Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Rubén Díez Fernández, Francisco J. Rubio Pascual, Luis Miguel Martín Parra. Re-folded structure of syn-orogenic granitoids (Padrón dome, NW Iberia): Assessing rheological evolution of cooling continental crust in a collisional setting[J]. Geoscience Frontiers, 2019, 10(2): 651-669. doi: 10.1016/j.gsf.2018.03.007
Citation: Rubén Díez Fernández, Francisco J. Rubio Pascual, Luis Miguel Martín Parra. Re-folded structure of syn-orogenic granitoids (Padrón dome, NW Iberia): Assessing rheological evolution of cooling continental crust in a collisional setting[J]. Geoscience Frontiers, 2019, 10(2): 651-669. doi: 10.1016/j.gsf.2018.03.007

Re-folded structure of syn-orogenic granitoids (Padrón dome, NW Iberia): Assessing rheological evolution of cooling continental crust in a collisional setting

doi: 10.1016/j.gsf.2018.03.007
Funds:

We are grateful to the comments by two anonymous reviewers. We kindly appreciate structural data from the A Pereira area provided by Dr. Martínez Catalán. Financial support has been provided by Instituto Geológico y Minero de España (Project IGME 2281), and by Ministerio de Economía, Industria y Competitividad of Spain (Project No. CGL2016-76438-P). This work is a contribution to IGCP project 648 (Supercontinent Cycle and Global Geodynamics).

  • Received Date: 2017-08-16
  • Rev Recd Date: 2017-12-11
  • Publish Date: 2021-01-07
  • This contribution discusses about the rheological, kinematic and dynamic frameworks necessary to produce recumbent and upright folds from syn-orogenic granitic massifs that were formed during an early stage of magma genesis related to the onset of a migmatitic dome. Syn-kinematic granitoids occurring within the high-grade infrastructure of the Padrón migmatitic dome (NW Iberia) are deformed into large-scale recumbent folds (D2) that are later affected by upright folds (D3). Petrostructural analysis of a selected area of this dome reveals that after a period of crustal thickening (D1), NNW-directed extensional flow gave way to recumbent folds and penetrative axial plane foliation (S2). Superimposed subhorizontal compression resulted in upright folds (D3). A closer view into the dynamics of the dome allows exploring the factors that may condition the nucleation of folds with contrasting geometries during progressive deformation of molten continental crust. The formation of folds affecting syn-kinematic granitoids suggests a cooling metamorphic path in migmatitic domes. Active and passive folding mechanisms require a crystallizing (cooling) magma to nucleate folds. A more competent metamorphic host inhibits fold nucleation from much less competent magmas. As it crystallizes, magma becomes more rigid (competent), and approaches viscosity values of its host. Passive folding is favored when no significant competence contrast exists between magma and host, so this folding mechanism is more likely shortly after magma genesis and emplacement. In such conditions, and under dominant subhorizontal flow accompanied by flattening (D2), passive folding would produce isoclinal recumbent geometries. Further magma cooling introduces a shift into the rheological behavior of partially molten crust. Thereon, crystallizing magma bodies would represent significant competence contrasts relative to their host. At this point, buckling is a more likely folding mechanism, and more regular, buckle folds re-fold previous structures after significant cooling. The geometry of resulting folds is upright due to dominant subhorizontal compression (D3) at this stage.
  • loading
  • [1]
    Alcock, J.E., Martínez Catalán, J.R., Rubio Pascual, F.J., Montes, A.D., Díez Fernández, R., Gómez Barreiro, J., Arenas, R., Dias da Silva, Í., González Clavijo, E., 2015.2-D thermal modeling of HT-LP metamorphism in NWand Central Iberia:implications for Variscan magmatism, rheology of the lithosphere and orogenic evolution. Tectonophysics 657, 21-37.
    [2]
    Améglio, L., Vigneresse, J.L., 2000. Geophysical imaging of the shape of granitic intrusions at depth:a review. Geological Society Special Publication 168, 39-54.
