Science Letters 232, 393-402.
    [15]
    Ayers, J.C., Watson, E.B., 1993. Rutile solubility and mobility in supercritical aqueous fluids. Contributions to Mineralogy and Petrology 114, 321-330.
    [16]
    Bailey, D.K., 1982. Mantle metasomatismdcontinuing chemical change within the Earth. Nature 296, 525-530.
    [17]
    Bailey, D.K., 1987. Mantle metasomatismdperspective and prospect. Geological Society Special Publication 30, 1-13.
    [18]
    Bea, F., Fershtater, G.B., Montero, P., Whitehouse, M., Levin, V.Ya, Scarrow, J.H., Austrheim, H., Pushkariev, E.V., 2001. Recycling of continental crust into the mantle as revealed by Kytlym dunite zircons, Ural Mts., Russia. Terra Nova 13, 407-412.
    [19]
    Bebout, G.E., Ryan, J.G., Leeman, W.P., Bebout, A.E., 1999. Fractionation of trace elements during subduction-zone metamorphism:impact of convergent margin thermal evolution. Earth and Planetary Sciences Letters 171, 63-81.
    [20]
    Bebout, G.E., 2007. Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters 260, 373-393.
    [21]
    Bebout, G.E., 2013. Metasomatism in subduction zones of subducted oceanic slabs, mantle wedges, and the slab-mantle interface. In:Harlov, D.E., Austrheim, H.(Eds.), Metasomatism and the Chemical Transformation of Rock. Springer-Verlag, Berlin Heidelberg, pp. 289-349.
    [22]
    Bebout, G.E., 2014. Chemical and isotopic cycling in subduction zones. Treatise on Geochemistry 4, 703-747.
    [23]
    Bebout, G.E., Penniston-Dorland, S.C., 2016. Fluid and mass transfer at subduction interfacesdthe field metamorphic record. Lithos 240-243, 228-258.
    [24]
    Becker, H., Jochum, K.P., Carlson, R.W., 2000. Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chemical Geology 163, 65-99.
    [25]
    Blichert-Toft, J., Frey, F.A., Albarede, F., 1999. Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285, 879-882.
    [26]
    Bodinier, J.L., Garrido, C.J., Chanefo, I., Bruguier, O., Gervilla, F., 2008. Origin of pyroxenite-peridotite veined mantle by refertilization reactions:evidence from the Ronda peridotite (Southern Spain). Journal of Petrology 49, 999-1025.
    [27]
    Bodinier, J.-L., Godard, M., 2014. Orogenic, ophiolitic, and abyssal peridotites.Treatise on Geochemistry 3, 103-167.
    [28]
    Brenan, J.M., Shaw, H.F., Phinney, D.L., Ryerson, F.J., 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U, and Th:implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters 128, 327-339.
    [29]
    Brenan, J.M., Shaw, H.F., Ryerson, F.J., Phinney, D.L., 1995a. Mineral-aqueous fluid partitioning of trace elements at 900℃ and 2.0 GPa:constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta 59, 3331-3350.
    [30]
    Brenan, J.M., Shaw, H.F., Ryerson, R.J., 1995b. Experimental evidence for the origin of lead enrichment in convergent margin magmas. Nature 378, 54-56.
    [31]
    Brenna, M., Cronin, S.J., Kereszturi, G., Sohn, Y.K., Smith, I.E.M., Wijbrans, J., 2015.Intraplate volcanism influenced by distal subduction tectonics at Jeju Island, Republic of Korea. Bulletin of Volcanology 77, 7. https://doi.org/10.1007/s00445-014-0896-5.
    [32]
    Bromiley, G.D., Redfern, S.A.T., 2008. The role of TiO2 phases during melting of subduction-modified crust:implications for deep mantle melting. Earth and Planetary Science Letters 267, 301-308.
    [33]
    Brueckner, H.K., Medaris Jr., L.G., 2000. A general model for the intrusion and evolution of ‘mantle’ garnet peridotites in high-pressure and ultra-high pressure metamorphic terranes. Journal of Metamorphic Geology 18, 123-134.
    [34]
    Bureau, H., Keppler, H., 1999. Complete miscibility between silicate melts and hydrous fluids in the upper mantle:experimental evidence and geochemical implications. Earth and Planetary Science Letters 165, 187-196.
    [35]
    Buys, J., Spandler, C., Holm, R.J., Richards, S.W., 2014. Remnants of ancient Australia in Vanuatu:implications for crustal evolution in island arcs and tectonic development of the southwest Pacific. Geology 42, 939-942.
    [36]
    Cai, Y., LaGatta, A., Goldstein, S.L., Langmuir, C.H., Gómez-Tuena, A., Martín-del Pozzo, A.L., Carrasco-Núñez, G., 2014. Hafnium isotope evidence for slab melt contributions in the Central Mexican Volcanic Belt and implications for slab melting in hot and cold slab arcs. Chemical Geology 377, 45-55.
    [37]
    Canales, J.P., Carbotte, S.M., Nedimovic, M.R., Carton, H., 2017. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone. Nature Geoscience 10, 864-870.
    [38]
    Chalot-Prat, F., Ganne, J., Lombard, A., 2003. No significant element transfer from the oceanic plate to the mantle wedge during subduction and exhumation of the Tethys lithosphere (Western Alps). Lithos 69, 69-103.
    [39]
    Chase, C.G., 1981. Oceanic island Pb:two-stage histories and mantle evolution.Earth and Planetary Science Letters 52, 277-284.
    [40]
    Chauvel, C., Hofmann, A.W., Vidal, P., 1992. HIMU-EM; the French Polynesian connection. Earth and Planetary Science Letters 110, 99-119.
    [41]
    Chen, Y., Su, B., Guo, S., 2015. The Dabie-Sulu orogenic peridotites:progress and key issues. Science China Earth Sciences 58, 1679-1699.
    [42]
    Chen, L., Zhao, Z.-F., 2017. Origin of continental arc andesites:the composition of source rocks is the key. Journal of Asian Earth Sciences 145, 217-232.
    [43]
    Chen, R.-X., Zheng, Y.-F., 2017. Metamorphic zirconology of continental subduction zones. Journal of Asian Earth Sciences 145, 149-176.
    [44]
    Chen, R.-X., Li, H.-Y., Zheng, Y.-F., Zhang, L., Gong, B., Hu, Z.C., Yang, Y.H., 2017.Crustemantle interaction in a continental subduction channel:evidence from orogenic peridotites in North Qaidam, Northern Tibet. Journal of Petrology 58, 191-226.
    [45]
    Chen, W., Xiong, X.L., Wang, J.T., Xue, S., Li, L., Liu, X.C., Ding, X., Song, M.S., 2018. TiO2 solubility and Nb and Ta partitioning in rutile-silica-rich supercritical fluid systems:implications for subduction zone processes. Journal of Geophysical Research Solid Earth 123, 4765-4782.
    [46]
    Cheng, H., Zhou, H., Yang, Q., Zhang, L., Ji, F., Dick, H., 2016. Jurassic zircons from the southwest Indian ridge. Scientific Reports 6, 26260. https://doi.org/10.1038/srep26260.
    [47]
    Chopin, C., 2003. Ultrahigh-pressure metamorphism:tracing continental crust into the mantle. Earth and Planetary Science Letters 212, 1-14.
    [48]
    Churikova, T., Dorendorf, F., Wörner, G., 2001. Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation.Lithos 42, 1567-1593.
    [49]
    Claoue-Long, J.C., Sobolev, N.V., Shatsky, V.S., Sobolev, A.V., 1991. Zircon response to diamond-pressure metamorphism in the Kokchetav massif. Geology 19, 710-713.
    [50]
    Coltorti, M., Bonadiman, C., Faccini, B., Grégoire, M., O'Reilly, S.Y., Powell, W., 2007.Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos 99, 68-84.
    [51]
    Condie, K.C., 2005. High field strength element ratios in Archean basalts:a window to evolving sources of mantle plumes. Lithos 79, 491-504.
    [52]
    Conrad, C.P., Lithgow-Bertelloni, C., 2004. The temporal evolution of plate driving forces:importance of "slab suction" versus "slab pull" during the Cenozoic.Journal of Geophysical Research 109, B10407. https://doi.org/10.1029/2004JB002991.
    [53]
    Cooper, L.B., Ruscitto, D.M., Plank, T., Wallace, P.J., Syracuse, E.M., Manning, C.E., 2012. Global variations in H2O/Ce:1. Slab surface temperatures beneath volcanic arcs. Geochemistry Geophysics Geosystems 13, Q03024. https://doi.org/10.1029/2011GC003902.
    [54]
    Cooper, K.M., Eiler, J.M., Asimow, P.D., Langmuir, C.H., 2004. Oxygen isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge. Earth and Planetary Science Letters 220, 297-316.
    [55]
    Currie, C.A., Hyndman, R.D., 2006. The thermal structure of subduction zone back arcs. Journal of Geophysical Research 111, B08404. https://doi.org/10.1029/2005JB004024.
    [56]
    Currie, C.A., Huismans, R.S., Beaumont, C., 2008. Thinning of continental backarc lithosphere by flow-induced gravitational instability. Earth and Planetary Science Letters 269, 435-446.
