Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Jiasheng Wang, Hanjie Wen, Chao Li, Jinrang Zhang, Wei Ding. Age and metal source of orogenic gold deposits in Southeast Guizhou Province, China: Constraints from Re-Os and He-Ar isotopic evidence[J]. Geoscience Frontiers, 2019, 10(2): 581-593. doi: 10.1016/j.gsf.2018.05.012
Citation: Jiasheng Wang, Hanjie Wen, Chao Li, Jinrang Zhang, Wei Ding. Age and metal source of orogenic gold deposits in Southeast Guizhou Province, China: Constraints from Re-Os and He-Ar isotopic evidence[J]. Geoscience Frontiers, 2019, 10(2): 581-593. doi: 10.1016/j.gsf.2018.05.012

Age and metal source of orogenic gold deposits in Southeast Guizhou Province, China: Constraints from Re-Os and He-Ar isotopic evidence

doi: 10.1016/j.gsf.2018.05.012
Funds:

This research is jointly supported by the National Natural Science Foundation of China (Grant Nos. 41303038, 41772070), Open Fund of State Key Laboratory of Ore Deposit Geochemistry (201502), and the National Basic Research Program of China (2014CB440904).

  • Received Date: 2017-12-22
  • Rev Recd Date: 2018-04-04
  • Publish Date: 2021-01-07
  • The orogenic gold deposits in Southeast Guizhou are an important component of the Xuefeng polymetallic ore belt and have significant exploration potential, but geochronology research on these gold deposits is scarce. Therefore, the ore genetic models are poorly constrained and remain unclear. In the present study, two important deposits (Pingqiu and Jinjing) are investigated, including combined Re-Os dating and the He-Ar isotope study of auriferous arsenopyrites. It is found that the arsenopyrites from the Pingqiu gold deposit yielded an isochron age of 400±24 Ma, with an initial 187Os/188Os ratio of 1.24±0.57 (MSWD=0.96). An identical isochron age of 400±11 Ma with an initial 187Os/188Os ratio of 1.55±0.14 (MSWD=0.34) was obtained from the Jinjing deposit. These ages correspond to the regional Caledonian orogeny and are interpreted to represent the age of the main stage ore. Both initial 187Os ratios suggest that the Os was derived from crustal rocks. Combined with previous rare earth element (REE), trace elements, Nd-Sr-S-Pb isotope studies on scheelite, inclusion fluids with other residues of gangue quartz, and sulfides from other gold deposits in the region, it is suggested that the ore metals from Pingqiu and Jinjing were sourced from the Xiajiang Group. The He and Ar isotopes of arsenopyrites are characterized by 3He/4He ratios ranging from 5.3×10-4 Ra to 2.5×10-2 Ra (Ra=1.4×10-6, the 3He/4He ratio of air), 40Ar*/4He ratios from 0.64×10-2 to 15.39×10-2, and 40Ar/36Ar ratios from 633.2 to 6582.0. Those noble gas isotopic compositions of fluid inclusions also support a crustal source origin, evidenced by the Os isotope. Meanwhile, recent noble gas studies suggest that the amount of in situ radiogenic 4He generated should not be ignored, even when Th and U are present at levels of only a few ppm in host minerals.
  • loading
  • [1]
    Arne, D.C., Bierlein, F.P., Morgan, J.W., Stein, H.J., 2001. Re-Os dating of sulfides associated with gold mineralization in central Victoria, Australia. Economic Geology 96, 1455-1459.
    [2]
    Ballentine, C.J., Burnard, P.G., 2002. Production, release and transport of noble gases in the continental crust. Reviews in Mineralogy and Geochemistry 47, 481-538.
    [3]
    Bao, Z.X., 1991. A discussion on gold potential of pyrite and arsenopyrite in goldebearing deposit, Hunan province. Mineral Resources and Geology 24, 368-374 (in Chinese with English abstract).
    [4]
    Barra, F., Ruiz, J., Mathur, R., Titley, S., 2003. A Re-Os study of sulfide minerals from the Bagdad porphyry Cu-Mo deposit, northern Arizona, USA. Mineralium Deposita 38, 585-596.
    [5]
    Cardon, O., Reisberg, L., Sylvie, A., Andre-Mayer, A.S., Leroy, J., Milu, V., Zimmermann, C., 2008. Re-Os systematics of pyrite from the Bolcana porphyry copper deposit, Apuseni Mountains, Romania. Economic Geology 103, 1695-1702.
