Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Vipin Kumar, Vikram Gupta, Imlirenla Jamir, Shovan Lal Chattoraj. Evaluation of potential landslide damming: Case study of Urni landslide, Kinnaur, Satluj valley, India[J]. Geoscience Frontiers, 2019, 10(2): 753-767. doi: 10.1016/j.gsf.2018.05.004
Citation: Vipin Kumar, Vikram Gupta, Imlirenla Jamir, Shovan Lal Chattoraj. Evaluation of potential landslide damming: Case study of Urni landslide, Kinnaur, Satluj valley, India[J]. Geoscience Frontiers, 2019, 10(2): 753-767. doi: 10.1016/j.gsf.2018.05.004

Evaluation of potential landslide damming: Case study of Urni landslide, Kinnaur, Satluj valley, India

doi: 10.1016/j.gsf.2018.05.004
Funds:

The authors are thankful to the Director, Wadia Institute of Himalayan Geology (WIHG) for all the necessary help and support. VK acknowledges Dr. Amit Kumar and Mr. Anupam Anand Gokhale for the affirmative discussion about rainfall dynamics. VK also thank people of Urni and Tapri town, Kinnaur for helpful discussion during field. SLC acknowledges the financial help by the Indian Space Research Organization (ISRO) through TDP project for debris flow modelling. We are thankful to the Editorial Advisor (Prof. M. Santosh), Associate Editor (Prof. Shaji E) and two anonymous reviewers for their constructive suggestions. This study forms a part of the doctoral thesis of VK.

  • Received Date: 2017-09-19
  • Rev Recd Date: 2018-03-09
  • Publish Date: 2021-01-07
  • This work aims to understand the process of potential landslide damming using slope failure mechanism, dam dimension and dam stability evaluation. The Urni landslide, situated on the right bank of the Satluj River, Himachal Pradesh (India) is taken as the case study. The Urni landslide has evolved into a complex landslide in the last two decade (2000-2016) and has dammed the Satluj River partially since year 2013, damaging ~200 m stretch of the National Highway (NH-05). The crown of the landslide exists at an altitude of ~2180-2190 m above msl, close to the Urni village that has a human population of about 500. The high resolution imagery shows ~50 m long landslide scarp and ~100 m long transverse cracks in the detached mass that implies potential for further slope failure movement. Further analysis shows that the landslide has attained an areal increase of 103,900±1142 m2 during year 2004-2016. About 86% of this areal increase occurred since year 2013. Abrupt increase in the annual mean rainfall is also observed since the year 2013. The extreme rainfall in the June, 2013; 11 June (~100 mm) and 16 June (~115 mm), are considered to be responsible for the slope failure in the Urni landslide that has partially dammed the river. The finite element modelling (FEM) based slope stability analysis revealed the shear strain in the order of 0.0-0.16 with 0.0-0.6 m total displacement in the detachment zone. Further, kinematic analysis indicated planar and wedge failure condition in the jointed rockmass. The debris flow runout simulation of the detached mass in the landslide showed a velocity of ~25 m/s with a flow height of ~15 m while it (debris flow) reaches the valley floor. Finally, it is also estimated that further slope failure may detach as much as 0.80±0.32 million m3 mass that will completely dam the river to a height of 76±30 m above the river bed.
  • loading
  • [1]
    Allen, S.K., Rastner, P., Arora, M., Huggel, C., Stoffel, M., 2016. Lake Outburst and debris flow disaster at Kedarnath, June 2013:hydro meteorological triggering and topographic predisposition. Landslides 13 (6), 1479-1491. https://doi.org/10.1007/s10346-015-0584-3.
    [2]
    Barton, N., Bandis, S., 1982. Effects of block size on the shear behavior of jointed rock. In:Proc. 23rd US Symposium on Rock Mechanics. American Rock Mechanics Association, pp. 739-760.
    [3]
    Barton, N., Bandis, S., 1990. In:Barton, N., Stephansson, O. (Eds.), Review of Predictive Capabilities of JRC-JCS Model in Engineering Practice. Rock Joints, Rotterdam, pp. 603-610.
