Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
C. J. Spencer, C. L. Kirkland, A. R. Prave, R. A. Strachan, V. Pease. Crustal reworking and orogenic styles inferred from zircon Hf isotopes: Proterozoic examples from the North Atlantic region[J]. Geoscience Frontiers, 2019, 10(2): 417-424. doi: 10.1016/j.gsf.2018.09.008
Citation: C. J. Spencer, C. L. Kirkland, A. R. Prave, R. A. Strachan, V. Pease. Crustal reworking and orogenic styles inferred from zircon Hf isotopes: Proterozoic examples from the North Atlantic region[J]. Geoscience Frontiers, 2019, 10(2): 417-424. doi: 10.1016/j.gsf.2018.09.008

Crustal reworking and orogenic styles inferred from zircon Hf isotopes: Proterozoic examples from the North Atlantic region

doi: 10.1016/j.gsf.2018.09.008
Funds:

The authors would like to thank Bernard Bingen for providing sample materials from Finnmark. Matt Horstwood (NIGL), Nick Roberts (NIGL), Bruno Dhuime (Bristol University), and Rebecca Lam (Memorial University) are thanked for aiding with the analytical work. Stephen Daly (University College Dublin) is thanked for providing access to previously unpublished Hf data sets, reported by Daly et al. (2008). This manuscript received helpful suggestions from Paul Mueller, Chris Hawkesworth, Trond Slagstad, and Stephen Daly. Tom Andersen and an anonymous reviewer are thanked for providing critical comments. VP acknowledges funding from the Swedish Research Council (Grant 621-2014-4375).

  • Received Date: 2018-03-22
  • Rev Recd Date: 2018-09-27
  • Publish Date: 2021-01-07
  • Zircon Hf evolutionary patterns are powerful tools to investiage magma petrogenesis and crustal evolution. The 176Hf/177Hf isotopic signature of a rock is particularly informative and can be used to derive an estimation of the time when mantle extraction and diagnose closed system reworking where successive samples through time define an Hf evolution array dependant on the source Lu/Hf ratio. However, many magmatic events require new mantle addition as the thermal impetus for melting pre-existing crust. In this situation, rather than simply reflecting reworking, the isotopic signature indicates mixing with contributions from both reworked crust and new radiogenic input. Different geodynamic settings have different propensities for either reworking or addition of new mantle-derived magma. Hence, Hf-time trends carry within them a record, albeit cryptic, of the evolving geodynamic environment as different tectonic configurations recycle and add new crust at different rates, magnitudes, and from different sources. As an example of the difference in apparent Hf evolution slopes, we present Hf-time compilations from three geographically distinct Meso-to Neoproterozoic orogenic belts in the North Atlantic Region whose geodynamic configurations remain a subject of debate. We use the εHf/Ma trajectory to assist in understanding their evolution. The εHf/Ma trajectory of the Sveconorwegian Orogen corresponds to a 176Lu/177Hf ratio of 0.012, which implies a process driven primarily by reworking of preexisting crust that is balanced with input from the depleted mantle resulting in a relatively shallow Hf/Ma path. In stark contrast εHf/Ma slope. The Valhalla Orogen reveals a similar comparatively shallow 3 to these patterns is the steep εHf/Ma trajectory of the Grenville Orogen that requires a mixing process involving a greater contribution of old crust of at least ~1.8 Ga age. The degree of reworking required to produce the εHf/Ma trend of the Grenville Orogen is consistent with a continent-continent collisional orogeny whereas both Sveconorwegian and Valhalla orogens appear more consistent with accretionary margins.
  • loading
  • [1]
    Åhäll, K.-I., Connelly, J., 1998. Intermittent 1.53-1.13 Ga magmatism in western Baltica:age constraints and correlations within a postulated supercontinent.Precambrian Research 92, 1-20.
    [2]
    Andersen, T., Griffin, W.L., 2004. LueHf and U-Pb isotope systematics of zircons from the Storgangen intrusion, Rogaland intrusive complex, SW Norway:implications for the composition and evolution of Precambrian lower crust in the Baltic Shield. Lithos 73, 271-288.