    [6]
    Chen, M.H., Mao, J.W., Li, C., Zhang, Z.Q., Dang, Y., 2015. Re-Os isochron ages for arsenopyrite from Carlin-like gold deposits in the Yunnan-Guizhou-Guangxi "golden triangle", southwestern China. Ore Geology Reviews 64, 316-327.
    [7]
    Deng, Q.,Wang, J.,Wang, Z.J., Cui, X.Z., Shi, M.F., Du, Q.D., Ma, L., Liao, S.Y., Ren, G.M., 2016. Middle neoproterozoic magmatic activities and their constraints on tectonic evolution of the jiangnan orogen. Geotectonica et Metallogenia 40, 753-771.
    [8]
    Deng, X.H., Chen, Y.J., Santosh, M., Zhao, G.C., Yao, J.M., 2013. Metallogeny during continental outgrowth in the Columbia supercontinent:isotopic characterization of the Zhaiwa Mo-Cu system in the north China Craton. Ore Geology Reviews 51, 43-56.
    [9]
    Deng, X.H., Wang, J.B., Pirajno, F., Wang, Y.W., Li, Y.C., Li, C., Zhou, L.M., Chen, Y.J., 2016a. Re-Os dating of chalcopyrite from selected mineral deposits in the Kalatag district in the eastern Tianshan Orogen, China. Ore Geology Reviews 77, 72-81.
    [10]
    Deng, X.H., Chen, Y.J., Santosh, M., Yao, J.M., Sun, Y.L., 2016b. ReeOs and SreNdePb isotope constraints on source of fluids in the Zhifang Mo deposit, Qinling Orogen, China. Gondwana Research 30, 132-143.
    [11]
    Drescher, J., Kirsten, T., Schäfer, K., 1998. The rare gas inventory of the continental crust, recovered by the KTB continental deep drilling project. Earth and Planetary Science Letters 154, 247-263.
    [12]
    Du, A.D., Qu, W.J., Li, C., Yang, G., 2009. A review on the development of Re-Os isotopic dating methods and techniques. Rock and Mineral Analysis 28, 288-304 (in Chinese with English abstract).
    [13]
    Feng, C.Y., Qu, W.J., Zhang, D.Q., Dang, X.Y., Du, A.D., Li, D.X., She, H.Q., 2009. Re-Os dating of pyrite from the Tuolugou stratabound Co (Au) deposit, eastern Kunlun Orogenic Belt, northwestern China. Ore Geology Reviews 36, 213-220.
    [14]
    Frei, R., Nägler, T.F., Schönberg, R., Kramers, J.D., 1998. Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization:genetic tracing and age constraints of crustal hydrothermal activity.Geochimica et Cosmochimica Acta 62, 1925-1936.
    [15]
    Freydier, C., Ruiz, J., Chesley, J., McCandless, T., Munizaga, F., 1997. Re-Os isotope systematics of sulfides from felsic igneous rocks:application to base metal porphyry mineralization in Chile. Geology 25, 775-778.
    [16]
    Goldfarb, R.J., Groves, D.I., Gardoll, S., 2001. Orogenic gold and geologic time:a global synthesis. Ore Geology Reviews 18, 1-75.
    [17]
    Goldfarb, R.J., Taylor, R.D., Collins, G.S., Goryachev, N.A., Orlandini, O.F., 2014.Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Research 25, 48-102.
    [18]
    Groves,D.I., Goldfarb, R.J., Gebre-Mariam,M., Hagemann, S.G., Robert, F.,1998.Orogenic gold deposits:a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews 13, 7-27.
    [19]
    Hu, R.Z., Bi, X.W., Turner, G., Burnard, P.G., 1999. He and Ar isotope geochemistry studies of gold ore-forming fluids of Ailaoshan gold belt. Science in China Series D 29, 321-330 (in Chinese with English abstract).
    [20]
    Hu, R.Z., Burnard, P.G., Bi, X.W., Zhou, M.F., Pen, J.T., Su,W.C.,Wu, K.X., 2004. Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red RivereJinshajiang fault belt, SW China. Chemical Geology 203, 305-317.
    [21]
    Hu, R.Z., Burnard, P.G., Bi, X.W., Zhou, M.F., Pen, J.T., Su, W.C., Zhao, J.H., 2009.Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi province, China:evidence from He, Ar and C isotopes.Chemical Geology 266, 86-95.
    [22]
    Hu, R.Z., Zhou, M.F., 2012. Multiple Mesozoic mineralization events in South Chinadan introduction to the thematic issue. Mineralium Deposita 47, 579-588.