    [57]
    Dai, L.-Q., Zheng, F., Zhao, Z.-F., Zheng, Y.-F., 2017. Recycling of Paleotethyan oceanic crust:geochemical record from postcollisional mafic igneous rocks in the Tongbai-Hong'an orogens. Geological Society of America Bulletin 129, 179-192.
    [58]
    DePaolo, D.J., Wasserburg, G.J., 1976. Nd isotopic variations and petrogenetic models. Geophysical Research Letters 3, 249-252.
    [59]
    DePaolo, D.J., 1979. Implications of correlated Nd and Sr isotopic variations for the chemical evolution of the crust and mantle. Earth and Planetary Science Letters 43, 201-211.
    [60]
    Deschamps, F., Guillot, S., Godard, M., Andreani, M., Hattori, K., 2011. Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments. Terra Nova 23, 171-178.
    [61]
    Dickinson, W.R., Hatherton, T., 1967. Andesitic volcanism and seismicity around the Pacific. Science 557, 801-803.
    [62]
    Donnelly, K.E., Goldstein, S.L., Langmuir, C.H., Spiegelman, M., 2004. Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth and Planetary Science Letters 226, 347-366.
    [63]
    Downes, H., 2007. Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle:ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos 99, 1-24.
    [64]
    Eiler, J.M., Farley, K.A., Valley, J.W., Hofmann, A.W., Stolper, E.M., 1996. Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth and Planetary Science Letters 144, 453-468.
    [65]
    El Korh, A., Schmidt, S.T., Ulianov, A., Potel, S., 2009. Trace element partitioning in HP-LT metamorphic assemblages during subduction-related metamorphism, Ile de Groix, France:a detailed LA-ICPMS study. Journal of Petrology 50, 1107-1148.
    [66]
    Elliott, T., Plank, T., Zindler, A., White, W., Bourbon, B., 1997. Element transport from slab to volcanic front in the Mariana arc. Journal of Geophysical Research 102, 14991-15019.
    [67]
    Elliott, T., 2003. Tracers of the slab. Geophysical Monograph 138, 23-45.
    [68]
    Espanon, V.R., Chivas, A.R., Kinsley, L.P.J., Dosseto, A., 2014. Geochemical variations in the Quaternary Andean back-arc volcanism, southern Mendoza, Argentina.Lithos 208-209, 251-264.
    [69]
    Farina, F., Stevens, G., 2011. Source controlled 87Sr/86Sr isotope variability in granitic magmas:the inevitable consequence of mineral-scale isotopic disequilibrium in the protolith. Lithos 122, 189-200.
    [70]
    Farmer, G.L., 2014. Continental basaltic rocks. Treatise on Geochemistry 4, 75-110.
    [71]
    Feineman, M.D., Ryerson, F.J., DePaolo, D.J., Plank, T., 2007. Zoisite-aqueous fluid trace element partitioning with implications for subduction zone fluid composition. Chemical Geology 239, 250-265.
    [72]
    Ferrando, S., Frezzotti, M., Dallai, L., Compagnoni, R., 2005. Multiphase solid inclusions in UHP rocks (Su-Lu, China):remnants of supercritical silicate-rich aqueous fluids released during continental subduction. Chemical Geology 223, 68-81.
    [73]
    Ferrando, S., Frezzotti, M.L., Petrelli, M., Compagnoni, R., 2009. Metasomatism of continental crust during subduction:the UHP whiteschists from the southern dora-maira massif (Italian western Alps). Journal of Metamorphic Geology 27, 739-756.
    [74]
    Foley, S.F., Wheller, G.E., 1990. Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic rocks:the role of residual titanites. Chemical Geology 85, 1-18.
    [75]
    Foley, S.F., Barth, M.G., Jenner, G.A., 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta 64, 933-938.
    [76]
    Forsyth, D., Uyeda, S., 1975. On the relative importance of the driving forces of plate motions. Geophysical Journal of the Royal Astronomical Society 43, 163-200.
    [77]
    Frets, E.C., Tommasi, A., Garrido, C.J., Vauchez, A., Mainprice, D., Targuisti, K., Amri, I., 2014. The Beni Bousera peridotite (Rif Belt, Morocco):an oblique-slip low-angle shear zone thinning the subcontinental mantle lithosphere. Journal of Petrology 55, 283-313.
    [78]
    Frey, F.A., Green, D.H., 1974. The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochimica et Cosmochimica Acta 38, 1023-1059.
    [79]
    Frezzotti, M.L., Ferrando, S., 2015. The chemical behavior of fluids released during deep subduction based on fluid inclusions. American Mineralogist 100, 352-377.
    [80]
    Gaetani, G.A., Asimow, P.D., Stolper, E.M., 2008. Titanium coordination and rutile saturation in eclogite partial melts at upper mantle conditions. Earth and Planetary Science Letters 272, 720-729.
    [81]
    Gao, J., John, T., Klemd, R., Xiong, X.M., 2007. Mobilization of TieNbeTa during subduction:evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NWChina. Geochimica et Cosmochimica Acta 71, 4974-4996.
    [82]
    Gao, X.-Y., Zheng, Y.-F., Chen, Y.-X., 2012. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen:evidence from multiphase solid inclusions in garnet. Journal of Metamorphic Geology 30, 193-212.
    [83]
    Garrido, C.J., Bodinier, J.L., 1999. Diversity of mafic rocks in the Ronda peridotite:evidence for pervasive melt-rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. Journal of Petrology 40, 729-754.
    [84]
    Gast, P.W., Tilton, G.R., Hedge, C., 1964. Isotopic composition of lead and strontium from ascension and gough islands. Science 145, 1181-1185.
    [85]
    Gebauer, D., 1996. A P-T-t-path for an (ultra?-) high-pressure ultramafic/mafic rockassociation and its felsic country-rocks based on SHRIMP-dating of magmatic and metamorphic zircon domains; example:Alpine Arami (Central Swiss Alps).Geophysical Monograph 95, 307-329.
    [86]
    Gómez-Tuena, A., Mori, L., Goldstein, S.L., Pérez-Arvizu, O., 2011. Magmatic diversity of western Mexico as a function of metamorphic transformations in the subducted oceanic plate. Geochimica et Cosmochimica Acta 75, 213-241.
    [87]
    Green, T.H., Green, D.H., Ringwood, A.E., 1967. The origin of high-alumina basalts and their relationships to quartz tholeiites and alkali basalts. Earth and Planetary Science Letters 2, 41-51.
    [88]
    Green, T.H., 1981. Experimental evidence for the role of accessory phases in magma genesis. Journal of Volcanology and Geothermal Research 10, 405-422.
    [89]
    Green, T.H., Pearson, N.J., 1986. Ti-rich accessory phase saturation in hydrous maficfelsic compositions at high P, T. Chemical Geology 54, 185-201.
    [90]
    Green, D.H., Hibberson, W.O., Rosenthal, A., Kovacs, I., Yaxley, G.M., Falloon, T.J., Brink, F., 2014. Experimental study of the influence of water on melting and phase assemblages in the upper mantle. Journal of Petrology 55, 2067-2096.
    [91]
    Grimes, C.B., John, B.E., Cheadle, M.J., Mazdab, F.K., Wooden, J.L., Swapp, S., Schwartz, J.J., 2009. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contributions to Mineralogy and Petrology 158, 757-783.
    [92]
    Haase, K.M., Freund, S., Koepke, J., Hauff, F., Erdmann, M., 2015. Melts of sediments in the mantle wedge of the Oman ophiolite. Geology 43, 275-278.
    [93]
    Hack, A.C., Thompson, A.B., Aerts, M., 2007. Phase relations involving hydrous silicate melts, aqueous fluids, and minerals. Review in Mineralogy & Geochemistry 65, 129-185.
    [94]
    Hacker, B.R., Peacock, S.M., Abers, G.A., Holloway, S.D., 2003. Subduction factory 2.Are intermediate-depth earthquakes in subducting slabs linked to metamorphic, dehydration reactions? Journal of Geophysical Research Solid Earth 108, 2030. https://doi.org/10.1029/2001jb001129.
    [95]
    Hacker, B.R., 2008. H2O subduction beyond arcs. Geochemistry Geophysics Geosystems 9, Q03001. https://doi.org/10.1029/2007GC001707.
    [96]
    Hall, P.S., 2012. On the thermal evolution of the mantle wedge at subduction zones.Physics of Earth and Planetary Interior 198-199, 9-27.
    [97]
    Halliday, A.N., Davies, G.R., Lee, D.C., Tommasini, S., Paslick, C.R., Fitton, J.G., James, D.E., 1992. Lead isotope evidence for young trace element enrichment in the oceanic upper mantle. Nature 359, 623-627.
    [98]
    Halliday, A.N., Lee, D.-C., Tommasini, S., Davies, G.R., Paslick, C.R., Fitton, J.G., James, D.E., 1995. Incompatible trace elements in OIB and MORB source enrichment in the sub-oceanic mantle. Earth and Planetary Science Letters 133, 379-395.
    [99]
    Hammouda, T., Pichavant, M., Chaussidon, M., 1996. Isotopic equilibration during partial melting:an experimental test of the behaviour of Sr. Earth and Planetary Science Letters 144, 109-121.
