Jasmine Rita Petriglieri a, b, *, Christine Laporte-Magoni a, Peggy Gunkel-Grillon a, Mario Tribaudino b, Danilo Bersani c, Orietta Sala d, 1, Monika Le Mestre a, Ruggero Vigliaturo e, Nicola Bursi Gandolfi f, Emma Salvioli-Mariani b. Mineral fibres and environmental monitoring: A comparison of different analytical strategies in New Caledonia[J]. Geoscience Frontiers, 2020, (1): 189-202. DOI: 10.1016/j.gsf.2018.11.006
Citation: Jasmine Rita Petriglieri a, b, *, Christine Laporte-Magoni a, Peggy Gunkel-Grillon a, Mario Tribaudino b, Danilo Bersani c, Orietta Sala d, 1, Monika Le Mestre a, Ruggero Vigliaturo e, Nicola Bursi Gandolfi f, Emma Salvioli-Mariani b. Mineral fibres and environmental monitoring: A comparison of different analytical strategies in New Caledonia[J]. Geoscience Frontiers, 2020, (1): 189-202. DOI: 10.1016/j.gsf.2018.11.006

Mineral fibres and environmental monitoring: A comparison of different analytical strategies in New Caledonia

Funds: 

This work was supported by the CNRT “Nickel and its environment” of New Caledonia. We are grateful to Scansetti Centre (Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, University of Torino, Italy), Arpae Emilia-Romagna (Agenzia regionale per la prevenzione, l’ambiente e l’energia dell’Emilia Romagna, Reggio Emilia, Italy), and University of Milano- Bicocca (Italy) for research collaborations and thoughtful discussions. We also thank the Comité Interminier Amiante and the mining society Société Minière Montagnat of New Caledonia for its support and assistance in this project. Our sincere thanks to referees for constructive comments and suggestions, which greatly improved the manuscript.

More Information
  • Received Date: April 27, 2018
  • Revised Date: November 19, 2018
  • Available Online: August 03, 2020
  • Published Date: August 03, 2020
  • Covered by ultrabasic units for more than a third of its surface, the New Caledonia (South West Pacific) is one of the largest world producers of Ni-ore from lateritic deposits. Almost all outcrops of geological units and open mines contain serpentine and amphibole, also as asbestos varieties. In this geological context, in which weathering processes had a great contribution in the production and dispersion of mineral fibres into the environment, the development of a routinely analytical strategy, able to discriminate an asbestiform fibre from a non-harmful particle, is a pivotal requisite. However, the acquisition of all these parameters is necessary for determining the risk associated to fibres exposition. A multidisciplinary routinely approach, based on the use of complementary simply-to-use but reliable analytical methods is the only possible strategy. In addition, the instrumental apparatus must be easily transportable on the field, directly on the mining site. The employment of specialized tools such as Polarized Light Microscopy associated to Dispersion Staining method (PLM/DS) and portable Raman spectroscopy for identification of environmental asbestos, are proved extremely effective in the improvement of the performance and rapidity of data acquisition and interpretation. Both PLM/DS and handheld Raman devices confirmed to be discriminant in the detection and characterization of asbestos fibres for both serpentine and amphibole. Furthermore, these techniques proved extremely effective even in the presence of strongly fibrous and altered samples.