    [23]
    Hu, S.Q., Zhu, G., Zhang, B.L., Zhang, L., 2010. K-Ar geochronology of the Caledonian event in the Xuefeng uplift. Geological Review 56, 490-500 (in Chinese with English abstract).
    [24]
    Hnatyshin, D., Creaser, R.A., Wilkinson, J.J., Gleeson, S.A., 2015. Re-Os dating of pyrite confirms an early diagenetic onset and extended duration of mineralization in the Irish Zn-Pb ore field. Geology 43, 143-146.
    [25]
    JXBGMR (Bureau of Geology and Mineral Resources of Jiangxi Province), 1984.Regional Geology of the Jiangxi Province. Geological Publishing House, Beijing, pp. 1-921 (in Chinese).
    [26]
    Kendrick, M.A., Burgess, R., Pattrick, R.A.D., Turner, G., 2001. Fluid inclusion noble gas and halogen evidence on the origin of Cu-Porphyry mineralising fluids.Geochimica et Cosmochimica Acta 65, 2651-2668.
    [27]
    Li, D.F., Chen, H.Y., Hollings, P., Zhang, L., Mi, M., Fang, J., Wang, C.M., Lu, W.J., 2016.Re-Os pyrite geochronology of Zn-Pb mineralization in the giant Caixiashan deposit, NW China. Mineralium Deposita 51, 309-317.
    [28]
    Li, H.Q., Wang, D.H., Chen, F.W., Mei, Y.P., Cai, H., 2008. Study on chronology of the Chanziping and daping gold deposit in Xuefeng mountains, Hunan province.Acta Geologica Sinica 82, 900-905 (in Chinese with English abstract).
    [29]
    Li, X.F., Chen, W., Mao, J.W., Wang, C.Z., Xie, G.Q., Feng, Z.H., 2006.40Ar/39Ar dating of sericite from altered dacite porphyry and quartz porphyry in Yinshan polymetallic deposit of Jiangxi Province and its geological significance. Mineral Deposits 25, 17-26 (in Chinese with English abstract).
    [30]
    Li, Y., Li, J.W., Li, X.H., Selby, D., Huang, G.H., Chen, L.J., Zheng, K., 2017a. An Early Cretaceous carbonate replacement origin for the Xinqiao stratabound massive sulfide deposit, Middle-Lower Yangtze Metallogenic Belt, China. Ore Geology Reviews 80, 985-1003.
    [31]
    Li, Y., Selby, D., Condon, D., Tapster, S., 2017b. Cyclic magmatic-hydrothermal evolution in porphyry systems:high-precision U-Pb and Re-Os geochronology constraints from the Tibetan Qulong porphyry Cu-Mo deposit. Economic Geology 112, 1419-1440.
    [32]
    Liu, J.S., 1993. On the mineralization epoch of Xuefeng metalogenetic province. Gold 14, 7-12 (in Chinese with English abstract).
    [33]
    Lu, H.Z., Wang, Z.G., Wu, X.Y., Chen, W.Y., Zhu, X.Q., Guo, D.J., Hu, R.Z., Keita, M., 2005. Turbidite-hosted gold deposits in SE Guizhou province, China:their regional setting, structural control and gold mineralization. Acta Geologica Sinica 79, 98-105 (in Chinese with English abstract).
    [34]
    Lu, H.Z., Wang, Z.G., Chen, W.Y., Wu, X.Y., Zhu, X.Q., Hu, R.Z., 2006. Turbidite hosted gold deposits in southeast Guizhou:their structural control, mineralization characteristics, and some genetic constrains. Mineral Deposits 25, 369-387 (in Chinese with English abstract).
    [35]
    Ludwig, K., 2005. Isoplot/ex, Version 3.23:a Geochronological Toolkit for Microsoft Excel. Geochronology Center, Berkeley, USA.
    [36]
    Luo, X.L., 1989. On the epoch of the formation of Precambrian gold deposits in Hunan province. Journal of Guilin College of Geology 9, 25-34 (in Chinese with English abstract).
    [37]
    Ma, D.S., Pan, J.Y., Xie, Q.L., He, J., 2002. Ore source of Sb (Au) deposits in central Hunan:I. Evidences of trace elements and experimental geochemistry. Mineral Deposits 21, 366-376 (in Chinese with English abstract).
    [38]
    Mao, J.W., Zhang, Z.C., Zhang, Z.H., Du, A.D., 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the northern Qilian Mountains and its geological significance. Geochimica et Cosmochimica Acta 63, 1815-1818.
    [39]
    Mao, J.W., Cheng, Y.B., Cheng, M.H., Pirajno, F., 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita 48, 267-294.