    [100]
    Hargrove, U.S., Stern, R., Kimura, J.-I., Manton, W., Johnson, P., 2006. How juvenile is the ArabianeNubian Shield? Evidence from Nd isotopes and preNeoproterozoic inherited zircon in the Bi'r Umq suture zone, Saudi Arabia.Earth and Planetary Science Letters 252, 308-326.
    [101]
    Harmon, R.S., Hoefs, J., 1995. Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings.Contributions to Mineralogy and Petrology 120, 95-114.
    [102]
    Harris, N., Ayres, M., 1998. The implications of Sr-isotope disequilibrium for rates of prograde metamorphism and melt extraction in anatectic terrains. Geological Society Special Publications 138, 171-182.
    [103]
    Hart, S.R., Schilling, J.G., Powell, J.L., 1973. Basalts from Iceland and along the reykjanes ridge:Sr isotope geochemistry. Nature 246, 104-107.
    [104]
    Hart, S., Zindler, A., 1989. Constraints on the nature and development of chemical heterogeneities in the mantle. In:Peltier, W.R. (Ed.), Mantle Convection:Plate Tectonics and Global Dynamics. Gorden and Breach Science Publisher, New York, pp. 261-388.
    [105]
    Hauri, E.H., 1996. Major-element variability in the Hawaiian mantle plume. Nature 382, 415-419.
    [106]
    Hawkesworth, C.J., Hergt, J.M., Ellam, R.M., McDermott, F., 1991. Element fluxes associated with subduction related magmatism. Philosophical Transaction of the Royal Society A335, 393-405.
    [107]
    Hawkesworth, C.J., Gallagher, K., Hergt, J.M., McDermott, F., 1993. Mantle and slab contributions in arc magmas. Annual Review of Earth and Planetary Sciences 21, 175-204.
    [108]
    Hayden, L.A., Watson, E.B., 2007. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth and Planetary Science Letters 258, 561-568.
    [109]
    Hayden, L.A., Manning, C.E., 2011. Rutile solubility in supercritical NaAlSi3O8-H2O fluids. Chemical Geology 284, 74-81.
    [110]
    Hermann, J., Rubatto, D., Korsakov, A., Shatsky, V.S., 2001. Multiple growth during fast exhumation of diamondiferous deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology 141, 66-82.
    [111]
    Hermann, J., 2002. Allanite:thorium and light rare earth element carrier in subducted crust. Chemical Geology 192, 289-306.
    [112]
    Hermann, J., Spandler, C., Hack, A., Korsakov, A.V., 2006a. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks:implications for element transfer in subduction zones. Lithos 92, 399-417.
    [113]
    Hermann, J., Rubatto, D., Trommsdorff, V., 2006b. Sub-solidus Oligocene zircon formation in garnet peridotite during fast decompression and fluid infiltration(Duria, Central Alps). Mineralogy and Petrology 88, 181-206.
    [114]
    Hermann, J., Spandler, C.J., 2008. Sediment melts at sub-arc depths:an experimental study. Journal of Petrology 49, 717-740.
    [115]
    Hermann, J., Rubatto, D., 2009. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chemical Geology 265, 512-526.
    [116]
    Hermann, J., Rubatto, D., 2014. Subduction of continental crust to mantle depth:geochemistry of ultrahigh-pressure rocks. Treatise on Geochemistry 4, 309-340.
    [117]
    Hermann, J., Zheng, Y.-F., Rubatto, D., 2013. Deep fluids in subducted continental crust. Elements 9, 281-288.
    [118]
    Hirschmann, M.M., Stolper, E.M., 1996. A possible role for garnet pyroxenite in the origin of the "garnet signature" in MORB. Contributions to Mineralogy and Petrology 124, 185-208.
    [119]
    Hofmann, A.W., Hart, S.R., 1978. An assessment of local and regional isotopic equilibrium in the mantle. Earth and Planetary Science Letters 39, 44-62.
    [120]
    Hofmann, A.W., White, W.M., 1982. Mantle plumes from ancient oceanic crust.Earth and Planetary Science Letters 57, 421-436.
    [121]
    Hofmann, A.W., Jochum, K.P., Seufert, M., White, W.M., 1986. Nb and Pb in oceanic basalts:new constraints on mantle evolution. Earth and Planetary Science Letters 79, 33-45.
    [122]
    Hofmann, A.W., 1988. Chemical differentiation of the Earth:the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 90, 297-314.
    [123]
    Hofmann, A.W., 1989. Geochemistry and models of mantle circulation. Philosophical Transactions of the Royal Society of London A328, 425-439.
    [124]
    Hofmann, A.W., 1997. Mantle geochemistry:the message from oceanic volcanism.Nature 385, 219-229.
    [125]
    Hofmann, A.W., 2003. Sampling mantle heterogeneity through oceanic basalts:isotopes and trace elements. Treatise on Geochemistry 2, 61-101.
    [126]
    Hou, T., Zhang, Z.-C., Encarnacion, J., Santosh, M., Sun, Y.-L., 2013. The role of recycled oceanic crust in magmatism and metallogeny:OseSreNd isotopes, UePb geochronology and geochemistry of picritic dykes in the Panzhihua giant FeeTi oxide deposit, central Emeishan large igneous province, SW China.Contributions to Mineralogy and Petrology 165, 805-822.
    [127]
    Huang, J., Xiao, Y.L., 2015. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks from the Dabie UHP Orogen, China:insights into supercritical liquids in continental subduction zones. International Geology Review 57, 1103-1129.
    [128]
    Huang, S.C., Zheng, Y.F., 2017. Mantle geochemistry:insights from ocean island basalts. Science China Earth Sciences 60, 1976-2000.
    [129]
    Hyndman, R.D., Currie, C.A., Mazzotti, S.P., 2005. Subduction zone backarcs, mobile belts, and orogenic heat. Geological Society of America Today 15, 4-10.
    [130]
    Hyndman, R.D., 2013. Downdip landward limit of Cascadia great earthquake rupture. Journal of Geophysical Research Solid Earth 118, 5530-5549.
    [131]
    Iizuka, Y., Nakamura, E., 1995. Experimental study of the slab-mantle interaction and implications for the formation of titanoclinohumite at deep subduction zone. Proceedings of the Japan Academy 71B, 159-164.
    [132]
    Isacks, B.L., Oliver, J., Sykes, L.R., 1968. Seismology and the new global tectonics.Journal of Geophysical Research 73, 5855-5899.
    [133]
    Jackson, M.G., Hart, S.R., Saal, A.E., Shimizu, N., Kurz, M.D., Blusztajn, J.S., Skovgaard, A.C., 2008. Globally elevated titanium, tantalum, and niobium(TITAN) in ocean island basalts with high 3He/4He. Geochemistry Geophysics Geosystems 9, Q04027. https://doi.org/10.1029/2007GC001876.
    [134]
    Jacobsen, S.B., Wasserburg, G.J., 1980. A two reservoir recycling model for mantlecrust evolution. Proceedings of the National Academy of Sciences 77, 6298-6302.
    [135]
    Jacques, G., Hoernle, K., Gill, J.B., Hauff, F., Wehrmann, H., Garbe-Schönber, D., van den Bogaard, P., Bindeman, I., Lara, L.E., 2013. Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5-38° S):constraints on mantle wedge and source input compositions. Geochimica et Cosmochimica Acta 123, 218-243.
    [136]
    Jarrard, R.D., 1986. Relations among subduction parameters. Reviews of Geophysics 24, 217-284.
    [137]
    John, T., Scherer, E.E., Haase, K., Schenk, V., 2004. Trace element fractionation during fluid-induced eclogitization in a subducting slab:trace element and Lu-Hf-SmNd isotope systematics. Earth and Planetary Science Letters 227, 441-456.
    [138]
    Johnson, M.C., Plank, T., 1999. Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry Geophysics Geosystems 1, 1999GC000014.
    [139]
    Katayama, I., Maruyama, S., Parkinson, C.D., Terado, K., Sano, Y., 2001. Ion microprobe U-Pb zircon geochronology of peak and retrograde stages of ultrahighpressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan. Earth and Planetary Science Letters 188, 185-198.
    [140]
    Katayama, I., Muko, A., Iizuka, T., Maruyama, S., Terada, K., Tsutsumi, Y., Sano, Y., Zhang, R.Y., Liou, J.G., 2003. Dating of zircon from Ti-clinohumiteebearing garnet peridotite:implication for timing of mantle metasomatism. Geology 31, 713-716.
    [141]
    Kawamoto, T., Kanzaki, M., Mibe, K., Matsukage, K.N., Ono, S., 2012. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism. Proceedings of the National Academy of Sciences 109, 18695-18700.
    [142]
    Kawamoto, T., Yoshikawa, M., Kumagai, Y., Mirabueno, M.H.T., Okuno, M., Kobayashi, T., 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proceedings of the National Academy of Sciences 110, 9663-9668.
    [143]
    Kay, R.W., 1980. Volcanic arc magmas:implications of a melting-mixed model for element recycling in the crusteupper mantle system. The Journal of Geology 88, 497-522.