    [4]
    Barton, N., Choubey, V., 1977. The shear strength of rock joints in theory and practice. Rock Mechanics and Rock Engineering 10 (1), 1-54.
    [5]
    Barton, N., 1973. Review of a new shear-strength criterion for rock joints. Engineering Geology 7 (4), 287-332.
    [6]
    Berthelsen, A., 1951. A geological section through the Himalaya. Meddelelser Dansk geologisk forening (Danish). Announcement of Geological Society of Denmark(English) 12, 102-104.
    [7]
    Bhattacharjee, S., Champati Ray, P.K., Chattoraj, S.L., Dhara, M., 2017. Precipitation intensity:Duration based threshold analysis for initiation of landslides in upper Alaknanda valley. International Journal of Environmental Chemical Ecological Geological and Geophysical Engineering 11 (2), 105-109. DOI: scholar.-waset.org/1999.34/61982.
    [8]
    Blöthe, J.H., Korup, O., Schwanghart, W., 2015. Large landslides lie low:excess topography in the Himalaya-Karakoram ranges. Geology 43 (6), 523-526.https://doi.org/10.1130/G36527.1.
    [9]
    Bowles, J.E., 1996. Foundation Analysis and Design, fifth ed. McGraw-Hill, New York, p. 750.
    [10]
    Bull, W.B., McFadden, L.D., 1977. Tectonic geomorphology north and south of the Garlock fault, California. Geomorphology in arid regions. In:Proc. 8th Annual Geomorphology Symposium. State University of New York, Binghamton, pp. 115-138.
    [11]
    Cai, M., Kaiser, P.K., Tasaka, Y., Minami, M., 2007. Determination of residual strength parameters of jointed rock masses using the GSI system. International Journal of Rock Mechanics and Mining Sciences 44 (2), 247-265. https://doi.org/10.1016/j.ijrmms.2006.07.005.
    [12]
    Canuti, P., Casagli, N., Ermini, L., 1998. Inventory of landslide dams in the Northern Apennine as a model for induced flood hazard forecasting. In:Andah, K. (Ed.), Managing Hydro-geological Disasters in a Vulnerable Environment for Sustainable Development. National Research Council of Italy, UNESCO (IHP), Porano, pp. 189-202.
    [13]
    Casagli, N., Ermini, L., Rosati, G., 2003. Determining grain size distribution of the material composing landslide dams in the Northern Apennines:sampling and processing methods. Engineering Geology 69 (1), 83-97. https://doi.org/10.1016/S0013-7952(02)00249-1.
    [14]
    Cascini, L., Ciurleo, M., Di Nocera, S., Gullà, G., 2015. A neweold approach for shallow landslide analysis and susceptibility zoning in fine-grained weathered soils of southern Italy. Geomorphology 241, 371-381. https://doi.org/10.1016/j.geomorph.2015.04.017.
    [15]
    Chandramouli, C., 2011. Census of India 2011. Ministry of Home Affairs. Government of India, New Delhi.
    [16]
    Chattoraj, S.L., Champatiray, P.K., 2015. Simulation and modelling of debris flows using satellite derived data:a case study from Kedarnath area. International Journal of Geomatics and Geosciences 6 (2), 1498-1511.
    [17]
    Costa, J.E., Schuster, R.L., 1988. The formation and failure of natural dams. The Geological Society of America Bulletin 100 (7), 1054-1068.
    [18]
    Costa, J.E., Schuster, R.L., 1991. Documented Historical Landslide Dams from Around the World. U.S. Geological Survey, Vancouver. USGS report no., pp. 91-239.
    [19]
    Cruden, D.M., Varnes, D.J., 1996. Landslide types and processes. In:Turner, A.K., Schuster, R.L. (Eds.), Landslides Investigation and Mitigation (Special Report 247).Transportation Research Board, US National Research Council,Washington.