    [3]
    Andersen, T., Griffin, W.L., Pearson, N.J., 2002. Crustal evolution in the SW part of the Baltic Shield:the Hf isotope evidence. Journal of Petrology 43, 1725-1747.
    [4]
    Andersen, T., Griffin, W.L., Sylvester, A.G., 2004. Sveconorwegian underplating and granitic magmatism in the Baltic shield:LAM-ICPMS Hf isotope evidence.Geochimica et Cosmochimica Acta A676. Pergamon-Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, England.
    [5]
    Andersen, T., Saeed, A., Gabrielsen, R.H., Olaussen, S., 2011. Provenance characteristics of the Brumunddal sandstone in the Oslo Rift derived from U-Pb, LueHf and trace element analyses of detrital zircons by laser ablation ICMPS. Norwegian Journal of Geology 91.
    [6]
    Andersen, T., Andersson, U.B., Graham, S., Åberg, G., Simonsen, S.L., 2009a. Granitic magmatism by melting of juvenile continental crust:new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. Journal of the Geological Society 166, 233-247.
    [7]
    Andersen, T., Graham, S., Sylvester, A.G., 2009b. The geochemistry, LueHf isotope systematics, and petrogenesis of Late Mesoproterozoic A-type granites in southwestern Fennoscandia. The Canadian Mineralogist 47, 1399-1422.
    [8]
    Andersson, U.B., Begg, G.C., Griffin, W.L., Högdahl, K., 2011. Ancient and juvenile components in the continental crust and mantle:Hf isotopes in zircon from Svecofennian magmatic rocks and rapakivi granites in Sweden. Lithosphere 3, 409-419.
    [9]
    Bickford, M.E., Mueller, P.A., Kamenov, G.D., Hill, B.M., 2008. Crustal evolution of southern Laurentia during the Paleoproterozoic:Insights from zircon Hf isotopic studies of ca. 1.75 Ga rocks in central Colorado. Geology 36, 555-558.https://doi.org/10.1130/G24700A.1.
    [10]
    Bingen, B., Griffin, W.L., Torsvik, T.H., Saeed, A., 2005. Timing of Late Neoproterozoic glaciation in Baltica constrained by detrital zircon geochronology in the Hedmark Group, south-east Norway. Terra Nova 17, 250-258.
    [11]
    Bingen, B., Nordgulen, O., Viola, G., 2008. A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Norwegian Journal of Geology 88, 43-72.
    [12]
    Bingen, B., Belousova, E.A., Griffin, W.L., 2011. Neoproterozoic recycling of the Sveconorwegian orogenic belt:detrital-zircon data from the Sparagmite basins in the Scandinavian Caledonides. Precambrian Research 189, 347-367. https://doi.org/10.1016/j.precamres.2011.07.005.
    [13]
    Bird, A., Cutts, K., Strachan, R., Thirlwall, M.F., Hand, M., 2018. First evidence of Renlandian (c. 950-940 Ma) orogeny in mainland Scotland:implications for the status of the moine Supergroup and circum-North Atlantic correlations. Precambrian Research 305, 283-294. https://doi.org/10.1016/j.precamres.2017.12.019.
    [14]
    Boekhout, F., Roberts, N.M.W., Gerdes, A., Schaltegger, U., 2015. A Hf-isotope perspective on continent formation in the south Peruvian Andes. Geological Society of London, Special Publications 389 (1). https://doi.org/10.1144/SP389.6.
    [15]
    Brander, L., Appelquist, K., Cornell, D., Andersson, U.B., 2012. Igneous and metamorphic geochronologic evolution of granitoids in the central Eastern Segment, southern Sweden. International Geology Review 54, 509-546. https://doi.org/10.1080/00206814.2010.543785.
    [16]
    Brewer, T.S., Åhäll, K.-I., Darbyshire, D.P.F., Menuge, J.F., 2002. Geochemistry of late Mesoproterozoic volcanism in southwestern Scandinavia:implications for Sveconorwegian/Grenvillian plate tectonic models. Journal of the Geological Society 159, 129-144.
    [17]
    Cawood, P.A., Pisarevsky, S.A., 2017. Laurentia-Baltica-Amazonia relations during Rodinia assembly. Precambrian Research 292, 386-397.