  • [1]
    ANSES, 2010. Affleurements naturels d’amiante. État des connaissances sur les expositions, les risques sanitaires et pratiques de gestion en France et à l’étranger. Maisons-Alfort, France, p. 248 (in France). ANSES, 2014. Évaluation de la toxicité de l’antigorite. Maisons-Alfort, France, p. 116 (in France). Audet, M.-A., 2008. Le massif du Koniambo, Nouvelle-Calédonie Formation et obduction d’un complexe ophiolitique du type SSZ. Enrichissement en nickel, cobalt et scandium dans les profils résiduels. PhD thesis. Université de la Nouvelle Calédonie and Université du Quebec a Montreal, p. 355 (in France). Auzende, A.L., Daniel, I., Reynard, B., Lemaire, C., Guyot, F., 2004. High-pressure behavior of serpentine minerals: a Raman spectroscopic study. Physics and Chemistry of Minerals 31, 269e277. Avias, J., 1967. Overthrust structure of the main ultrabasic New Caledonia massives. Tectonophysics 4, 531e541. Baietto, O., Marini, P., 2018. Naturally occurring asbestos: validation of PCOM quantitative determination. Resources Policy 59, 44e49. https://doi.org/ 10.1016/j.resourpol.2018.06.006. Bard, D., Yarwood, J., Tylee, B., 1997. Asbestos fibre identification by Raman microspectroscopy. Journal of Raman Spectroscopy 28, 803e809. Bard, D., Tylee, B., Williams, K., Yarwood, J., 2004. Use of a fibre-optic probe for the identification of asbestos fibres in bulk materials by Raman spectroscopy. Journal of Raman Spectroscopy 35, 541e548. Baris, Y.I., Sahin, A.A., Ozesmi, M., Kerse, I., Ozen, E., Kolacan, B., Altinörs, M., Göktepeli, A., 1978. An outbreak of pleural mesothelioma and chronic fibrosing pleurisy in the village of Karain/Urgup in Anatolia. Thorax 33, 181e192. Barnes, I., O’neil, J.R., Trescases, J.-J., 1978. Present day serpentinization in New Caledonia, Oman and Yugoslavia. Geochimica et Cosmochimica Acta 42, 144e145. Baumann, F., Rougier, Y., Ambrosi, J.P., Robineau, B.P., 2007. Pleural mesothelioma in New Caledonia: an acute environmental concern. Cancer Detection and Prevention 31, 70e76. Baumann, F., Maurizot, P., Mangeas, M., Ambrosi, J.-P., Douwes, J., Robineau, B.P., 2011. Pleural mesothelioma in New Caledonia: associations with environmental risk factors. Environmental Health Perspectives 119, 695e700. Bayram, M., Dongel, I., Bakan, N.D., Yalçin, H., Cevit, R., Dumortier, P., Nemery, B., 2013. High risk of Malignant Mesothelioma and pleural plaques in subjects born close to ophiolites. Chest 143, 164e171. Bloise, A., Miriello, D., 2018. Multi-analytical approach for identifying asbestos minerals in situ. Geosciences 8, 1e11. Bloise, A., Punturo, R., Catalano, M., Miriello, D., Cirrincione, R., 2016. Naturally occurring asbestos (NOA) in rock and soil and relation with human activities: the monitoring example of selected sites in Calabria (southern Italy). Italian Journal of Geosciences 135, 268e279. Bloise, A., Catalano, M., Critelli, T., Apollaro, C., Miriello, D., 2017. Naturally occurring asbestos: potential for human exposure, san Severino Lucano (Basilicata, southern Italy). Environmental Earth Sciences 76, 648e661. Brand,W.N., Butt, C.R.M., Elias, M., 1998. Nickel laterites: classification and features. Journal of Australian Geology & Geophysics 17, 81e88. Browne, K., Wagner, J.C., 2001. Environmental exposure to amphibole-asbestos and mesothelioma. The Canadian Mineralogist 5, 21e28. Butt, C.R.M., Cluzel, D., 2013. Nickel laterite ore deposits: weathered serpentinites. Elements 9, 