    [3]
    Arango, C., Díez Fernández, R., Arenas, R., 2013. Large-scale flat-lying isoclinal folding in extending lithosphere:Santa María de la Alameda dome (Central Iberian Massif, Spain). Lithosphere 5, 483-500.
    [4]
    Aranguren, A., Tubía, J.M., 1992. Structural evidence for the relationship between thrusts, extensional faults and granite intrusions in the Variscan belt of Galicia(Spain). Journal of Structural Geology 14, 1229-1237.
    [5]
    Aranguren, A., Larrea, F., Carracedo, M., Cuevas, J., Tubía, J., 1997. The Los Pedroches batholith (southern Spain):Polyphase interplay between shear zones in transtension and setting of granites. In:Bouchez, J.L., Hutton, D.H.W., Stephens, W.E. (Eds.), Granite:From Segregation of Melt to Emplacement Fabrics.Springer, Netherlands, pp. 215-229.
    [6]
    Aranguren, A., Cuevas, J., Tubía, J.M., Román-Berdiel, T., Casas-Sáinz, A., Casas-Ponsati, A., 2003. Granite laccolith emplacement in the Iberian arc:AMS and gravity study of the La Tojiza pluton (NW Spain). Journal of the Geological Society 160, 435-445.
    [7]
    Arenas, R., Sánchez Martínez, S., Díez Fernández, R., Gerdes, A., Abati, J., Fernández-Suárez, J., Andonaegui, P., González Cuadra, P., López Carmona, A., Albert, R., Fuenlabrada, J.M., Rubio Pascual, F.J., 2016. Allochthonous terranes involved in the Variscan suture of NW Iberia:a review of their origin and tectonothermal evolution. Earth Science Reviews 161, 140-178.
    [8]
    Arzi, A.A., 1978. Critical phenomena in the rheology of partially melted rocks.Tectonophysics 44, 173-184.
    [9]
    Atherton, M.P., Atkin, B.P., Naggar, M.H., 1974. Kyanite in the hercynian metamorphic rocks of the Porto-viseu belt, north Portugal. Geologie en Mijnbouw 533, 189-192.
    [10]
    Bastida, F., Aller, J., Fernández, F.J., Lisle, R.J., Bobillo-Ares, N.C., Menéndez, O., 2014.Recumbent folds:key structural elements in orogenic belts. Earth Science Reviews 135, 162-183.
    [11]
    Biot, M.A., 1965. Mechanics of Incremental Deformations. John Wiley & Sons, Inc., New York.
    [12]
    Blumenfeld, P., Bouchez, J.L., 1988. Shear criteria in granite and migmatite deformed in the magmatic and solid states. Journal of Structural Geology 10, 361-372.
    [13]
    Brown, M., 1994. The generation, segregation, ascent and emplacement of granite magma:the migmatite-to-crustally-derived granite connection in thickened orogens. Earth Science Reviews 36, 83-130.
    [14]
    Brown, M., 2007. Crustal melting and melt extraction, ascent and emplacement in orogens:mechanisms and consequences. Journal of the Geological Society 164, 709-730.
    [15]
    Brown, M., 2013. Granite:from genesis to emplacement. The Geological Society of America Bulletin 125, 1079-1113.
    [16]
    Brown, M., Solar, G.S., 1998. Shear-zone systems and melts:feedback relations and self-organization in orogenic belts. Journal of Structural Geology 20, 211-227.
    [17]
    Brown, M., Korhonen, F.J., Siddoway, C.S., 2011. Organizing melt flow through the crust. Elements 7, 261-266.
    [18]
    Burchardt, S., Tanner, D.C., Krumbholz, M., 2010. Mode of emplacement of the Slaufrudalur Pluton, Southeast Iceland inferred from three-dimensional GPS mapping and model building. Tectonophysics 480, 232-240.
    [19]
    Büttner, S., 1999. The geometric evolution of structures in granite during continous deformation from magmatic to solid-state conditions:an example from the central European Variscan Belt. American Mineralogist 84, 1781-1792.
    [20]
    Capdevila, R., Corretgé, L.G., Floor, P., 1973. Les granitoides varisques de la meseta ibérique. Bulletin de la Société Géologique de France 7, 209-228.