    [18]
    Cawood, P.A., Strachan, R., Cutts, K., Kinny, P.D., Hand, M., Pisarevsky, S., 2010.Neoproterozoic orogeny along the margin of Rodinia:Valhalla orogen, North Atlantic. Geology 38, 99-102. https://doi.org/10.1130/G30450.1.
    [19]
    Cawood, P.A., Strachan, R.A., Merle, R.E., Millar, I.L., Loewy, S.L., Dalziel, I.W.D., Kinny, P.D., Jourdan, F., Nemchin, A.A., Connelly, J.N., 2014. Neoproterozoic to early Paleozoic extensional and compressional history of east Laurentian margin sequences:the moine Supergroup, Scottish Caledonides. The Geological Society of America Bulletin 127, 349-371. https://doi.org/10.1130/B31068.1.
    [20]
    Collins, W.J., Belousova, E.A., Kemp, A.I.S., Murphy, J.B., 2011. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nature Geoscience 4, 333-337. https://doi.org/10.1038/ngeo1127.
    [21]
    Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust:contrasting results from surface samples and shales. Chemical Geology 104 (1-4), 1-37. https://doi.org/10.1016/0009-2541(93)90140-E.
    [22]
    Cutts, K.A., Hand, M., Kelsey, D.E., Wade, B., Strachan, R.A., Clark, C., Netting, A., 2009. Evidence for 930 Ma metamorphism in the Shetland Islands, Scottish Caledonides:implications for Neoproterozoic tectonics in the Laurentia-Baltica sector of Rodinia. Journal of the Geological Society 166, 1033-1047. https://doi.org/10.1144/0016-76492009-006.
    [23]
    Daly, J.S., Kirkland, C., Lam, R., Sylvester, P., 2008. A Hafnium isotopic perspective on the provenance and tectonic setting of allochthonous Neoproterozoic sedimentary sequences in the North Atlantic region. Geochimica et Cosmochimica Acta 72 (12). Supplement 196.
    [24]
    DeCelles, P.G., Ducea, M.N., Kapp, P., Zandt, G., 2009. Cyclicity in Cordilleran orogenic systems. Nature Geoscience 2, 251-257. https://doi.org/10.1038/ngeo469.
    [25]
    Evans, D.A.D., 2009. The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. Geological Society of London, Special Publications 327, 371-404. https://doi.org/10.1144/SP327.16.
    [26]
    Gee, D.G., Andréasson, P.-G., Lorenz, H., Frei, D., Majka, J., 2015. Detrital zircon signatures of the Baltoscandian margin along the Arctic Circle Caledonides in Sweden:the Sveconorwegian connection. Precambrian Research 265, 40-56.https://doi.org/10.1016/j.precamres.2015.05.012.
    [27]
    Goodge, J.W., Vervoort, J.D., 2006. Origin of Mesoproterozoic A-type granites in Laurentia:Hf isotope evidence. Earth and Planetary Science Letters 243, 711-731. https://doi.org/10.1016/j.epsl.2006.01.040.
    [28]
    Gower, C.F., 1996. The evolution of the Grenville Province in eastern Labrador, Canada. Geological Society of London, Special Publications 112, 197-218.
    [29]
    Gower, C.F., Krogh, T.E., 2002. A U-Pb geochronological review of the Proterozoic history of the eastern Grenville Province. Canadian Journal of Earth Sciences 39, 795-829. https://doi.org/10.1139/e01-090.
    [30]
    Gower, C., Kamo, S., Krogh, T., 2008. Indentor tectonism in the eastern Grenville Province. Precambrian Research 167, 201-212. https://doi.org/10.1016/j.precamres.2008.08.004.
    [31]
    Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., Van Achterbergh, E., O'Reilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica Cosmochimica Acta 64, 133-147. https://doi.org/10.1016/S0016-7037(99)00343-9.
    [32]
    Guitreau, M., Blichert-Toft, J., 2014. Implications of discordant U-Pb ages on Hf isotope studies of detrital zircons. Chemical Geology 385, 17-25. https://doi.org/10.1016/j.chemgeo.2014.07.014.