    [144]
    Kelemen, P., 1995. Genesis of high Mg# andesites and the continental crust. Contributions to Mineralogy and Petrology 120, 1-19.
    [145]
    Kelemen, P.B., Parmentier, E.M., Rilling, J., Mehl, L., Hacker, B.R., 2003. Thermal structure due to solid-state flow in the mantle wedge beneath arcs. Geophysical Monograph 138, 293-311.
    [146]
    Kelemen, P.B., Hanghoj, K., Greene, A.R., 2014. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on Geochemistry 4, 749-805.
    [147]
    Kelley, K.A., Plank, T., Ludden, J.N., Staudigel, H., 2003. Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochemistry Geophysics Geosystems 4 (6), 8910. https://doi.org/10.1029/2002GC000435.
    [148]
    Kelley, K.A., Plank, T., Newman, S., Stolper, E.M., Grove, T.L., Parman, S.W., Hauri, E.H., 2010. Mantle melting as a function of water content beneath the Mariana arc. Journal of Petrology 51, 1711-1738.
    [149]
    Keppler, H., 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380, 237-240.
    [150]
    Kessel, R., Schmidt, M.W., Ulmer, P., Pettke, T., 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth.Nature 437, 724-727.
    [151]
    Kimura, J.-I., van Keken, P., Hacker, B.R., Kawabata, H., Yoshida, T., Stern, R.J., 2009.Arc Basalt Simulator (ABS) version 2, a simulation model for slab dehydration, fluid-mantle reaction, and fluid-fluxed mantle melting for arc basalts:modeling scheme and application. Geochemistry Geophysics Geosystems 7, Q09004.https://doi.org/10.1029/2008GC002217.
    [152]
    Kimura, J.-I., Kawabata, H., 2015. Ocean Basalt Simulator version 1 (OBS1):trace element mass balance in adiabatic melting of a pyroxenite-bearing peridotite.Geochemistry Geophysics Geosystems 16, 267-300.
    [153]
    Kincaid, C., Griffiths, R.W., 2003. Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature 425, 58-62.
    [154]
    Kincaid, C., Griffiths, R.W., 2004. Variability in flow and temperatures within mantle subduction zones. Geochemistry Geophysics Geosystems 5, Q06002. https://doi.org/10.1029/2003GC000666.
    [155]
    Kita, I., Asakawa, Y., Yuri, T., Yasui, M., Shimoike, Y., Yamamoto, M., Hasegawa, H., Taguchi, S., Sumino, H., 2012. Rifting of Kyushu, Japan, based on the faultcontrolled concurrent eruption of oceanic island basalt-type and island arctype lavas. Bulletin of Volcanology 74, 1121-1139.
    [156]
    Klemme, S., Blundy, J.D., Wood, B.J., 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta 66, 3109-3123.
    [157]
    Klimm, K., Blundy, J.D., Green, T.H., 2008. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. Journal of Petrology 49, 523-553.
    [158]
    Knesel, K.M., Davidson, J.P., 1996. Isotopic disequilibrium during melting of granite and implications for crustal contamination of magmas. Geology 24, 243-246.
    [159]
    Knesel, K.M., Davidson, J.P., 1999. Sr isotope systematic during melt generation by intrusion of basalt into continental crust. Contributions to Mineralogy and Petrology 136, 285-295.
    [160]
    Kogiso, T., Tatsumi, Y., Nakano, S., 1997. Trace element transport during dehydration processed in the subduction oceanic crust:1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters 148, 193-205.
    [161]
    Kogiso, T., Hirschmann, M.M., Pertermann, M., 2004. High-pressure partial melting of mafic lithologies in the mantle. Journal of Petrology 45, 2407-2422.
    [162]
    Kogiso, T., Hirschmann, M.M., 2006. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth and Planetary Science Letters 249, 188-199.
    [163]
    Kohn, M.J., Castro, A.E., Kerswell, B.C., Ranero, C.R., Spear, F.S., 2018. Shear heating reconciles thermal models with the metamorphic rock record of subduction.Proceedings of the National Academy of Sciences 115, 11706-11711.
    [164]
    Kröner, A., Windley, B., Badarch, G., Tomurtogoo, O., Hegner, E., Jahn, B., Gruschka, S., Khain, E., Demoux, A., Wingate, M., 2007. Accretionary growth and crust formation in the central asian orogenic belt and comparison with the arabianenubian shield. Geological Society of America Memoirs 200, 181-209.
    [165]
    Kushiro, I., 2001. Partial melting experiments on peridotite and origin of mid-ocean ridge basalts. Annual Review of Earth and Planetary Sciences 29, 71-107.
    [166]
    Lallemand, S., Heuret, A., Boutelier, D., 2005. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochemistry Geophysics Geosystems 6, Q09006. https://doi.org/10.1029/2005GC000917.
    [167]
    Lambart, S., Laporte, D., Schiano, P., 2013. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts:review of the experimental constraints. Lithos 160-161, 14-36.
    [168]
    Lambart, S., Baker, M.B., Stolper, E.M., 2016. The role of pyroxenite in basalt genesis:melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. Journal of Geophysical Research Solid Earth 121, 5708-5735.
    [169]
    Leng, W., Mao, W., 2015. Geodynamic modeling of thermal structure of subduction zones. Science China Earth Sciences 58, 1070-1083.
    [170]
    Li, H.-Y., Chen, R.-X., Zheng, Y.-F., Hu, Z.C., 2016. The crustemantle interaction in continental subduction channels:zircon evidence from orogenic peridotite in the Sulu orogen. Journal of Geophysical Research Solid Earth 121, 1-26.
    [171]
    Li, H.-Y., Chen, R.-X., Zheng, Y.-F., Hu, Z.C., Xu, L.J., 2018a. Crustal metasomatism at the slab-mantle interface in a continental subduction channel:geochemical evidence from orogenic peridotite in the Sulu orogen. Journal of Geophysical Research Solid Earth 123, 2174-2198.
    [172]
    Li, H.-Y., Chen, R.-X., Zheng, Y.-F., Hu, Z.C., 2018b. Water in garnet pyroxenite from the Sulu orogen:implications for crust-mantle interaction in continental subduction zone. Chemical Geology 478, 18-38.
    [173]
    Liou, J.G., Ernst, W.G., Zhang, R.Y., Tsujimori, T., Jahn, J.G., 2009. Ultrahigh-pressure minerals and metamorphic terranes-the view from China. Journal of Asian Earth Sciences 35, 199-231.
    [174]
    Lissenberg, C.J., Rioux, M., Shimizu, N., Bowring, S.A., Mével, C., 2009. Zircon dating of oceanic crustal accretion. Science 323, 1048-1050.
    [175]
    Liu, Y.S., Gao, S., Hu, Z.C., Gao, C.G., Zong, K.Q., Wang, D.B., 2010. Continental and oceanic crust recycling-induced melteperidotite interactions in the TransNorth China Orogen:UePb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology 51, 537-571.
    [176]
    Longhi, J., 2002. Some phase equilibrium systematics of lherzolite melting:1. Geochemistry Geophysics Geosystems 3 (3), 2001GC000204.
    [177]
    Lopez Sanchez-Vizcaino, V., Rubatto, D., Gomez-Pugnaire, M.T., Trommsdorff, V., Muntener, O., 2001. Middle miocene HP metamorphism and fast exhumation of the nevado filabride complex, SE Spain. Terra Nova 13, 327-332.
    [178]
    Malaspina, N., Hermann, J., Scambelluri, M., Compagnoni, R., 2006a. Polyphase inclusions in garnet-orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth and Planetary Science Letters 249, 173-187.
    [179]
    Malaspina, N., Hermann, J., Scambelluri, M., Compagnoni, R., 2006b. Multistage metasomatism in ultrahigh-pressure mafic rocks from the North Dabie Complex (China). Lithos 90, 19-42.
    [180]
    Malaspina, N., Hermann, J., Scambelluri, M., 2009. Fluid/mineral interaction in UHP garnet peridotite. Lithos 107, 38-52.
    [181]
    Malaspina, N., Scambelluri, M., Poli, S., van Roermund, H.L.M., Langenhorst, F., 2010. The oxidation state of mantle wedge majoritic garnet websterites metasomatised by C-bearing subduction fluids. Earth and Planetary Science Letters 298, 417-426.
    [182]
    Mann, U., Schmidt, M.W., 2015. Melting of pelitic sediments at subarc depths:1. Flux vs. fluid-absent melting and a parameterization of melt productivity.Chemical Geology 404, 150-167.
    [183]
    Manning, C.E., 2004. The chemistry of subduction-zone fluids. Earth and Planetary Science Letters 223, 1-16.
    [184]
    Manning, C.E., Wilke, M., Schmidt, C., Cauzid, J., 2008. Rutile solubility in albite-H2O and Na2Si3O7-H2O at high temperatures and pressures by in-situ synchrotron radiation micro-XRF. Earth and Planetary Science Letters 272, 730-737.
    [185]
    McCoy-West, A.J., Baker, J.A., Faure, K., Wysoczanski, R., 2010. Petrogenesis and origins of mid-Cretaceous continental intraplate volcanism in Marlborough, New Zealand:implications for the long-lived HIMU magmatic mega-province of the SW Pacific. Journal of Petrology 51, 2003-2045.