    [21]
    Castro, A., 1987. On granitoid emplacement and related structures. A review. Geologische Rundschau 76, 101-124.
    [22]
    Castro, A., Corretgé, L.G., De La Rosa, J., Enrique, P., Martínez, F.J., Pascual, E., Lago, M., Arranz, E., Galé, C., Fernández, C., Donaire, T., López, S., 2002. Paleozoic magmatism.In:Gibbons, W., Moreno, M.T. (Eds.), The Geology of Spain. Geological Society, London, pp. 117-153.
    [23]
    Charles, N., Faure, M., Chen, Y., 2009. The Montagne Noire migmatitic dome emplacement (French Massif Central):new insights from petrofabric and AMS studies. Journal of Structural Geology 31, 1423-1440.
    [24]
    Clemens, J.D., Mawer, C.K., 1992. Granitic magma transport by fracture propagation.Tectonophysics 204, 339-360.
    [25]
    Cobbold, P.R., Cosgrove, J.W., Summers, J.M., 1971. Development of internal structures in deformed anisotropic rocks. Tectonophysics 12, 23-53.
    [26]
    Corti, G., Moratti, G., Sani, F., 2005. Relations between surface faulting and granite intrusions in analogue models of strike-slip deformation. Journal of Structural Geology 27, 1547-1562.
    [27]
    D'Eramo, F., Tubía, J.M., Pinotti, L., Vegas, N., Coniglio, J., Demartis, M., Aranguren, A., Basei, M., 2013. Granite emplacement by crustal boudinage:example of the Calmayo and El Hongo plutons (Córdoba, Argentina). Terra Nova 25, 423-430.
    [28]
    Daly, R.A., 1903. The mechanics of igneous intrusion. American Journal of Science 15, 269-298.
    [29]
    Davidson, C., Hollister, L.S., Schmid, S.M., 1992. Role of melt in the formation of a deep-crustal compressive shear zone:the MacLaren Glacier metamorphic belt, South Central Alaska. Tectonics 11, 348-359.
    [30]
    Dewey, J.F., Holdsworth, R.E., Strachan, R.A., 1998. Transpression and transtension zones. In:Holdsworth, R.E., Strachan, R.A., Dewey, J.F. (Eds.), Continental Transpressional and Transtensional Tectonics. Geological Society, London, pp. 1-14. Special Publications.
    [31]
    Dias da Silva, Í., Linnemann, U., Hofmann, M., González-Clavijo, E., Díez-Montes, A., Martínez Catalán, J.R., 2015. Detrital zircon and tectonostratigraphy of the parautochthon under the morais complex (NE Portugal):implications for the variscan accretionary history of the iberian massif. Journal of the Geological Society 172, 45-61.
    [32]
    Díaz-Alvarado, J., Fernández, C., Díaz-Azpiroz, M., Castro, A., Moreno-Ventas, I., 2012. Fabric evidence for granodiorite emplacement with extensional shear zones in the Variscan Gredos massif (Spanish Central System). Journal of Structural Geology 42, 74-90.
    [33]
    Díez Fernández, R., 2011. Evolución estructural y cinemática de una corteza continental subducida:la Unidad de Malpica-Tui (NO del Macizo Ibérico). Nova Terra 40, 1-228.
    [34]
    Díez Fernández, R., Arenas, R., 2015. The late devonian variscan suture of the iberian massif:a correlation of high-pressure belts in NW and SW Iberia. Tectonophysics 654, 96-100.
    [35]
    Díez Fernández, R., Martínez Catalán, J.R., 2009.3D Analysis of an Ordovician igneous ensemble:a complex magmatic structure hidden in a polydeformed allochthonous Variscan unit. Journal of Structural Geology 31, 222-236.
    [36]
    Díez Fernández, R., Martínez Catalán, J.R., 2012. Stretching lineations in highpressure belts:the fingerprint of subduction and subsequent events (MalpicaeTui complex, NW Iberia). Journal of the Geological Society 169, 531-543.