123e128. Carbone, M., Baris, Y.I., Bertino, P., Brass, B., Comertpay, S., Dogan, A.U., Gaudino, G., Jube, S., Kanodia, S., Partridge, C.R., Pass, H.I., Rivera, Z.S., Steele, I., Tuncer, M., Way, S., Yang, H., Miller, A., 2011. Erionite exposure in North Dakota and Turkish villages with mesothelioma. Proceedings of the National Academy of Sciences 108, 13618e13623. Cattaneo, A., Somigliana, A., Gemmi, M., Bernabeo, F., Savoca, D., Cavallo, D.M., Bertazzi, P.A., 2012. Airborne concentrations of chrysotile asbestos in serpentine quarries and stone processing facilities in Valmalenco, Italy. Annals of Occupational Hygiene 56, 671e683. Cavallo, A., Rimoldi, B., 2013. Chrysotile asbestos in serpentinite quarries: a case study in Valmalenco, Central Alps, Northern Italy. Environmental Science: Processes & Impacts 15, 1341e1350. Cavariani, F., Marconi, A., Sala, O., 2010. Asbestos: sampling, analytical techniques and limit values. Italian Journal of Occupational and Environmental Hygiene 1, 18e29. Chevillotte, V., Chardon, D., Beauvais, A., Maurizot, P., Colin, F., 2006. Long-term tropical morphogenesis of New Caledonia (Southwest Pacific): importance of positive epeirogeny and climate change. Geomorphology 81, 361e375. Cluzel, D., Aitchison, J.C., Picard, C., 2001. Tectonic accretion and underplating mafic terranes in the late Eocene intraoceanic fore-arc of New Caledonia (Southwest Pacific): geodynamic implications. Tectonophysics 340, 23e59. Cluzel, D., Maurizot, P., Collot, J.Y., Sevin, B., 2012. An outline of the Geology of New Caledonia; from Permian-Mesozoic Southeast Gondwanaland active margin to Cenozoic obduction and supergene evolution. Episodes 35, 72e86. Coffin, D.L., Cook, P.M., Creason, J.P., 1992. Relative mesothelioma induction in rats by mineral fibers: comparison with residual pulmonary mineral fiber number and epidemiology. Inhalation Toxicology 4, 273e300. Comba, P., Gianfagna, A., Paoletti, L., 2003. Pleural Mesothelioma cases in Biancavilla are related to a new fluoro-edenite fibrous amphibole. Archives of Environmental Health 58, 229e232. Cossio, R., Albonico, C., Zanella, A., Fraterrigo-Garofalo, S., Avataneo, C., Compagnoni, R., Turci, F., 2018. Innovative unattended SEM-EDS analysis for asbestos fiber quantification. Talanta 190, 158e166. Croce, A., Musa, M., Allegrina, M., Rinaudo, C., Baris, Y.I., Dogan, A.U., Powers, A., Rivera, Z., Bertino, P., Yang, H., 2013. Micro-Raman spectroscopy identifies crocidolite and erionite fibers in tissue sections. Journal of Raman Spectroscopy 44, 1440e1445. Culley, M.R., Zorland, J., Freire, K., 2010. Community responses to naturally occurring asbestos: implications for public health practice. Health Education Research 25, 877e891. Deer, W.A., Howie, R.A., Zussman, J., 1992. In: Kong, Hong (Ed.), An Introduction to the Rock-forming Minerals, 2. Longman Scientific & Technical, 696, 712 pp. Délibération n 82 du 25 août 2010 - Relative à la protection des travailleurs contre les poussières issues de terrains amiantifères dans les activités extractives, de bâtiment et de travaux publics. JONC du 9 Septembre 2010 (in France). Dichicco, M.C., Laurita, S., Sinisi, R., Battiloro, R., Rizzo, G., 2018. Environmental and health: the importance of tremolite occurence in the Pollino Geopark (Southern Italy). Geosciences 8, 98e110. DIMENC-SGNC, 2010. Cartographie des terrains potentiellement amiantifères en Nouvelle-Caléconie e Etat des connaissances, Mars 2010. DIMENC-SGNC, BRGM, Nouméa, Nouvelle Calédonie (in France). Dogan, M., Emri, S., 2000. Environmental