    [186]
    McCulloch, M.T., Gamble, J.A., 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters 102, 358-374.
    [187]
    McDonough, W.F., 1991. Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology. Philosophical Transaction on the Royal Society of London A335, 407-418.
    [188]
    McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chemical Geology 120, 223-253.
    [189]
    McKenzie, D.P., Parker, R.L., 1967. The North Pacific:an example of tectonics on a sphere. Nature 216, 1276-1280.
    [190]
    McKenzie, D., 1989. Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters 95, 53-72.
    [191]
    McKenzie, D., O'Nions, K.R., 1995. The source regions of ocean island basalts. Journal of Petrology 36, 133-159.
    [192]
    Menzies, M.A., Murthy, V.R., 1980. Mantle metasomatism as a precursor to the genesis of alkaline magmas-isotopic evidence. America Journal of Science 280A, 622-638.
    [193]
    Miller, C., Zanetti, A., Thöni, M., 2007. Eclogitisation of gabbroic rocks:redistribution of trace elements and Zr in rutile thermometry in an Eo-Alpine subduction zone(Eastern Alps). Chemical Geology 239, 96-123.
    [194]
    Morgan, W.J., 1968. Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research 73, 1959-1982.
    [195]
    Morris, J.D., Hart, S.R., 1983. Isotopic and incompatible trace element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure. Geochimica et Cosmochimica Acta 47, 2015-2030.
    [196]
    Morris, J.D., Leeman, W.P., Tera, F., 1990. The subducted component in island arc lavas:constraints from Be isotopes and BeBe systematics. Nature 344, 31-36.
    [197]
    Mullen, E.K., Weis, D., 2015. Evidence for trench-parallel mantle flow in the northern Cascade Arc from basalt geochemistry. Earth and Planetary Science Letters 414, 100-107.
    [198]
    Ni, H.W., Zhang, L., Xiong, X.L., Mao, Z., Wang, J.Y., 2017. Supercritical fluids at subduction zones:evidence, formation condition, and physicochemical properties. Earth-Science Reviews 167, 62-71.
    [199]
    Nimis, P., Morten, L., 2000. PeT evolution of ‘crustal’ garnet peridotites and included pyroxenites from Nonsberg area (upper Austroalpine), NE Italy:from the wedge to the slab. Journal of Geodynamics 30, 93-115.
    [200]
    Niu, Y.L., Regelous, M., Wendt, I.J., Batiza, R., O'Hara, M.J., 2002. Geochemistry of near-EPR seamounts:importance of source vs. process and the origin of enriched mantle component. Earth and Planetary Science Letters 199, 327-345.
    [201]
    Niu, Y.L., O'Hara, M.J., 2003. Origin of ocean island basalts:a new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysics Research 108 (B4), 2209. https://doi.org/10.1029/2002JB002048.
    [202]
    O'Nions, R.K., Evenson, N.M., Hamilton, P.J., 1979. Geochemical modeling of mantle differentiation and crustal growth. Journal of Geophysical Research 84, 6091-6101.
    [203]
    O'Reilly, S.Y., Griffin, W.L., 1988. Mantle metasomatism beneath western Victoria, Australia, I:metasomatic processes in Cr-diopside lherzolites. Geochimica et Cosmochimica Acta 52, 433-447.
    [204]
    O'Reilly, S.Y., Griffin, W.L., 2013. Mantle metasomatism. In:Harlow, D.E., Austrheim, H. (Eds.), Metasomatism and the Chemical Transformation of Rock.Springer-Verlag, Berlin Heidelberg, pp. 471-534.
    [205]
    Palme, H., O'Neill, H.StC., 2014. Cosmochemical estimates of mantle composition.Treatise on Geochemistry 3, 1-39.
    [206]
    Panter, K.S., Blusztajn, J., Hart, S.R., Kyle, P.R., Esser, R., McIntosh, W.C., 2006. The origin of HIMU in the SW Pacific:evidence from intraplate volcanism in southern New Zealand and subantarctic islands. Journal of Petrology 47, 1673-1704.
    [207]
    Peacock, S.M., Rushmer, T., Thompson, A.B., 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters 121, 227-244.
    [208]
    Peacock, S.M., 1996. Thermal and petrologic structure of subduction zones.Geophysical Monograph Series 96, 119-133.
    [209]
    Peacock, S.M., Wang, K.L., 1999. Seismic consequences of warm versus cool subduction metamorphism:examples from southwest and northeast Japan. Science 286, 937-939.
    [210]
    Peacock, S.M., 2003. Thermal structure and metamorphic evolution of subducting slabs. Geophysical Monograph 138, 7-22.
    [211]
    Peacock, S.M., van Keken, P.E., Holloway, S.D., Hacker, B.R., Abers, G.A., Fergason, R.L., 2005. Thermal structure of the Costa Rica-Nicaragua subduction zone. Physics of the Earth and Planetary Interiors 149, 187-200.
    [212]
    Pearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual review of Earth and planetary sciences 23, 251-285.
    [213]
    Pearce, J.A., Baker, P.E., Harvey, P.K., Luff, I.W., 1995. Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath the South Sandwich island arc. Journal of Petrology 36, 1073-1109.
    [214]
    Pearce, J.A., Stern, R.J., Bloomer, S.H., Fryer, P., 2005. Geochemical mapping of the Mariana arc-basin system:implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems 6, Q07006.https://doi.org/10.1029/2004GC000895.
    [215]
    Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14-48.
    [216]
    Penniston-Dorland, S.C., Kohn, M.J., Manning, C.E., 2015. The global range of subduction zone thermal structures from exhumed blueschists and eclogites:rocks are hotter than models. Earth and Planetary Science Letters 428, 243-254.
    [217]
    Perrin, A., Goes, S., Prytulak, J., Davies, D.R., Wilson, C., Kramer, S., 2016. Reconciling mantle wedge thermal structure with arc lava thermobarometric determinations in oceanic subduction zones. Geochemistry, Geophysics, Geosystems 17, 4105-4127.
    [218]
    Pertermann, M., Hirschmann, M.M., 2003a. Partial melting experiments on a MORBlike pyroxenite between 2 and 3 GPa:constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. Journal of Geophysical Research 108B, 2125.
    [219]
    Pertermann, M., Hirschmann, M.M., 2003b. Anhydrous partial melting experiments on MORB-like eclogite:phase relations, phase compositions and mineral/melt partitioning of major elements at 2-3 GPa. Journal of Petrology 44, 2173-2201.
    [220]
    Pertermann, M., Hirschmann, M.M., Hametner, K., Gunther, D., Schmidt, M.W., 2004.Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite. Geochemistry, Geophysics, Geosystems 5, Q05a01. https://doi.org/10.1029/2003GC000638.
    [221]
    Pilet, S., Hernandez, J., Sylvester, P., Poujol, M., 2005. The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth and Planetary Science Letters 236, 148-166.
    [222]
    Pilet, S., Baker, M.B., Stolper, E.M., 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916-919.
    [223]
    Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325-394.
    [224]
    Plank, T., 2005. Constraints from Th/La on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology 46, 921-944.
    [225]
    Plank, T., 2014. The chemical composition of subducting sediments. Treatise on Geochemistry 4, 607-629.
    [226]
    Plank, T., Forsyth, D., 2016. Thermal structure and melting conditions in the mantle beneath the basin and range province from seismology and petrology.Geochemistry Geophysics Geosystems 17, 1312-1338.
    [227]
    Portner, R.A., Daczko, N.R., Murphy, M.J., Pearson, N.J., 2011. Enriching mantle melts within a dying mid-ocean spreading ridge:insights from Hf-isotope and trace element patterns in detrital oceanic zircon. Lithos 126, 355-368.
    [228]
    Prytulak, J., Elliott, T., 2007. TiO2 enrichment in ocean island basalts. Earth and Planetary Science Letters 263, 388-403.
    [229]
    Rampone, E., Morten, L., 2001. Records of crustal metasomatism in the garnet peridotites of the ulten zone (upper austroalpine, eastern Alps). Journal of Petrology 42, 207-219.
    [230]
    Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjenites and tonalites. Precambrian Research 51, 1-25.
    [231]
    Rapp, R.P., Watson, E.B., 1995. Dehydration melting of metabasalt at 8-32 kbar:implications for continental growth and crustemantle recycling. Journal of Petrology 36, 891-931.
    [232]
    Rapp, J.F., Klemme, S., Butler, I.B., Harley, S.L., 2010. Extremely high solubility of rutile in chloride and fl uoride-bearing metamorphic fl uids:an experimental investigation. Geology 38, 323-326.
    [233]
    Regelous, M., Gamble, J.A., Turner, S.P., 2010. Mechanism and timing of Pb transport from subducted oceanic crust and sediment to the mantle source of arc lavas.Chemical Geology 273, 46-54.
    [234]
    Ringwood, A.E., 1974. The petrological evolution of island arc systems. Journal of the Geological Society 130, 183-204.