    [40]
    Mathur, R., Ruiz, J., Tornos, F.,1999. Age and sources of the ore at Tharsis and Rio Tinto, Iberian pyrite belt, from Re-Os isotopes. Mineralium Deposita 34, 790-793.
    [41]
    Mikulski, S.Z., Markey, R.J., Stein, H.J., 2005. Re-Os ages for auriferous sulfides from the gold deposits in the Kaczawa Mountains (SW Poland). Mineral Deposit Research Meeting the Global Challenge Land 2, 793-796.
    [42]
    Morelli, R.M., Creaser, R.A., Selby, D., Kelley, K.D., Leach, D.L., King, A.R., 2004. Re-Os sulfide geochronology of the Red Dog sediment-hosted Zn-Pb-Ag deposit, Brooks Range, Alaska. Economic Geology 99, 1569-1576.
    [43]
    Morelli, R.M., Creaser, R.A., Selby, D., Kontak, D.J., Horne, R.J., 2005. Rhenium-Osmium arsenopyrite geochronology of Meguma Group gold deposits, Meguma terrane, Nova Scotia, Canada:evidence for multiple gold mineralizing events.Economic Geology 100, 1229-1242.
    [44]
    Morelli, R.M., Creaser, R.A., Seltmann, F., Stuart, F.M., Selby, D., Graupner, T., 2007.Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re-Os-He isotopes in arsenopyrite. Geology 35, 795-798.
    [45]
    Peng, B., Frei, R., 2004. Nd-Sr-Pb isotopic constraints on metal and fluid sources in W-Sb-Au mineralization at Woxi and Liaojiaping (Western Hunan, China).Mineralium Deposita 39, 313-327.
    [46]
    Peng, J.T., Dai, T.G.,1998.On the mineralization epoch of the Xuefeng gold metallogenic province. Geology and Prospecting 34, 37-41 (in Chinese with English abstract).
    [47]
    Peng, J.T., Dai, T.G., Hu, R.Z., 1999. Geochemical evidence for the ore-forming materials of gold deposits, southwestern Hunan. Acta Mineralogica Sinica 19, 327-334 (in Chinese with English abstract).
    [48]
    Peng, J.T., Hu, R.Z., Zhao, J.H., Fu, Y.Z., Lin, Y.X., 2003. Scheelite Sm-Nd daing and quartz Ar-Ar daing of Au-Sb-W deposit in Woxi, west Hunan. Chinese Science Bulletin 48, 1976-1981 (in Chinese).
    [49]
    Pirajno, F., 2013. The geology and tectonic settings of China's mineral deposits.Springer Dordrecht 9-11.
    [50]
    Ren, J.S., 1996. The continental tectonics of China. Journal of Southeast Asian Earth Sciences 13, 197-204.
    [51]
    Ruiz, J., Mathur, R., 1999. Metallogenesis in continental margins:Re-Os evidence from porphyry copper deposits in Chile. In:Lambert, D., Ruiz, J. (Eds.), Applications of Radiogenic Isotopes to Ore Deposit Research and Exploration, vol. 12. Reviews in Economic Geology, pp. 59-72.
    [52]
    Selby, D., Kelley, K.D., Hitzman, M.W., Zieg, J., 2009. Re-Os Sulfide (bornite, chalcopyrite, and pyrite) systematics of the Carbonate-hosted copper deposits at Ruby Creek, Southern Brooks range, Alaska. Economic Geology 104, 437-444.
    [53]
    Shi, M.K., Fu, B.Q., Jin, X.X., Zhou, X.C., 1993. Antimony Metallogeny in the Central Part of Hunan Province. Hunan Press of Science and Technology, Changsha, pp. 53-65 (in Chinese with English abstract).
    [54]
    Simmons, S.F., Sawkins, F.J., Schlutter, D.J., 1987. Mantle-derived helium in two Peruvian hydrothermal ore deposits. Nature 329, 429-432.
    [55]
    Shirey, S.B., Walker, R.J., 1998. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary Sciences 26, 423-500.
    [56]
    Smoliar, M.I., Walker, R.J., Morgan, J.W., 1996. Re-Os ages of group ⅡA, ⅢA, IVA, and IVB iron meteorites. Science 271, 1099-1102.
    [57]
    Stein, H.J., Sundblad, K., Markey, R.J., Morgan, J.W., Motuza, G., 1998. Re-Os ages for Archean molybdenite and pyrite, Kuittila-Kivisuo, Finland, and Proterozoic molybdenite, Kabeliai, Lithuania:testing the chronomter in a metamorphic and metasomatic setting. Mineralium Deposita 33, 329-345.