    [33]
    Hammer, O., Harper, D.A.T., Ryan, P.D., 2013. PAST (Paleontological Statistics) version 2.16. Software package for education and data analysis. Paleontología Electrónica 4, 1-9.
    [34]
    Hawkesworth, C.J., Kemp, A.I.S., 2006. The differentiation and rates of generation of the continental crust. Chemical Geology 226, 134-143. https://doi.org/10.1016/j.chemgeo.2005.09.017.
    [35]
    Hawkesworth, Chris J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S., Storey, C.D., 2010a. Review:the generation and evolution of the continental crust. Journal of the Geological Society London 167, 229-248. https://doi.org/10.1144/0016-76492009-072.
    [36]
    Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S., Storey, C.D., 2010b. The generation and evolution of the continental crust.Journal of the Geological Society 167, 229-248. https://doi.org/10.1144/0016-76492009-072.Review.
    [37]
    Hildebrand, R.S., 2015. Dismemberment and northward migration of the Cordilleran orogen:Baja-BC resolved. Geological Society of America Today 25.
    [38]
    Hopkinson, T.N., Harris, N.B.W., Warren, C.J., Spencer, C.J., Roberts, N.M.W., Horstwood, M.S.A., Parrish, R.R., EIMF, 2017. The identification and significance of pure sediment-derived granites. Earth and Planetary Science Letters 467.https://doi.org/10.1016/j.epsl.2017.03.018.
    [39]
    Hynes, A., Rivers, T., 2010. Protracted continental collision d evidence from the Grenville Orogen. Canadian Journal of Earth Sciences 47, 591-620. https://doi.org/10.1139/E10-003.
    [40]
    Ibanez-Mejia, M., Ruiz, J., Valencia, V.A., Cardona, A., Gehrels, G.E., Mora, A.R., 2011.The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions:new U-Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. Precambrian Research 191, 58-77. https://doi.org/10.1016/j.precamres.2011.09.005.
    [41]
    Johansson, L., Lindh, A., Möller, C., 1991. Late Sveconorwegian (Grenville) high pressure granulite facies metamorphism in southwest Sweden. Journal of Metamorphic Geology 9, 283-292.
    [42]
    Kamo, S.L., Heaman, L.M., Gower, C.F., 2011. Evidence for post-1200 Madpre-Grenvilliansupracrustal rocks in the Pinware terrane, eastern Grenville Province at Battle Harbour, Labrador. Canadian Journal of Earth Sciences 48, 371-387.
    [43]
    Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M., Whitehouse, M.J., 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315, 980-983.
    [44]
    Kemp, A.I.S., Hawkesworth, C.J., Collins, W.J., Gray, C.M., Blevin, P.L., 2009. Isotopic evidence for rapid continental growth in an extensional accretionary orogen:the Tasmanides, eastern Australia. Earth and Planetary Science Letters 284, 455-466. https://doi.org/10.1016/j.epsl.2009.05.011.
    [45]
    Kirkland, C.L., Daly, J.S., Whitehouse, M.J., 2006. Granitic magmatism of Grenvillian and late Neoproterozoic age in Finnmark, Arctic Norwaydconstraining pre-Scandian deformation in the Kalak nappe complex. Precambrian Research 145, 24-52. https://doi.org/10.1016/j.precamres.2005.11.012.
    [46]
    Kirkland, C.L., Bingen, B., Whitehouse, M.J., Beyer, E., Griffin, W.L., 2011. Neoproterozoic palaeogeography in the North Atlantic region:Inferences from the Akkajaure and Seve nappes of the Scandinavian Caledonides. Precambrian Research 186, 127-146. https://doi.org/10.1016/j.precamres.2011.01.010.
    [47]
    Kurhila, M., Andersen, T., Rämö, O.T., 2010. Diverse sources of crustal granitic magma:LueHf isotope data on zircon in three Paleoproterozoic leucogranites of southern Finland. Lithos 115, 263-271.
    [48]
    Lamminen, J., Köykkä, J., 2010. The provenance and evolution of the Rjukan Rift Basin, Telemark, southNorway:the shift froma rift basin to an epicontinental sea along a Mesoproterozoic supercontinent. Precambrian Research 181, 129-149.