    [235]
    Ringwood, A.E., 1982. Phase transformations and differentiation in subducted lithosphere-implications for mantle dynamics, basalt petrogenesis and crustal evolution. The Journal of Geology 90, 611-643.
    [236]
    Ringwood, A.E., 1990. Slab-mantle interactions:3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chemical Geology 82, 187-207.
    [237]
    Robinson, P.T., Trumbull, R.B., Schmitt, A., Yang, J.S., Li, J.W., Zhou, M.F., Erzinger, J., Dare, S., Xiong, F.H., 2015. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Research 27, 486-506.
    [238]
    Roden, M.F., Murthy, V.R., 1985. Mantle metasomatism. Annual Review of Earth and Planetary Sciences 13, 269-296.
    [239]
    Rojas-Agramonte, Y., Garcia-Casco, A., Kemp, A., Kröner, A., Proenza, J.A., Lázaro, C., Liu, D., 2016. Recycling and transport of continental material through the mantle wedge above subduction zones:a Caribbean example. Earth and Planetary Science Letters 436, 93-107.
    [240]
    Rubatto, D., Hermann, J., 2003. Zircon formation during fluid circulation in eclogites(Monviso, Western Alps):implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta 67, 2173-2187.
    [241]
    Rudnick, R.L., Barth, M.G., Horn, I., McDonough, W.F., 2000. Rutile-bearing refractory eclogites:missing link between continents and depleted mantle. Science 287, 278-281.
    [242]
    Rudnick, R., Gao, S., 2014. Composition of the continental crust. Treatise on Geochemistry 4, 1-51.
    [243]
    Ryan, J.G., Chauvel, C., 2014. The subduction-zone filter and the impact of recycled materials on the evolution of the mantle. Treatise on Geochemistry 3, 479-508.
    [244]
    Ryerson, F.J., Watson, E.B., 1987. Rutile saturation in magmas:implications for TieNbeTa depletion in island-arc basalts. Earth and Planetary Science Letters 86, 225-239.
    [245]
    Salters, V.J.M., Stracke, A., 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems 5, Q05004. https://doi.org/10.1029/2003GC000597.
    [246]
    Scambelluri, M., Bottazzi, P., Trommsdirff, V., Vannucci, R., Hermann, J., GomezPugnaire, M.T., Vizcaino, V.L.-S., 2001. Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth and Planetary Science Letters 192, 457-470.
    [247]
    Scambelluri, M., Hermann, J., Morten, L., Rampone, E., 2006. Melt-versus fluidinduced metasomatism in spinel to garnet wedge peridotites (Ulten Zone, Eastern Italian Alps):clues from trace element and Li abundances. Contributions to Mineralogy and Petrology 151, 372-394.
    [248]
    Scambelluri, M., Pettke, T., van Roermund, H., 2008. Majoritic garnets monitor deep subduction fluid flow and mantle dynamics. Geology 36, 59-62.
    [249]
    Scambelluri, M., Van Roermund, H.L.M., Pettke, T., 2010. Mantle wedge peridotites:fossil reservoirs of deep subduction zone processes Inferences from high and ultrahigh-pressure rocks from Bardane (Western Norway) and Ulten (Italian Alps). Lithos 120, 186-201.
    [250]
    Schiano, P., Eiler, J.M., Hutcheon, I.D., Stolper, E.M., 2000. Primitive CaO-rich, silica undersaturated melts in island arcs:evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas. Geochemistry Geophysics Geosystems 1 (5). https://doi.org/10.1029/1999GC000032.
    [251]
    Schilling, J.G., 1973. Iceland mantle plume:geochemical study of Reykjanes Ridge.Nature 242, 565-571.
    [252]
    Schmidt, M.W., Poli, S., 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters 163, 361-379.
    [253]
    Schmidt, M.W., Vielzeuf, D., Auzanneau, E., 2004a. Melting and dissolution of subducting crust at high pressures:the key role of white mica. Earth and Planetary Science Letters 228, 65-84.
    [254]
    Schmidt, M.W., Dardon, A., Chazot, G., Vannucci, R., 2004b. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters 226, 415-432.
    [255]
    Schmidt, M.W., Poli, S., 2014. Devolatilization during subduction. Treatise on Geochemistry 4, 669-701.
    [256]
    Schubert, G., Turcotte, D.L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge, p. 940.
    [257]
    Sharples, W., Jadamec, M.A., Moresi, L.N., Capitanio, F.A., 2014. Overriding plate controls on subduction evolution. Journal of Geophysical Research Solid Earth 119, 6684-6704.
    [258]
    Skora, S., Blundy, J., 2010. High-pressure hydrous phase relations of radiolarian clay and implications for the involvement of subducted sediment in arc magmatism.Journal of Petrology 51, 2211-2243.
    [259]
    Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., Nikogosian, I.K., 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590-597.
    [260]
    Spandler, C.J., Hermann, J., Arculus, R.J., Mavrogenes, J.A., 2003. Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes. Contributions to Mineralogy and Petrology 146, 205-222.
    [261]
    Spandler, C., Hermann, J., Arculus, R., Mavrogenes, J., 2004. Geochemical heterogeneity and element mobility in deeply subducted oceanic crust:insights from high-pressure mafic rocks from New Caledonia. Chemical Geology 206, 21-42.
    [262]
    Spandler, C., Mavrogenes, J., Hermann, J., 2007. Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/melt inclusions. Chemical Geology 239, 228-249.
    [263]
    Spandler, C., Yaxley, G., Green, D.H., Rosenthal, A., 2008. Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600℃ and 3 to 5 GPa. Journal of Petrology 49, 771-795.
    [264]
    Spandler, C., Pirard, C., 2013. Element recycling from subducting slabs to arc crust:a review. Lithos 170-171, 208-223.
    [265]
    Spandler, C., Pettke, T., Hermann, J., 2014. Experimental study of trace element release during ultrahigh-pressure serpentinite dehydration. Earth and Planetary Science Letters 391, 296-306.
    [266]
    Staudigel, H., Plank, T., White, B., Schmincke, H.U., 1996. Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust:DSDP sites 417 and 418.Geophysical Monograph 96, 19-38.
    [267]
    Stern, R.J., 2002. Subduction zones. Review of Geophysics 40 (4), 1012. https://doi.org/10.1029/2001RG000108.
    [268]
    Stockhert, B., Duyster, J., Trepmann, C., Massonne, H.J., 2001. Microdiamond daughter crystals precipitated from supercritical COH+ silicate fluids included in garnet. Erzgebirge Germany Geology 29, 391-394.
    [269]
    Stockhert, B., Trepmann, C., Massonne, H.J., 2009. Decrepitated UHP fluid inclusions:about diverse phase assemblages and extreme decompression rates(Erzgebirge, Germany). Journal of Metamorphic Geology 27, 673-684.
    [270]
    Stracke, A., Bizimis, M., Salters, V.J.M., 2003. Recycling oceanic crust:quantitative constraints. Geochemistry Geophysics Geosystems 4, 8003. https://doi.org/10.1029/2001GC000201.
    [271]
    Stracke, A., Hofmann, A.W., Hart, S.R., 2005. FOZO, HIMU and the rest of the mantle zoo. Geochemistry Geophysics Geosystems 6, Q05007 doi: 05010.01029/02004GC000824.
    [272]
    Stracke, A., Bourdon, B., 2009. The importance of melt extraction for tracing mantle heterogeneity. Geochimica et Cosmochimica Acta 73, 218-238.
    [273]
    Stracke, A., 2012. Earth's heterogeneous mantle:a product of convection-driven interaction between crust and mantle. Chemical Geology 330-331, 274-299.
    [274]
    Stüwe, K., 2007. Geodynamics of the Lithosphere, second ed. Springer-Verlag, Berlin Heidelberg.
    [275]
    Sun, S.-S., Tatsumoto, M., Schilling, J.G., 1975. Mantle plume mixing along the Reykjanes Ridge axis:lead isotopic evidence. Science 190, 143-147.
    [276]
    Sun, S.-S., 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philosophical Transaction of Royal Society A297, 409-445.
    [277]
    Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geological Society Special Publications 42, 313-345.
    [278]
    Syracuse, E.M., van Keken, P.E., Abers, G.A., 2010. The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors 183, 73-90.
    [279]
    Tamura, Y., Tani, K., Chang, Q., Shukuno, H., Kawabata, H., Ishizuka, O., Fiske, R.S., 2007. Wet and dry basalt magma evolution at Torishima Volcano, IzueBonin Arc, Japan:the possible role of phengite in the downgoing slab. Journal of Petrology 48, 1999-2031.
    [280]
    Tapster, S., Roberts, N., Petterson, M., Saunders, A., Naden, J., 2014. From continent to intra-oceanic arc:zircon xenocrysts record the crustal evolution of the Solomon island arc. Geology 42, 1087-1090.
    [281]
    Tatsumi, Y., 1986. Formation of the volcanic front in subduction zones. Geophysical Research Letters 13, 717-720.
    [282]
    Tatsumi, Y., Hamilton, D.L., Nesbitt, R.W., 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas:evidence from high-pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research 29, 293-309.
    [283]
    Tatsumi, Y., 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research 94, 4697-4707.