    [37]
    Díez Fernández, R., Pereira, M.F., 2016. Extensional orogenic collapse captured by strike-slip tectonics:constrains from structural geology and U-Pb geochronology of the Pinhel shear zone (Variscan orogen, Iberian Massif). Tectonophysics 691, 290-310.
    [38]
    Díez Fernández, R., Pereira, M.F., 2017. Strike-slip shear zones of the Iberian Massif:are they coeval? Lithosphere 9, 726-744.
    [39]
    Díez Fernández, R., Martínez Catalán, J.R., Arenas, R., Abati, J., 2011. Tectonic evolution of a continental subduction-exhumation channel:Variscan structure of the basal allochthonous units in NW Spain. Tectonics 30, TC3009.
    [40]
    Díez Fernández, R., Martínez Catalán, J.R., Arenas, R., Abati, J., Gerdes, A., Fernández-Suárez, J., 2012a. U-Pb detrital zircon analysis of the lower allochthon of NW Iberia:age constraints, provenance and links with the Variscan mobile belt and Gondwanan cratons. Journal of the Geological Society 169, 655-665.
    [41]
    Díez Fernández, R., Martínez Catalán, J.R., Gómez Barreiro, J., Arenas, R., 2012b.Extensional flow during gravitational collapse:a tool for setting plate convergence(Padrón migmatitic dome, Variscan belt, NW Iberia). The Journal of Geology 120, 83-103.
    [42]
    Díez Fernández, R., Gómez Barreiro, J., Martínez Catalán, J.R., Ayarza, P., 2013.Crustal thickening and attenuation as revealed by regional fold interference patterns:Ciudad Rodrigo basement area (Salamanca, Spain). Journal of Structural Geology 46, 115-128.
    [43]
    Díez Fernández, R., Arenas, R., Pereira, M.F., Sánchez Martínez, S., Albert, R., Martín Parra, L.M., Rubio Pascual, F.J.,Matas, J., 2016. Tectonic evolution of variscan Iberia:Gondwana-Laurussia collision revisited. Earth Science Reviews 162, 269-292.
    [44]
    Díez Fernández, R., Martín Parra, L.M., Rubio Pascual, F.J., 2017. Extensional flow produces recumbent folds in syn-orogenic granitoids (Padrón migmatitic dome, NW Iberian Massif). Tectonophysics 703-704, 69-84.
    [45]
    Díez Montes, A., 2007. La geología del Dominio "Ollo de Sapo" en las comarcas de Sanabria y Terra do Bolo. Nova Terra 34, 1-494 (in Spanish with English abstract).
    [46]
    Dixon, J.M., 1975. Finite strain and progressive deformation in models of diapiric structures. Tectonophysics 28, 89-124.
    [47]
    Druguet, E., Carreras, J., 2006. Analogue modelling of syntectonic leucosomes in migmatitic schists. Journal of Structural Geology 28, 1734-1747.
    [48]
    Druguet, E., Hutton, D.H.W., 1998. Syntectonic anatexis and magmatism in a midcrustal transpressional shear zone:an example from the Hercynian rocks of the eastern Pyrenees. Journal of Structural Geology 20, 905-916.
    [49]
    D'Lemos, R.S., Brown, M., Strachan, R.A., 1992. Granite magma generation, ascent and emplacement within a transpressional orogen. Journal of the Geological Society 149, 487-490.
    [50]
    Escuder Viruete, J.E., Arenas, R., Martínez Catalán, J.R., 1994. Tectonothermal evolution associated with Variscan crustal extension in the Tormes gneiss dome(NW Salamanca, Iberian massif, Spain). Tectonophysics 238, 117-138.
    [51]
    Farias, P., Gallastegui, G., González Lodeiro, F., Marquínez, J., Martín Parra, L.M., Martínez Catalán, J.R., Pablo Maciá, J.G., de Rodríguez Fernández, L.R., 1987.Aportaciones al conocimiento de la litoestratigrafía y estructura de Galicia Central. IX Reunião sobre a Geologia do Oeste Peninsular, Porto, 1985-Actas-Comunicações. Mem. Museo-Lab. Miner. Geol Fac. Ciencias, Univ. Porto, vol. 1, pp. 411-431 (in Spanish with English abstract).