    [49]
    Lamminen, J., Andersen, T., Nystuen, J.P., 2011. Zircon U-Pb ages and LueHf isotopes from basement rocks associated with Neoproterozoic sedimentary successions in the Sparagmite Region and adjacent areas, South Norway:the crustal architecture of western Baltica. Norsk Geologisk Tidsskrift 91, 35-55.
    [50]
    Lancaster, P.J., Storey, C.D., Hawkesworth, C.J., Dhuime, B., 2011. Understanding the roles of crustal growth and preservation in the detrital zircon record. Earth and Planetary Science Letters 305, 405-412. https://doi.org/10.1016/j.epsl.2011.03.022.
    [51]
    Laurent, O., Zeh, A., 2015. A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics:example from the Pietersburg block (South Africa). Earth and Planetary Science Letters 430, 326-338. https://doi.org/10.1016/j.epsl.2015.08.028.
    [52]
    Lorenz, H., Gee, D.G., Larionov, A.N., Majka, J., 2012. The GrenvilleeSveconorwegian orogen in the high Arctic. Geological Magazine 149, 875-891. https://doi.org/10.1017/S0016756811001130.
    [53]
    Malone, S.J., McCelland, W.C., von Gosen, W., Piepjohn, K., 2014. Proterozoic evolution of the North AtlanticeArctic Caledonides:insights from detrital zircon analysis of metasedimentary rocks from the Pearya terrane, Canadian high Arctic. The Journal of Geology 122, 623-647.
    [54]
    Malone, S.J., McCelland, W.C., von Gosen, W., Piepjohn, K., 2017. The earliest Neoproterozoic magmatic record of the Pearya terrane, Canadian high Arctic:implications for Caledonide terrane reconstructions. Precambrian Research 292, 323-349.
    [55]
    Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R.,Wu, A.Y., 2014. On the least trimmed squares estimator. Algorithmica 69, 148-183.
    [56]
    Myhre, P.I., Corfu, F., Andresen, A., 2008. Caledonian anatexis of Grenvillian crust:a U/Pb study of Albert I Land, NW Svalbard. Norwegian Journal of Geology 89, 173-191.
    [57]
    Nance, W., Taylor, S., 1976. Rare earth element patterns and crustal evolutiondI.Australian Post-Archean sedimentary rocks. Geochimica et Cosmochimica Acta vol. 40 (12), 1539-1551. https://doi.org/10.1016/0016-7037(76)90093-4.
    [58]
    Payne, J.L., McInerney, D.J., Barovich, K.M., Kirkland, C.L., Pearson, N.J., Hand, M., 2016. Strengths and limitations of zircon LueHf and O isotopes in modelling crustal growth. Lithos. https://doi.org/10.1016/j.lithos.2015.12.015.
    [59]
    Pedersen, S., Andersen, T., Konnerup-Madsen, J., Griffin, W.L., 2009. Recurrent Mesoproterozoic continental magmatism in south-central Norway. International Journal of Earth Sciences 98, 1151-1171.
    [60]
    Pettersson, C.H., Pease, V., Frei, D., 2010. Detrital zircon U-Pb ages of SilurianeDevonian sediments from NW Svalbard:a fragment of Avalonia and Laurentia? Journal of Geological Society of London. 167, 1019-1032. https://doi.org/10.1144/0016-76492010-062.
    [61]
    Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145 (3-4), 325-394. https://doi.org/10.1016/S0009-2541(97)00150-2.
    [62]
    Pozer, B.E., 2008. Age and Origin of the Mesoproterozoic Basement of the Nesodden Peninsula, SE Norway:a Geochronological and Isotopic Study.
    [63]
    Rivers, T., Culshaw, N., Hynes, A., Indares, A., Jamieson, R., Martignole, J., 2012. The Grenville Orogen-a post-lithoprobe perspective. Tectonic Styles in Canada:The Lithoprobe perspective 49, 97-238.
    [64]
    Roberts, N.M.W., Slagstad, T., 2014. Continental growth and reworking on the edge of the Columbia and Rodinia supercontinents; 1.86-0.9 Ga accretionary orogeny in southwest Fennoscandia. International Geology Review 1-25.https://doi.org/10.1080/00206814.2014.958579.