health problems related to mineral dusts in Ankara and Eskisehir, Turkey. Yerbilimleri 22, 149e161. EU, 2003. Directive 2003/18/EC of the European Parliament and of the Council of 27 March 2003 amending Council Directive 83/477/EEC on the protection of workers from the risks related to exposure to asbestos at work. Official Journal L097, 15/04/2003 P.0048-0052. Evans, K.A., Powell, R., Frost, B.R., 2013. Using equilibrium thermodynamics in the study of metasomatic alteration, illustrated by an application to serpentinites. Lithos 168e169, 67e84. Fitz Gerald, J.D., Eggleton, R.A., Keeling, J.L., 2010. Antigorite from Rowland Flat, South Australia: asbestiform character. European Journal of Mineralogy 22, 525e533. Freyssinet, P., Butt, C.R.M., Morris, R.C., Piantone, P., 2005. Ore-forming processes related to lateritic weathering. In: Hedenquist, J.W., Thomson, J.F.H., Goldfarb, R.J., Richards, J.P. (Eds.), Economic Geology 100th Anniversary Volume. Economic Geology Publishing Company, New Haven, Connecticut, pp. 681e722. Frost, B.R., Evans, K.A., Swapp, S.M., Beard, J.S., Mothersole, F.E., 2013. The process of serpentinization in dunite from New Caledonia. Lithos 178, 24e39. Fubini, B., Fenoglio, I., 2007. Toxic potential of mineral dusts. Elements 3, 407e414. Fubini, B., Otero Arean, C., 1999. Chemical aspects of the toxicity of inhaled mineral dusts. Chemical Society Reviews 28, 373e381. Gaggero, L., Sanguineti, E., Yus González, A., Militello, G.M., Scuderi, A., Parisi, G., 2017. Airborne asbestos fibres monitoring in tunnel excavation. Journal of Environmental Management 196, 583e593. Gazzano, E., Riganti, C., Tomatis, M., Turci, F., Bosia, A., Fubini, B., Ghigo, D., 2005. Potential toxicity of nonregulated asbestiform minerals: balangeroite from the Western Alps. Part 3: depletion of antioxidant defenses. Journal of Toxicology and Environmental Health, Part A 68, 41e49. Goldberg, P., Goldberg, M., Marne, M.J., Hirsch, A., Tredaniel, J., 1991. Incidence of pleural mesothelioma in New Caledonia: a 10-year survey (1978e1987). Archives of Environmental Health 46, 306e309. Goldberg, P., Luce, D., Billon-Gailland, M.A., Quénel, P., Salomon-Nekiriai, C., Nicolau, J., 1995. Identification d’un excès de risque de cancer de la plèvre en Nouvelle-Calédonie lié à l’exposition environnementale et domestique à la trémolite. Revue d’epidémiologie et de santé publique 43, 444e450 (in France). Groppo, C., Compagnoni, R., 2007a. Metamorphic veins from the serpentinites of the Piemonte zone, western Alps, Italy: a review. Periodico di Mineralogia 76, 127e153. Groppo, C., Compagnoni, R., 2007b. Ubiquitous fibrous antigorite veins from the Lanzo ultramafic massif, internal western Alps (Italy): characterisation and genetic conditions. Periodico di Mineralogia 76, 169e181. Groppo, C., Tomatis, M., Turci, F., Gazzano, E., Ghigo, D., Compagnoni, R., Fubini, B., 2005. Potential toxicity of nonregulated asbestiform minerals: balangeroite from the Western Alps. Part 1: identification and characterization. Journal of Toxicology and Environmental Health Part A 68, 1e19. Groppo, C., Rinaudo, C., Cairo, S., Gastaldi, D., Compagnoni, R., 2006. Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. European Journal of Mineralogy 18, 319e329. Gualtieri, A.F., Pollastri, S., Gandolfi, N.B., Ronchetti, F., Albonico, C., Cavallo, A., Zanetti, G., Marini, P., Sala, O., 2014. Determination of the concentration of asbestos minerals in highly contaminated mine tailings: an example from abandoned mine waste of Crètaz and Èmarese (Valle d’Aosta, Italy). American Mineralogist 99, 1233e1247. Gunter, M.E., Belluso, E., Mottana, A., 2007. Amphiboles: environmental and health concerns. Reviews in Mineralogy and Geochemistry 67, 453e516. Harper, M., 2008. 