    [20]
    Dai, F.C., Lee, C.F., Deng, J.H., Tham, L.G., 2005. The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China. Geomorphology 65 (3), 205-221. https://doi.org/10.1016/j.geomorph.2004.08.011.
    [21]
    Deere, D.U., Miller, R.P., 1966. Engineering Classification and Index Properties for Intact Rock. Illinois University at Urbana, USA.
    [22]
    DeGraff, J.V., Rogers, C.T., 2003. An unusual landslide-dam event in Dominica, West Indies. Landslide News 14 (15), 8-11.
    [23]
    Delaney, K.B., Evans, S.G., 2015. The 2000 Yigong landslide (Tibetan Plateau), rockslide-dammed lake and outburst flood:review, remote sensing analysis, and process modelling. Geomorphology 246, 377-393. https://doi.org/10.1016/j.geomorph.2015.06.020.
    [24]
    Dong, J.J., Tung, Y.H., Chen, C.C., Liao, J.J., Pan, Y.W., 2011. Logistic regression model for predicting the failure probability of a landslide dam. Engineering Geology 117 (1), 52-61.
    [25]
    Duman, T.Y., 2009. The largest landslide dam in Turkey:tortum landslide. Engineering Geology 104 (1), 66-79. https://doi.org/10.1016/j.enggeo.2008.08.006.
    [26]
    Dunning, S.A., Armitage, P.J., 2011. The grain-size distribution of rock-avalanche deposits:implications for natural dam stability. In:Evans, S.G., Hermanns, R.L., Strom, A., Scarascia-Mugnozza, G. (Eds.), Natural and Artificial Rockslide Dams. Springer Verlag Berlin Heidelberg, pp. 479-498. https://doi.org/10.1007/978-3-642-04764-0_19.
    [27]
    Eberhardt, E., Stead, D., Coggan, J.S., 2004. Numerical analysis of initiation and progressive failure in natural rock slopes-the 1991 Randa rockslide. International Journal of Rock Mechanics and Mining Sciences 41 (1), 69-87.
    [28]
    Ermini, L., Casagli, N., 2003. Prediction of the behaviour of landslide dams using a geomorphological dimensionless index. Earth Surface Processes and Landforms 28 (1), 31-47.
    [29]
    Evans, S.G., Delaney, K.B., Hermanns, R.L., Strom, A., Scarascia-Mugnozza, G., 2011.The formation and behaviour of natural and artificial rockslide dams; implications for engineering performance and hazard management. In:Evans, S.G., Hermanns, R.L., Strom, A., Scarascia-Mugnozza, G. (Eds.), Natural and Artificial Rockslide Dams. Springer Verlag Berlin Heidelberg, pp. 1-75. https://doi.org/10.1007/978-3-642-04764-0.
    [30]
    Fisher, G.B., Amos, C.B., Bookhagen, B., Burbank, D.W., Godard, V., 2012. Channel widths, landslides, faults, and beyond:the new world order of high-spatial resolution Google Earth imagery in the study of earth surface processes.Geological Society of America Special Papers 492, 1-22. https://doi.org/10.1130/2012.2492 (01).
    [31]
    Folk, R.L.,Ward,W.C., 1957. Brazos River bar:a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27, 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D.
    [32]
    Fujisawa, K., Kobayashi, A., Aoyama, S., 2009. Theoretical description of embankment erosion owing to overflow. Geotechnique 59 (8), 661-671. https://doi.org/10.1680/geot.7.00035.
    [33]
    Griffiths, D.V., Lane, P.A., 1999. Slope stability analysis by finite elements. Geotechnique 49 (3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387.
    [34]
    Gupta, V., Nautiyal, H., Kumar, V., Jamir, I., Tandon, R.S., 2016b. Landslides hazards around Uttarkashi township, Garhwal Himalaya, after the tragic flash flood in June 2013.Natural Hazards 80,1689-1707. https://doi.org/10.1007/s11069-015-2048-4.
    [35]
    Gupta, V., Sah, M.P., 2008. Impact of the trans-Himalayan landslide lake outburst flood (LLOF) in the Satluj catchment, Himachal Pradesh, India. Natural Hazards 45 (3), 379-390. https://doi.org/10.1007/s11069-007-9174-6.