    [284]
    Tatsumi, Y., Eggins, S., 1995. Subduction Zone Magmatism. Blackwell Science, Oxford, p. 211.
    [285]
    Tatsumi, Y., Kogiso, T., 1997. Trace element transport during dehydration processes in the subducted oceanic crust:2. Origin of chemical and physical characteristics in arc magmatism. Earth and Planetary Science Letters 148, 207-221.
    [286]
    Tatsumi, Y., Sato, K., Sano, T., Arai, R., Prikhodko, V.S., 2000. Transition from arc to intraplate magmatism associated with backarc rifting:evolution of the Sikhote Alin volcanism. Geophysical Research Letters 27, 1587-1590.
    [287]
    Thomsen, T.B., Schmidt, M.W., 2008. Melting of carbonated pelites at 2.5-5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth and Planetary Science Letters 267, 17-31.
    [288]
    Toksöz, M.N., Minear, J.W., Julian, B.R., 1971. Temperature field and geophysical effects of a downgoing slab. Journal of Geophysical Research 76, 1113-1138.
    [289]
    Tommasini, S., Davies, G.R., 1997. Isotope disequilibrium during anatexis:a case study of contact melting, Sierra Nevada, California. Earth and Planetary Science Letters 148, 273-285.
    [290]
    Torsvik, T.H., Amundsen, H., Hartz, E.H., Corfu, F., Kusznir, N., Gaina, C., Doubrovine, P.V., Steinberger, B., Ashwal, L.D., Jamtveit, B., 2013. A precambrian microcontinent in the Indian ocean. Nature Geoscience 6, 223-227.
    [291]
    Tribuzio, R., Messiga, B., Vannucci, R., Bottazzi, P., 1996. Rare earth element redistribution during high-pressureelow-temperature metamorphism in ophiolitic Fe-gabbros (Liguria, northwestern Italy):implications for light REE mobility in subduction zones. Geology 24, 711-714.
    [292]
    Tropper, P., Manning, C.E., 2005. Very low solubility of rutile in H2O at high pressure and temperature, and its implications for Ti mobility in subduction zones.American Mineralogist 90, 502-505.
    [293]
    Tsuno, K., Dasgupta, R., 2011. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogitie at 2.5e3.0 GPa and deep cycling of sedimentary carbon. Contributions to Mineralogy and Petrology 161, 743-763.
    [294]
    Turner, S., Hawkesworth, C., 1997. Constraints on flux rates and mantle dynamics beneath island arcs from Tonga-Kermadec lava geochemistry. Nature 389, 568-573.
    [295]
    Ulmer, P., Trommsdorff, V., 1995. Serpentine stability to mantle depths and subduction related magmatism. Science 268, 858-861.
    [296]
    van Keken, P.E., Kiefer, B., Peacock, S.M., 2002. High resolution models of subduction zones:implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochemistry Geophysics Geosystems 3, 1056.https://doi.org/10.1029/2001GC000256.
    [297]
    van Keken, P.E., 2003. The structure and dynamics of the mantle wedge. Earth and Planetary Science Letters 215, 323-338.
    [298]
    van Keken, P.E., Hacker, B.R., Syracuse, E.M., Abers, G.A., 2011. Subduction factory:4.Depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research 116, B01401. https://doi.org/10.1029/2010JB007922.
    [299]
    van Keken, P.E., Wada, I., Abers, G.A., Hacker, B.R., Wang, K., 2018. Mafic highpressure rocks are preferentially exhumed from warm subduction settings.Geochemistry Geophysics Geosystems 19, 2934-2961.
    [300]
    van Roermund, H.L., Carswell, D.A., Drury, M.R., Heijboer, T.C., 2002. Microdiamonds in a megacrystic garnet websterite pod from Bardane on the island of Fjørtoft, western Norway:evidence for diamond formation in mantle rocks during deep continental subduction. Geology 30, 959-962.
    [301]
    Vervoort, J.D., Plank, T., Prytulak, J., 2011. The Hf-Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta 75, 5903-5926.
    [302]
    Vine, F.J., 1966. Spreading of the ocean fl oor:new evidence. Science 154, 1405-1415.
    [303]
    Volkova, N.I., Frenkel, A.E., Budanov, V.I., Lepezin, G.G., 2004. Geochemical signatures for eclogite protolith from the maksyutov complex, South urals. Journal of Asian Earth Sciences 23, 745-759.
    [304]
    Vrijmoed, J.C., Smith, D.C., van Roermund, H.L.M., 2008. Raman confirmation of microdiamond in the Svartberget Fe-Ti type garnet peridotite, Western Gneiss Region, Western Norway. Terra Nova 20, 295-301.
    [305]
    Vrijmoed, J.C., Austrheim, H., John, T., Hin, R.C., Corfu, F., Davies, G.R., 2013. Metasomatism in the ultrahigh-pressure Svartberget garnet-peridotite (Western Gneiss Region, Norway):implications for the transport of crust-derived fluids within the mantle. Journal of Petrology 54, 1815-1848.
    [306]
    Wang, Y., Zhao, Z.-F., Zheng, Y.-F., Zhang, J.-J., 2011. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China.Lithos 125, 940-955.
    [307]
    Wang, K., Tréhu, A.M., 2016. Some outstanding issues in the study of great megathrust earthquakesdthe Cascadia example. Journal of Geodynamics 98, 1-18.
    [308]
    Wang, S.-J., Wang, L., Brown, M., Piccoli, P.M., Johnson, T.E., Feng, P., Deng, H., Kitajima, K., Huang, Y., 2017. Fluid generation and evolution during exhumation of deeply subducted UHP continental crust:petrogenesis of composite graniteequartz veins in the Sulu belt, China. Journal of Metamorphic Geology 35, 601-629.
    [309]
    Wasserburg, G.J., DePaolo, D.J., 1977. Models of Earth structure inferred from neodymium and strontium isotopic abundances. Proceedings of the National Academy of Sciences 76, 3594-3598.
    [310]
    Weaver, B.L., Wood, D.A., Tarney, J., Joron, J.-L., 1986. Role of subducted sediment in the genesis of ocean island basalts:geochemical evidence from South Atlantic Ocean Islands. Geology 14, 275-278.
    [311]
    Weaver, B.L., 1991. The origin of ocean island basalt end-member compositions:trace element and isotopic constraints. Earth and Planetary Science Letters 104, 381-397.
    [312]
    White, W.M., 1985. Sources of oceanic basalts:radiogenic isotopic evidence. Geology 13, 115-118.
    [313]
    White, W.M., 2010. Oceanic island basalts and mantle plumes:the geochemical perspective. Annual Review of Earth and Planetary Sciences 38, 133-160.
    [314]
    White, W.M., Klein, E.M., 2014. Composition of the oceanic crust. Treatise on Geochemistry 4, 457-496.
    [315]
    Wiens, D.A., Conder, J.A., Faul, U.H., 2008. The seismic structure and dynamics of the mantle wedge. Annual Review of Earth and Planetary Sciences 36, 421-455.
    [316]
    Willbold, M., Stracke, A., 2006. Trace element composition of mantle end-members:implications for recycling of oceanic and upper and lower continental crust.Geochemistry, Geophysics, Geosystems 7, Q04004. https://doi.org/10.1029/2005GC001005.
    [317]
    Willbold, M., Stracke, A., 2010. Formation of enriched mantle components by recycling of upper and lower continental crust. Chemical Geology 276, 188-197.
    [318]
    Wilson, J.T., 1965. A new class of faults and their bearing on continental drift. Nature 207, 343-347.
    [319]
    Wilson, M., 1989. Igneous Petrogenesis. Chapman & Hall, London, p. 466.
    [320]
    Woodhead, J., Eggins, S., Gamble, J., 1993. High field strength and transition element systematics in island arc and back-arc basin basalts:evidence for multi-phase melt extraction and a depleted mantle wedge. Earth and Planetary Science Letters 114, 491-504.
    [321]
    Workman, R.K., Hart, S.R., Jackson, M., Regelous, M., Farley, K.A., Blusztajn, J., Kurz, M., Staudigel, H., 2004. Recycled metasomatized lithosphere as the origin of the enriched mantle II (EM2) end-member:evidence from the Samoan Volcanic Chain. Geochemistry, Geophysics, Geosystems 5, Q04008. https://doi.org/10.1029/2003GC000623.
    [322]
    Workman, R.K., Hart, S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231, 53-72.
    [323]
    Xia, Q.-X., Zheng, Y.-F., Hu, Z.C., 2010. Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen:implications for action of supercritical fluid during continental subduction-zone metamorphism. Lithos 114, 385-412.
    [324]
    Xiao, Y.Y., Lavis, S., Niu, Y.L., Pearce, J.A., Li, H., Wang, H., Davidson, J., 2012. Traceelement transport during subduction-zone ultrahigh-pressure metamorphism:evidence from western Tianshan, China. Geological Society of America Bulletin 124, 1113-1129.
    [325]
    Xiao, Y.Y., Niu, Y.L., Song, S.G., Davidson, J., Liu, X., 2013. Elemental responses to subduction-zone metamorphism:constraints from the North qilian mountain, NW China. Lithos 160-161, 55-67.