10th Anniversary critical review: naturally occurring asbestos. Journal of Environmental Monitoring 10, 1394e1408. Health and Safety Executive, 2006. In: Asbestos: The Analysts’ Guide for Sampling, Analysis and Clearance Procedures. Executive Health and Safety. HSE Books, p. 120. Houchot, M.-A., 2008. De l’évaluation en santé publique à une démarche de géographie de la santé: le risque amiante environnemental en Nouvelle-Calédonie. Ph.D. thesis. Université de Nouvelle Calédonie, p. 282 (in France). IARC, 2012. Arsenic, metals, fibres, and dusts. A review of human carcinogens. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 100C, p. 501. Lyon, France. IARC, 2017. Fluoro-edenite, silicon carbide fibres and whiskers, and single-walled and multi-walled carbon nanotubes. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 111, p. 325. Lyon, France. INSERM U88, 1997. Aspects épidémiologiques de la relation entre exposition environnementale à la trémolite et cancers respiratoires en Nouvelle-Calédonie. Saint-Maurice, p. 33 (in France). Jehli cka, J., Vítek, P., Edwards, H.G.M., Heagraves, M., Capoun, T., 2009. Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 73, 410e419. Keeling, J.L., Raven, M.D., Self, P.G., Eggleton, R.A., 2008. Asbestiform antigorite occurrence in South Australia. In: 9th International Congress for Applied Mineralogy, ICAM 2008, Brisbane, Queensland, pp. 329e336. Keeling, J.L., Raven, M.D., Self, P.G., 2010. Asbestiform antigorite. Implications for the risk assessment of fibrous silicates. In: Extended Abstracts, 21st Australian Clay Minerals Conference, Brisbane, Queensland, pp. 87e90. Lagabrielle, Y., Chauvet, A., Ulrich, M., Guillot, S., 2013. Passive obduction and gravity-driven emplacement of large ophiolitic sheets: the New Caledonia ophiolite (SW Pacific) as a case study. Bulletin de la Societe Geologique de France 184, 545e556. Lahondère, D., 2007. L’amiante environnemental en Nouvelle Calédonie: expertise géologique des zones amiantifères. Evaluation des actions engagées. Nouméa, p. 55. Lahondère, D., 2012. Serpentinisation et fibrogenèse dans les massifs de péridotite de Nouvelle-Calédonie. Atlas des occurrences et des types de fibres d’amiante sur mine. Nouméa, p. 128. Laporte-Magoni, C., Tribaudino, M., Meyer, M., Fubini, B., Tomatis, M., Juillot, F., Petriglieri, J.R., Gunkel-Grillon, P., Selmaoui-Folcher, N., 2018. Amiante et Bonnes Pratiques. Rapport Final. Nouvelle Calédonie, Nouméa, p. 214. Lee, R.J., Strohmeier, B.R., Bunker, K.L., Van Orden, D.R., 2008. Naturally Occurring Asbestos - a recurring public policy challenge. Journal of Hazardous Materials 153, 1e21. Leguere, J., 1976. Des correlations entre la tectonique cassante et l’alteration supergene des peridotites de Nouvelle Caledonie. Ph.D. thesis. Université de Montpellier, p. 95. Luce, D., Brochard, P., Quenel, P., Salomon-Nekiriai, C., Goldberg, P., Billon- Galland, M.-A., Goldberg, M., 1994. Malignant pleural Mesothelioma associated with exposure to tremolite. The Lancet 344, 1777. Luce, D., Bugel, I., Goldberg, P., Goldberg, M., Salomon, C., Billon-Galland, M.-A., Nicolau, J., Quénel, P., Fevotte, J., Brochard, P., 2000. Environmental exposure to tremolite and respiratory cancer in New Caledonia: a case-control study. American Journal of Epidemiology 151, 259e265. Luce, D., Billon-Galland, M.