    [36]
    Gupta, V., 2005. The relationship between tectonic stresses, joint patterns and landslides. Journal of Nepal Geological Society 31, 51-58. https://doi.org/10.3126/jngs.v31i0.260.
    [37]
    Gupta, V., Bhasin, R.K., Kaynia, A.M., Kumar, V., Saini, A.S., Tandon, R.S., Pabst, T., 2016a. Finite element analysis of failed slope by shear strength reduction technique:a case study for Surabhi Resort Landslide, Mussoorie township, Garhwal Himalaya. Geomatics. Natural Hazards and Risk 7 (5), 1677-1690.https://doi.org/10.1080/19475705.2015.1102778.
    [38]
    Hoek, E., Bray, J.D., 1981. Rock Slope Engineering, third ed. Taylor and Francis, U.K., pp. 150-224
    [39]
    Hoek, E., Carranza-Torres, C., Corkum, B., 2002. Hoek-Brown failure criterion. In:Proc. NARMS-TAC-2002, Toronto, vol. 1, pp. 267-273.
    [40]
    Hogg, R.V., Craig, A.T., 1995. Introduction to Mathematical Statistics, fifth ed.Prentice Hall, New Jersey, pp. 269-278.
    [41]
    Hungr, O., Evans, S.G., 1996. Rock avalanche runout prediction using a dynamic model. In:Proc. 7th International Symposium on Landslides, Trondheim, Norway, vol. 1, pp. 233-238.
    [42]
    Hungr, O., Evans, S.G., 2004. Entrainment of debris in rock avalanches:an analysis of a long run-out mechanism. Geological Society of America Bulletin 116 (9-10), 1240-1252.
    [43]
    IS:2720 (Part 10), 1991. Method of test for soils:determination of unconfined compressive strength. In:Bureau of Indian Standards, Delhi, India.
    [44]
    IS:2720 (Part 13), 1986. Method of test for soils:direct shear test. In:Bureau of Indian Standards, New Delhi, India.
    [45]
    IS:2720 (Part 4), 1985. Methods of test for soils:grain size analysis. In:Bureau of Indian Standards, New Delhi, India.
    [46]
    IS:9143, 1979. Method for the determination of unconfined compressive strength of rock materials. In:Bureau of Indian Standards, New Delhi, India.
    [47]
    Jamir, I., Gupta, V., Kumar, V., Thong, G.T., 2017. Evaluation of potential surface instability using finite element method in Kharsali Village, Yamuna Valley, Northwest Himalaya. Journal of Mountain Science 14 (8), 1666-1676. https://doi.org/10.1007/s11629-017-4410-3.
    [48]
    Kainthola, A., Singh, P.K., Singh, T.N., 2015. Stability investigation of road cut slope in basaltic rockmass, Mahabaleshwar, India. Geoscience Frontiers 6 (6), 837-845.https://doi.org/10.1016/j.gsf.2014.03.002.
    [49]
    Keller, E.A., Pinter, N., 2002. Active Tectonics:Earthquakes, Uplift, and Landscape, second ed. Prentice Hall, New Jersey.
    [50]
    Korup, O., 2004. Geomorphometric characteristics of New Zealand landslide dams.Engineering Geology 73 (1), 13-35. https://doi.org/10.1016/j.enggeo.2003.11.003.
    [51]
    Kumar, A., Asthana, A.K.L., Priyanka, R.S., Jayangondaperumal, R., Gupta, A.K., Bhakuni, S.S., 2017. Assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, northwest India. Geomorphology 284, 72-87.
    [52]
    Kumar, V., Gupta, V., Jamir, I., 2018a. Hazard evaluation of progressive Pawari landslide zone, Satluj valley, Himachal Pradesh, India. Natural Hazards 1-19.
    [53]
    Kumar, V., Gupta, V., Sundriyal, Y.P., 2018b. Spatial interrelationship of landslides, litho-tectonics, and climate regime, Satluj valley, Northwest Himalaya.Geological Journal. https://doi.org/10.1002/gj.3204.