    [58]
    Stein, H.J., Morgan, J.W., Schersten, A., 2000. Re-Os dating of low-level highly radiogenic (LLHR) sulfides:the Harnas gold deposit, southwest Sweden, Records continental scale tectonic events. Economic Geology 95, 1657-1671.
    [59]
    Stuart, F.M., Turner, G., Duckworth, R.C., Fallick, A.E., 1994. Helium isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulfides. Geology 22, 823-826.
    [60]
    Stuart, F.M., Burnard, P.G., Taylor, R.P., Turner, G., 1995. Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, South Korea. Geochimica et Cosmochimica Acta 59, 4663-4673.
    [61]
    Suzuki, K., Kagi, H., Nara, M., Takano, B., Nozaki, Y., 2000. Experimental alteration of molybdenite:evaluation of the Re-Os system, infrared spectroscopic profile and polytype. Geochim Cosmochim Acta 64, 223-232.
    [62]
    Wang, J.S., 2012. Mineralization, Geochronology and Geodynamics of the Lowtemperature Epithermal Metallogenic Domain in Southwestern China.Doctorate Dissertation of Graduate University of Chinese Academy of Sciences, pp. 81-84 (in Chinese with English abstract).
    [63]
    Wang, Y.J., Zhang, Y.H., Fan, W.M., Peng, T.P., 2005. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, south China block. Journal of Structural Geology 27, 985-998.
    [64]
    Wang, Y.J., Fan,W.M., Zhao, G.C., Ji, S.C., Peng, T.P., 2007. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China block. Gondwana Research 12, 404-416.
    [65]
    Wang, X.Z., Liang, H.Y., Shan, Q., Cheng, J.P., Xia, P., 1999. Metallogenic age of the Jinshan gold deposit and Caledonian gold mineralization in South China.Geological Review 45, 19-25 (in Chinese with English abstract).
    [66]
    Windh, J., 1995. Saddle reef and related gold mineralization, Hill End gold field, Australia:evolution of an auriferous vein system during progressive deformation.Economic Geology 90, 1764-1775.
    [67]
    Wu, L.Y., Hu, R.Z., Peng, J.T., Bi, X.W., Jiang, G.H., Chen, H.W., Wang, Q.Y., Liu, Y.Y., 2011. He and Ar isotopic compositions and genetic implications for the giant ShizhuyuanW-SneBieMo deposit, Hunan Province, South China. International Geology Review 53, 677-690.
    [68]
    Xue, H.M., Ma, F., Song, Y.Q., Xie, Y.P., 2010. Geochronology and geochemistry of the Neoproterozoic granitoid association from eastern segment of the Jiangnan orogen, China:constraints on the timing and process of amalgamation between the Yangtze and Cathaysia blocks. Acta Petrologica Sinica 26, 3215-3244 (in Chinese with English abstract).
    [69]
    Ye, X.R., Wu, M.B., Sun, M.L., 2001. Determination of the noble gas isotopic composition in rocks and minerals by Mass Spectrometry. Rock and Mineral Analysis 20, 174-178 (in Chinese with English abstract).
    [70]
    Zhang, L.C., Xiao, W.J., Qin, K.Z., Qu, W.J., Du, A.D., 2005. Re-Os isotopic dating of molybdenite and pyrite in the Baishan Mo-Re deposit, eastern Tianshan, NW China, and its geological significance. Mineralium Deposita 39, 960-969.
    [71]
    Zhao, J.H., Peng, J.T., Hu, R.Z., Fu, Y.Z., 2005. Chronology, petrology, geochemistry and tectonic environment of Banxi quartz porphyry dikes, Hunan province. Acta Geoscientica Sinica 26, 525-534 (in Chinese with English abstract).
    [72]
    Zhou, T.H., Goldfarb, R.J., Phillips, G.N., 2002. Tectonics and distribution of gold deposits in China-an overview. Mineralium Deposita 37, 249-282.
    [73]
    Zhu, X.Q., Wang, G.L., Lu, H.Z., Wu, X.Y., Chen, W.Y., 2006. Determination of the age of gold deposits in southeastern Guizhou:with a discussion of the Caledonian HunaneGuizhou gold ore belt. Geology in China 33, 1092-1099 (in Chinese with English abstract).
    [74]
    Zhu, Y.N., Peng, J.T., 2015. Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au-Sb-W deposit, western Hunan, South China. Ore Geology Reviews 65, 55-69.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (77) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return