    [52]
    Fernandez, A., Gasquet, D.R., 1994. Relative rheological evolution of chemically contrasted coeval magmas:example of the Tichka plutonic complex. Contributions to Mineralogy and Petrology 116, 316-326.
    [53]
    Fossen, H., 2010. Structural Geology. Cambridge University Press, New York.
    [54]
    Fossen, H., Teyssier, C., Whitney, D.L., 2013. Transtensional folding. Journal of Structural Geology 56, 89-102.
    [55]
    Froitzheim, N., 1992. Formation of recumbent folds during synorogenic crustal extension (Austroalpine nappes, Switzerland). Geology 20, 923-926.
    [56]
    Gapais, G., Barbarin, B., 1986. Quartz fabric transition in a cooling syntectonic granite (Hermitage Massif, France). Tectonophysics 125, 357-370.
    [57]
    Ghosh, S.K., 1993. Structural Geology:Fundamentals and Modern Developments.Pergamon Press, Oxford.
    [58]
    Gil Ibarguchi, J.I., 1982. The metamorphic evolution of the muxia-Finisterre region(Galice, NW Spain) during the hercynian orogenesis. Geologische Rundschau 71, 657-686.
    [59]
    Gómez Barreiro, J., Martínez Catalán, J.R., Díez Fernández, R., Arenas, R., Díaz García, F., 2010. Upper crust reworking during gravitational collapse:the Bembibre-Pico Sacro detachment system (NW Iberia). Journal of the Geological Society 167, 769-784.
    [60]
    Godinho, M.M., 1974. Sobre o plutonometamorfismo da região do Guardão (Caramulo-Portugal). Memórias-Notícias, Publ. Mus. Lab. Mineral. Geol. Univ.Coimbra, vol. 78, pp. 37-77 (in Spanish with English abstract).
    [61]
    González Clavijo, E., Álvarez, F., Díez Balda, M.A., 1991. La cizalla de Villalcampo(Zamora), geometría cinemática y condiciones de la deformación asociada.Cuadernos do Laboratorio Xeoloxico de Laxe 16, 203-219 (in Spanish with English abstract).
    [62]
    Grasemann, B., Wiesmayr, G., Draganits, E., Fusseis, F., 2004. Classification of refold structures. The Journal of Geology 112, 119-125.
    [63]
    Guineberteau, B., Bouchez, J.L., Vigneresse, J.L., 1987. The Mortagne granite pluton(France) emplaced by pull apart along a shear zone:structural and gravimetric arguments and regional implication. The Geological Society of America Bulletin 99, 763-770.
    [64]
    Gutiérrez-Marco, J.C., Robardet, M., Rábano, I., Sarmiento, G.N., San José Lancha, M.A., Herranz Araujo, P., Pieren Pidal, A.P., 2002. Ordovician. In:Gibbons, W., Moreno, T. (Eds.), The Geology of Spain. Geological Society of London, London, pp. 31-49.
    [65]
    Hammer, J.E., Rutherford, M.J., 2002. An experimental study of the kinetics of decompression-induced crystallization in silicic melt. Journal of Geophysical Research 107, B1,. https://doi.org/10.1029/2001JB000281.
    [66]
    Harris, L.B., Koyi, H.A., Fossen, H., 2002. Mechanisms for folding of high-grade rocks in extensional tectonic settings. Earth Science Reviews 59, 163-210.
    [67]
    Hasalová, P., Schulmann, K., Lexa, O., Štípská, P., Hrouda, F., Ulrich, S., Haloda, J., Týcová, P., 2008. Origin of migmatites by deformation-enhanced melt infiltration of orthogneiss:a new model based on quantitative microstructural analysis.Journal of Metamorphic Geology 26, 29-53.
    [68]
    Hollister, L.S., Crawford, M.L., 1986. Melt-enhanced deformation:a major tectonic process. Geology 14, 558-561.