    [54]
    Larsen, M.C., Wieczorek, G.F., 2006. Geomorphic effects of large debris flows and flash floods, northern Venezuela, 1999. Zeitschrift fur Geomorphologie 145, 147-175.
    [55]
    Li, T., Schuster, R.L., Wu, J., 1986. Landslide dams in south-central China. In:Proc.Landslide Dams:Processes, Risk, and Mitigation. ASCE Convention,Washington, pp. 146-162.
    [56]
    Liu, Y., Zhang, W., Zhang, L., Zhu, Z., Hu, J., Wei, H., 2018. Probabilistic stability analyses of undrained slopes by 3D random fields and finite element methods.Geoscience Frontiers 9 (6), 1657-1664. https://doi.org/10.1016/j.gsf.2017.09.003.
    [57]
    Marinos, V., Marinos, P., Hoek, E., 2005. The geological strength index:applications and limitations. Bulletin of Engineering Geology and the Environment 64 (1), 55-65. https://doi.org/10.1007/s10064-004-0270-5.
    [58]
    Martha, T.R., Roy, P., Govindharaj, K.B., Kumar, K.V., Diwakar, P.G., Dadhwal, V.K., 2015. Landslides triggered by the June 2013 extreme rainfall event in parts of Uttarakhand state, India. Landslides 12 (1), 135-146. https://doi.org/10.1007/s10346-014-0540-7.
    [59]
    Matsui, T., San, K.C., 1992. Finite element slope stability analysis by shear strength reduction technique. Soils and Foundations 32 (1), 59-70.
    [60]
    Mohammed, N.Z., Ghazi, A., Mustafa, H.E., 2013. Positional accuracy testing of Google earth. International Journal of Multidisciplinary Sciences and Engineering 4 (6), 6-9.
    [61]
    Pain, A., Kanungo, D.P., Sarkar, S., 2014. Rock slope stability assessment using finite element basedmodellingeexamples fromthe IndianHimalayas.Geomechanics and Geoengineering 9 (3), 215-230. https://doi.org/10.1080/17486025.2014.883465.
    [62]
    Parvaiz, I., Champatiray, P.K., Bhat, F.A., Dadhwal, V.K., 2012. Earthquake-induced landslide dam in the kashmir himalayas. International Journal of Remote Sensing 33 (2), 655-660. https://doi.org/10.1080/01431161.2010.512948.
    [63]
    Ray, P.C., Chattoraj, S.L., Bisht, M.P.S., Kannaujiya, S., Pandey, K., Goswami, A., 2016.Kedarnath disaster 2013:causes and consequences using remote sensing inputs.Natural Hazards 81 (1), 227-243. https://doi.org/10.1007/s11069-015-2076-0.
    [64]
    Ruiz-Villanueva, V., Allen, S., Arora, M., Goel, N.K., Stoffel, M., 2016. Recent catastrophic landslide lake outburst floods in the Himalayan mountain range.Progress in Physical Geography 41 (1), 3-28. https://doi.org/10.1177/0309133316658614.
    [65]
    Sajinkumar, K.S., Asokakumar, M.R., Sajeev, R., Venkatraman, N.V., 2017. A potential headward retreat landslide site at Munnar, Kerala. Journal of the Geological Society of India 89 (2), 183-191. https://doi.org/10.1007/s12594-017-0582-2.
    [66]
    Schwanghart, W., Worni, R., Huggel, C., Stoffel, M., Korup, O., 2016. Uncertainty in the Himalayan energyewater nexus:estimating regional exposure to glacial lake outburst floods. Environmental Research Letters 11 (7), 074005. https://doi.org/10.1088/1748-9326/11/7/074005.
    [67]
    Sharma, K.K., 1977. A contribution to the geology of Satluj valley, Kinnaur, Himachal Pradesh, India. In:Proc. CNRS International Symposiums, vol. 268, pp. 369-378.