-A., Bugel, I., Goldberg, P., Salomon, C., Févotte, J., Goldberg, M., 2004. Assessment of environmental and domestic exposure to tremolite in New Caledonia. Archives of Environmental Health 59, 91e100. Mothersole, F.E., Evans, K.A., Frost, B.R., 2017. Abyssal and hydrated mantle wedge serpentinised peridotites: a comparison of the 15 200N fracture zone and New Caledonia serpentinites. Contributions to Mineralogy and Petrology 172, 1e25. Musa, M., Croce, A., Allegrina, M., Rinaudo, C., Belluso, E., Bellis, D., Toffalorio, F., Veronesi, G., 2012. The use of Raman spectroscopy to identify inorganic phases in iatrogenic pathological lesions of patients with malignant pleural mesothelioma. Vibrational Spectroscopy 61, 66e71. NF X 43-269, Mars 2002. Qualité de l’air e Air des lieux de travail e Détermination de la concentration en nombre de fibres par microscopie optique en contraste de phase e Méthode du filtre à membrane. AFNOR (Indice de classement: X43- 269). Nichols, M.D., Young, D., Gray, D., 2002. Guidelines for geologic investigations of naturally occurring asbestos in California. California Geological Survey, Special Publication 124, 85. Noonan, C.W., 2017. Environmental asbestos exposure and risk of mesothelioma. Annals of Translational Medicine 5, 234-234. Orloff, O., Gonord, H., 1968. Note préliminaire sur un nouveau complexe sédimentaire continental situé sur les massifs du Goa N’Doro et de Kadjitra (région côtière à l’Est de la Nouvelle-Calédonie), définition de la formation et conséquences de cette découverte sur l’âge des fractures. Comptes Rendus de l’Académie des Sciences 267, 5e8. Petriglieri, J.R., Salvioli-Mariani, E., Mantovani, L., Tribaudino, M., Lottici, P.P., Laporte-Magoni, C., Bersani, D., 2015. Micro-Raman mapping of the polymorphs of serpentine. Journal of Raman Spectroscopy 46, 953e958. Petry, R., Mastalerz, R., Zahn, S., Mayerhöfer, T.G., Völksch, G., Viereck-Götte, L., Kreher-Hartmann, B., Holz, L., Lankers, M., Popp, J., 2006. Asbestos mineral analysis by UV Raman and energy-dispersive X-ray spectroscopy. Chem- PhysChem 7, 414e420. Prinzhofer, A., 1981. Structure et pétrologie d’un cortège ophiolitique: Le massif du sud (Nouvelle Calédonie). Ph.D. thesis. Ecole Nationale Supérieure des Mines, Paris, p. 185. Quesnel, B., 2015. Alteration supergene, circulation des fluides et deformation interne du mas- sif de Koniambo, Nouvelle-Caledonie: implication sur les gisements nickeliferes lateritiques. Ph.D. thesis, vol. 1. Université de Rennes, p. 316. Quesnel, B., Gautier, P., Cathelineau, M., Boulvais, P., Couteau, C., Drouillet, M., 2016. The internal deformation of the Peridotite Nappe of New Caledonia: a structural study of serpentine-bearing faults and shear zones in the Koniambo Massif. Journal of Structural Geology 85, 51e67. Rawling, T.J., Lister, G.S., 1999. Oscillating modes of orogeny in the Southwest Pacific and the tectonic evolution of New Caledonia. Geological Society, London, Special Publications 154, 109e127. Rinaudo, C., Gastaldi, D., Belluso, E., 2003. Characterization of chrysotile, antigorite, and lizardite by FT-Raman Spectroscopy. The Canadian Mineralogist 41, 883e890. Rinaudo, C., Gastaldi, D., Belluso, E., Capella, S., 2005. Application of Raman spectroscopy on asbestos fibre identification. Neues Jahrbuch Fur Mineralogie- Abhandlungen 182, 31e36. Rooney, J.S., Tarling, M.S., Smith, S.A.F., Gordon, K.C., 