    [326]
    Xiao, Y.Y., Niu, Y.L., Li, H., Wang, H., Liu, X., Davidson, J., 2014. Trace element budgets and (re-)distribution during subduction-zone ultrahigh pressure metamorphism:evidence from Western Tianshan, China. Chemical Geology 365, 54-68.
    [327]
    Xiao, Y.Y., Niu, Y.L., Wang, K.-L., Lee, D.-C., Iizuka, Y., 2016. Geochemical behaviours of chemical elements during subduction-zone metamorphism and geodynamic significance. International Geology Review 58, 1253-1277.
    [328]
    Xiong, X.L., Keppler, H., Audetat, A., Ni, H.W., Sun, W.D., Li, Y., 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica et Cosmochimica Acta 75, 1673-1692.
    [329]
    Xu, Z., Zhao, Z.-F., Zheng, Y.-F., 2012. Slabemantle interaction for thinning of cratonic lithospheric mantle in North China:geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos 146-147, 202-217.
    [330]
    Xu, Z., Zheng, Y.-F., 2017. Continental basalts record the crust-mantle interaction in oceanic subduction channel:a geochemical case study from eastern China.Journal of Asian Earth Sciences 145, 233-259.
    [331]
    Xu, Z., Zheng, Y.-F., Zhao, Z.-F., 2017. The origin of Cenozoic continental basalts in east-central China:constrained by linking Pb isotopes to other geochemical variables. Lithos 268-271, 302-319.
    [332]
    Xu, Z., Zheng, Y.-F., Zhao, Z.-F., 2018. Zircon evidence for incorporation of terrigenous sediments into the magma source of continental basalts. Scientific Reports 8, 178. https://doi.org/10.1038/s41598-017-18549-7.
    [333]
    Yamamoto, S., Komiya, T., Yamamoto, H., Kaneko, Y., Terabayashi, M., Katayama, I., Iizuka, T., Maruyama, S., Yang, J.S., Kon, Y., 2013. Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet. Island Arc 22, 89-103.
    [334]
    Yang, J.J., Jahn, B.-M., 2000. Deep subduction of mantlederived garnet peridotites from the Sulu UHPM terrane in China. Journal of Metamorphic Geology 18, 167-180.
    [335]
    Yaxley, G.M., Green, D.H., 1998. Reactions between eclogite and peridotite:mantle refertilisation by subduction of oceanic crust. Schweizerische Mineralogische et Petrographische Mitteilung 78, 243-255.
    [336]
    Ye, K., Song, Y.R., Chen, Y., Xu, H.J., Liu, J.B., Sun, M., 2009. Multistage metamorphism of orogenic garnet-lherzolite from Zhimafang, Sulu UHP terrane, E. China:implications for mantle wedge convection during progressive oceanic and continental subduction. Lithos 109, 155-175.
    [337]
    Zack, T., Rivers, T., Foley, S.F., 2001. Cs-Rb-Ba systematics in phengite and amphibole:an assessment of fluid mobility at 2.0 GPa in eclogites from Trescolmen, Central Alps. Contributions to Mineralogy and Petrology 140, 651-669.
    [338]
    Zack, T., Kronz, A., Foley, S., Rivers, T., 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology 184, 97-122.
    [339]
    Zanetti, A., Mazzucchelli, M., Rivalenti, G., Vannucci, R., 1999. The Finero phlogopite peridotite massif:an example of subduction-related metasomatism. Contributions to Mineralogy and Petrology 134, 107-122.
    [340]
    Zhang, R.Y., Liou, J.G., Yang, J.S., Yui, T.-F., 2000. Petrochemical constraints for dual origin of garnet peridotites from the DabieeSulu UHP terrane, eastern-central China. Journal of Metamorphic Geology 18, 149-166.
    [341]
    Zhang, R.Y., Yang, J.S., Wooden, J.L., Liou, J.G., Li, T.F., 2005. UePb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China:implication for mantle metasomatism and subduction-zone UHP metamorphism. Earth and Planetary Science Letters 237, 729-734.
    [342]
    Zhang, R.Y., Li, T.F., Rumble, D., Yui, T.-F., Li, L., Yang, J.S., Pan, Y., Liou, J.G., 2007.Multiple metasomatism in Sulu ultrahigh-P garnet peridotite constrained by petrological and geochemical investigations. Journal of Metamorphic Geology 25, 149-164.
    [343]
    Zhang, Z.M., Shen, K., Sun, W.-D., Liu, Y.S., Liou, J.G., Shi, C., Wang, J.L., 2008. Fluids in deeply subducted continental crust:petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China.Geochimica et Cosmochimica Acta 72, 3200-3228.
    [344]
    Zhang, J.-J., Zheng, Y.-F., Zhao, Z.-F., 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos 110, 305-326.
    [345]
    Zhang, Z.M., Dong, X., Liou, J.G., Liu, F., Wang, W., Yui, F., 2011. Metasomatism of garnet peridotite from Jiangzhuang, southern Sulu UHP belt:constraints on the interactions between crust and mantle rocks during subduction of continental lithosphere. Journal of Metamorphic Geology 29, 917-937.
    [346]
    Zhao, Z.-F., Zheng, Y.-F., Chen, R.-X., Xia, Q.-X., Wu, Y.-B., 2007. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochimica et Cosmochimica Acta 71, 5244-5266.
    [347]
    Zhao, Z.-F., Dai, L.-Q., Zheng, Y.-F., 2013. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Scientific Reports 3, 3413. https://doi.org/10.1038/srep03413.
    [348]
    Zhao, Z.F., Dai, L.Q., Zheng, Y.F., 2015. Two types of the crust-mantle interaction in continental subduction zones. Science China Earth Sciences 58, 1269-1283.
    [349]
    Zheng, Y.-F., Yang, J.-J., Gong, B., Jahn, B.-m., 2003. Partial equilibrium of radiogenic and stable isotope systems in garnet peridotite during UHP metamorphism.American Mineralogist 88, 1633-1643.
    [350]
    Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., Yang, J.S., Zhang, R.Y., 2006. A refractory mantle protolith in younger continental crust, east-central China:age and composition of zircon in the Sulu ultrahigh-pressure peridotite. Geology 34, 705-708.
    [351]
    Zheng, Y.-F., Gao, T.-S., Wu, Y.-B., Gong, B., 2007. Fluid flow during exhumation of deeply subducted continental crust:zircon UePb age and O isotope studies of quartz vein in eclogite. Journal of Metamorphic Geology 25, 267-283.
    [352]
    Zheng, Y.-F., 2009. Fluid regime in continental subduction zones:petrological insights from ultrahigh-pressure metamorphic rocks. Journal of the Geological Society 166, 763-782.
    [353]
    Zheng, Y.-F., Chen, R.-X., Zhao, Z.-F., 2009. Chemical geodynamics of continental subduction-zone metamorphism:insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics 475, 327-358.
    [354]
    Zheng, Y.-F., Xia, Q.-X., Chen, R.-X., Gao, X.-Y., 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Science Reviews 104, 342-374.
    [355]
    Zheng, Y.-F., 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology 328, 5-48.
    [356]
    Zheng, Y.-F., Hermann, J., 2014. Geochemistry of continental subduction-zone fluids.Earth Planets and Space 66, 93. https://doi.org/10.1186/1880-5981-66-93.
    [357]
    Zheng, J.P., Tang, H.Y., Xiong, Q., Griffin, W.L., O'Reilly, S.Y., Pearson, N., Zhao, J.H., Wu, Y.B., Zhang, J.F., Liu, Y.S., 2014. Linking continental deep subduction with destruction of a cratonic margin:strongly reworked North China SCLM intruded in the Triassic Sulu UHP belt. Contributions to Mineralogy and Petrology 167, 1028. https://doi.org/10.1007/s00410-014-1028-0.
    [358]
    Zheng, Y.F., Chen, Y.X., Dai, L.Q., Zhao, Z.F., 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Science China:Earth Sciences 58, 1045-1069.
    [359]
    Zheng, Y.-F., Chen, Y.-X., 2016. Continental versus oceanic subduction zones. National Science Review 3, 495-519.
    [360]
    Zheng, Y.-F., Chen, R.-X., Xu, Z., Zhang, S.-B., 2016. The transport of water in subduction zones. Science China:Earth Sciences 59, 651-682.
    [361]
    Zheng, Y.-F., Chen, R.-X., 2017. Regional metamorphism at extreme conditions:implications for orogeny at convergent plate margins. Journal of Asian Earth Sciences 145, 46-73.
    [362]
    Zheng, Y.-F., Zhao, Z.-F., 2017. Introduction to the structures and processes of subduction zones. Journal of Asian Earth Sciences 145, 1-15.
    [363]
    Zheng, Y.F., Wu, F.Y., 2018. The timing of continental collision between India and Asia. Science Bulletin 63, 1649-1654.
    [364]
    Zheng, Y.F., Xu, Z., Zhao, Z.F., Dai, L.Q., 2018. Mesozoic mafic magmatism in North China:implications for thinning and destruction of cratonic lithosphere. Science China:Earth Sciences 61, 353-385.
    [365]
    Zindler, A., Hart, S., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493-571.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (269) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return