    [68]
    Sharma, S., Shukla, A.D., Bartarya, S.K., Marh, B.S., Juyal, N., 2017. The Holocene floods and their affinity to climatic variability in the western Himalaya, India.Geomorphology 290, 317-334.
    [69]
    Singh, P., Ramanathan, A.S., Ghanekar, V.G., 1974. Flash floods in India. International Association of Hydrological Science 112, 114-118.
    [70]
    Sosio, R., Crosta, G.B., Hungr, O., 2008. Complete dynamic modelling calibration for the Thurwieser rock avalanche (Italian Central Alps). Engineering Geology 100(1), 11-26.
    [71]
    Srikantia, S.V., Bhargava, O.N., 1998. Geology of Himachal Pradesh. Geological Survey of India, Bangalore, India.
    [72]
    Stefanelli, C.T., Segoni, S., Casagli, N., Catani, F., 2016. Geomorphic indexing of landslide dams evolution. Engineering Geology 208, 1-10. https://doi.org/10.1016/j.enggeo.2016.04.024.
    [73]
    Sundriyal, Y.P., Tripathi, J.K., Sati, S.P., Rawat, G.S., Srivastava, P., 2007. Landslidedammed lakes in the Alaknanda basin, lesser Himalaya:causes and implications.Current Science 93 (4), 568.
    [74]
    Swanson, F.J., Oyagi, N., Tominaga, M., 1986. Landslide dams in Japan. In:Proc.Landslide Dams:Processes, Risk, and Mitigation. ASCE convention,Washington, pp. 131-145.
    [75]
    Takahashi, T., Nakagawa, H., 1993. Flood and debris flow hydrograph due to collapse of a natural dam by overtopping. In:Proc. Hydraulic Engineering, Japan, vol. 37, pp. 699-704. https://doi.org/10.2208/prohe.37.699.
    [76]
    Thiede, R.C., Ehlers, T.A., Bookhagen, B., Strecker, M.R., 2009. Erosional variability along the northwest Himalaya. Journal of Geophysical Research Earth Surface 114, F01015. https://doi.org/10.1029/2008JF001010.
    [77]
    Vannay, J.C., Grasemann, B., Rahn, M., Frank, W., Carter, A., Baudraz, V., Cosca, M., 2004. Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya:evidence for tectonic extrusion coupled to fluvial erosion. Tectonics 23 (1), 1-24. https://doi.org/10.1029/2002TC001429.
    [78]
    Voellmy, A., 1955. Uber die Zerstorungskraft von Lawmen. Schweizerische Bauzeitung, vol. 73, no. 12, 15, 17, 19, 37. On the destructive force of avalanches, Translation No. 2. Alta. Avalanche Study Center, USDA, Forest Service, p. 1964.
    [79]
    Wang, G., Furuya, G., Zhang, F., Doi, I., Watanabe, N., Wakai, A., Marui, H., 2016.Layered internal structure and breaching risk assessment of the Higashi-Takezawa landslide dam in Niigata, Japan. Geomorphology 267, 48-58.https://doi.org/10.1016/j.geomorph.2016.05.021.
    [80]
    Wulf, H., Bookhagen, B., Scherler, D., 2010. Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya. Geomorphology 118 (1), 13-21. https://doi.org/10.1016/j.geomorph.2009.12.003.
    [81]
    Xu, Q., Chen, J., Li, J., Zhao, C., Yuan, C., 2015. Study on the constitutive model for jointed rock mass. PLoS One 10 (4), e0121850. https://doi.org/10.1371/journal.pone.0121850.
    [82]
    Yu, G., Zhang, M., Chen, H., 2014. The dynamic process and sensitivity analysis for debris flow. In:Sassa, K., Canuti, P., Yin, Y. (Eds.), Landslide Science for a Safer Geoenvironment. Springer. https://doi.org/10.1007/978-3-319-05050-8_26.
    [83]
    Zienkiewicz, O.C., Humpheson, C., Lewis, R.W., 1975. Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique 25 (4), 671-689.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (133) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return