2018. Submicron Raman spectroscopy mapping of serpentinite fault rocks. Journal of Raman Spectroscopy 49, 279e286. Schreier, H., 1989. Asbestos fibres in the soil environment. In: Asbestos in the Natural Environment, first ed. vol.37. Elsevier, pp. 68e94. Tarling, M.S., Rooney, J.S., Viti, C., Smith, S.A.F., Gordon, K.C., 2018. Distinguishing the Raman spectrum of polygonal serpentine. Journal of Raman Spectroscopy 1e7. Thompson, B.D., Gunter, M.E., Wilson, M.A., 2011. Amphibole asbestos soil contamination in the USA: a matter of definition. American Mineralogist 96, 690e693. Tomatis, M., Gazzano, E., Aldieri, E., Turci, F., Fubini, B., Laporte-magoni, C., 2018. Potential toxicity of fibrous antigorite from New Caledonia: variability and similarities with chrysotile asbestos. In: XXII Meeting of the International Mineralogical Association, Melbourne, Australia, p. 457. Trescases, J.-J., 1975. Supergenic Geochemical Evolution of the Ultrabasic Rocks in the Tropical Zone-formation of the Nickeliferous Deposits in New Caledonia. Memoires, ORSTOM, Paris, p. 259. Troly, G., Esterle, M., Pelletier, B., Reibell,W., 1979. Nickel deposits in New Caledonia, some factors influencing their formation. In: International Laterite Symposium, American Institute of Mining Metallurgy and Petroleum Engineering Society, New Orleans, pp. 85e119. Trotet, F., 2012. Fibrous serpentinites in oxyded nickel ores from New Caledonia: risk management in a modern mining company e societal implications. In: 3rd Serpentine Days, Porquerolles Island, France, vol. 87. Trotet, F., Kadar, M., Marini, D., 2015. Typology of the New Caledonian Ni-laterite deposits: from natural to industrial processes. In: The Society for Geology Applied to Mineral Deposits, 13th SGA Meeting. Turci, F., Tomatis, M., Gazzano, E., Riganti, C., Martra, G., Bosia, A., Ghigo, D., Fubini, B., 2005. Potential toxicity of nonregulated asbestiform minerals: balangeroite from theWestern Alps. Part 2: oxidant activity of the fibres. Journal of Toxicology and Environmental Health, Part A 68, 21e39. Ulrich, M., 2010. Péridotites et serpentinites du complexe ophiolitique de la Nouvelle- Calédonie. Études pétrologiques, géochimiques et minéralogiques sur l’évolution d’une ophiolite de sa formation à son altération. Ph.D. thesis. Université de la Nouvelle-Caledonie and Université Joseph Fourier de Grenoble. Ulrich, M., Picard, C., Guillot, S., Chauvel, C., Cluzel, D., Meffre, S., 2010. Multiple melting stages and refertilization as indicators for ridge to subduction formation: the New Caledonia ophiolite. Lithos 115, 223e236. Vignaroli, G., Ballirano, P., Belardi, G., Rossetti, F., 2014. Asbestos fibre identification vs. evaluation of asbestos hazard in ophiolitic rock mélanges, a case study from the Ligurian Alps (Italy). Environmental Earth Sciences 72, 3679e3698. Wacaster, S., 2011. The Mineral Industry of New Caledonia. U.S. Department of the Interior, Geological Survey, p. 8. Wagner, J., 2015. Analysis of serpentine polymorphs in investigations of natural occurrences of asbestos. Environmental Science: Processes & Impacts 17, 985e996. WHO, 1997. Determination of Airborne Fibre Number Concentrations. A Recommended Method, by Phase-contrast Optical Microscopy (Membrane Filter Method). World Health Organization, Geneva, p. 61. Wicks, F.J., Whittaker, E.J.W., 1977. Serpentine texture and serpentinization. The Canadian Mineralogist 15, 459e488.

Catalog

    Article views (221) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return