    [65]
    Roberts, N.M.W., Slagstad, T., Parrish, R.R., Norry, M.J., Marker, M., Horstwood, M.S.A., 2013. Sedimentary recycling in arc magmas:geochemical and U-PbeHfeO constraints on the Mesoproterozoic Suldal Arc, SW Norway.Contributions to Mineralogy and Petrology 165, 507-523.
    [66]
    Rousseeuw, P.J., Driessen, K. Van, 1999. A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212-223.
    [67]
    Rudnick, R., Gao, S., 2003. Composition of the Continental Crust.Slagstad, T., Roberts, N.M.W., Marker, M., Røhr, T.S., Schiellerup, H., 2013. A noncollisional, accretionary Sveconorwegian orogen. Terra Nova 25, 30-37. https://doi.org/10.1111/ter.12001.
    [68]
    Slagstad, T., Roberts, N.M.W., andKulakov, E., 2017. Linking orogenesis across a supercontinent;the Grenvillian and Sveconorwegian margins on Rodinia. Gondwana Research 44, 109-115.
    [69]
    Spencer, C.J., Kirkland, C.L., 2016. Visualizing the sedimentary response through the orogenic cycle:a multidimensional scaling approach. Lithosphere 8, 29-37.https://doi.org/10.1130/L479.1.
    [70]
    Spencer, C.J., Hoiland, C.W., Harris, R.A., Link, P.K., Balgord, E.A., 2012. Constraining the timing and provenance of the Neoproterozoic little willow and big cottonwood formations, Utah:expanding the sedimentary record for early rifting of Rodinia. Precambrian Research 204-205, 57-65. https://doi.org/10.1016/j.precamres.2012.02.009.
    [71]
    Spencer, C.J., Hawkesworth, C., Cawood, P.A., Dhuime, B., 2013. Not all supercontinents are created equal:Gondwana-Rodinia case study. Geology 41, 795-798.https://doi.org/10.1130/G34520.1.
    [72]
    Spencer, C.J., Roberts, N.M.W., Cawood, P.A., Hawkesworth, C.J., Prave, A.R., Antonini, A.S.M., Horstwood, M.S.A., 2014. Intermontane basins and bimodal volcanism at the onset of the Sveconorwegian Orogeny, southern Norway. Precambrian Research 252,107-118. https://doi.org/10.1016/j.precamres.2014.07.008.
    [73]
    Spencer, C.J., Cawood, P.A., Hawkesworth, C.J., Prave, A.R., Roberts, N.M.W., Horstwood, M.S.A., Whitehouse, M.J., 2015. Generation and preservation of continental crust in the Grenville Orogeny. Geoscience Frontiers 6, 357-372.https://doi.org/10.1016/j.gsf.2014.12.001.
    [74]
    Strachan, R.A., Nutman, A.P., Friderichsen, J.D., 1995. SHRIMP U-Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides.Journal of Geological Society of London. 152, 779-784. https://doi.org/10.1144/gsjgs.152.5.0779.
    [75]
    Strachan, R.A., Holdsworth, R.E., Krabbendam, M., Alsop, G.I., 2010. The Moine Supergroup of NW Scotland:insights into the analysis of polyorogenicsupracrustal sequences. Geological Society of London, Special Publications 335, 233-254.https://doi.org/10.1144/SP335.11.
    [76]
    Vervoort, J.D., Kemp, A.I.S., 2016. Clarifying the zircon Hf isotope record of crust-mantle evolution. Chemical Geology 425, 65-75. https://doi.org/10.1016/j.chemgeo.2016.01.023.
    [77]
    Walker, S., Thirlwall,M.F., Strachan, R.A., Bird, A.F., 2015. Evidence fromRbeSr mineral ages for multiple orogenic events in the Caledonides of Shetland, Scotland. Journal of Geological Society of London. https://doi.org/10.1144/jgs2015-034.
    [78]
    Wu, F.-Y., Clift, P.D., Yang, J.-H., 2007. Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics 26, TC2014. https://doi.org/10.1029/2006TC002051.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (77) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return