    [69]
    Hudleston, P.J., 1973. The analysis and interpretation of minor folds developed in the Moin rocks of Monar, Scotland. Tectonophysics 17, 89-132.
    [70]
    Hutton, D.H.W., 1988. Granite emplacement mechanisms and tectonic controls:inferences from deformation studies. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 79, 245-255.
    [71]
    Hutton, D.H.W., Dempster, T.J., Brown, P.E., Becker, S.D., 1990. A new mechanism of granite emplacement:intrusion in active extensional shear zones. Nature 343, 452-455.
    [72]
    Iglesias Ponce de Leon, M., Choukroune, P., 1980. Shear zones in the iberian arc.Journal of Structural Geology 2, 63-68.
    [73]
    Johnson, R.W., 1966. Mechanisms of cauldron subsidence. Nature 210, 291-292.
    [74]
    Kratinová, Z., Schulmann, K., Edel, J.-B., Ježek, J., Schaltegger, U., 2007. Model of successive granite sheet emplacement in transtensional setting:integrated microstructural and anisotropy of magnetic susceptibility study. Tectonics 26, TC6003.
    [75]
    Li, B., Massonne, H.-J., 2017. Contrasting metamorphic evolution of metapelites from the Malpica-Tuy unit and the underlying so-called parautochthon at the coast of NW Spain. Lithos 286, 92-108.
    [76]
    Llana-Fúnez, S., Marcos, A., 2001. The Malpica-Lamego Line:a major crustal-scale shear zone in the Variscan belt of Iberia. Journal of Structural Geology 23, 1015-1030.
    [77]
    Marquínez, J.L., Klein, E., 1982. Evolucion temporal y distribución del metamorfismo en el area esquistosa de Galicia Central (NO de España). Trabajos de Geología 12, 227-242 (in Spanish with English abstract).
    [78]
    Marquínez García, J.L., 1981. Estudio geológico del área esquistosa de Galicia central(zona de Lalín-Forcarei-Beariz). Cuadernos do Laboratorio Xeoloxico de Laxe 2, 125-154 (in Spanish with English abstract).
    [79]
    Martínez, F.J., Rolet, J., 1988.. Late Palaeozoic Metamorphism in the Northwestern Iberian Peninsula, Brittany and Related Areas in SW Europe. Geological Society London Special Publications 38, 611-620.
    [80]
    Martínez Catalán, J.R., Arenas, R., Díaz García, F., Rubio Pascual, F.J., Abati, J., Marquínez García, J., 1996. Variscan exhumation of a subducted paleozoic continental margin:the basal units of the Ordenes Complex, Galicia, NW Spain.Tectonics 15, 106-121.
    [81]
    Martínez Catalán, J.R., Arenas, R., Díaz García, F., Abati, J., 1997. Variscan accretionary complex of northwest Iberia:terrane correlation and succession of tectonothermal events. Geology 25, 1103-1106.
    [82]
    Martínez Catalán, J.R., Díaz García, F., Arenas, R., Abati, J., Castiñeiras, P., González Cuadra, P., Gómez Barreiro, J., Rubio Pascual, F.J., 2002. Thrust and detachment systems in the ordenes complex (northwestern Spain):implications for the variscan-appalachian geodynamics. In:Martínez Catalán, J.R., Hatcher, R.D., Arenas, R., Díaz García, F. (Eds.), Variscan-appalachian Dynamics:The Building of the Late Paleozoic Basement. Geological Society of America Special Paper, pp. 163-182 doi: 110.1130/1130-8137-2364-1137.1163.
    [83]
    Martínez Catalán, J.R., Arenas, R., Díaz García, F., Gómez Barreiro, J., González Cuadra, P., Abati, J., Castiñeiras, P., Fernández-Suárez, J., Sánchez Martínez, S., Andonaegui, P., González Clavijo, E., Díez Montes, A., Rubio Pascual, F.J., Valle Aguado, B., 2007. Space and time in the tectonic evolution of the northwestern Iberian Massif. Implications for the Variscan belt. In:Hatcher, R.D., Carlson, M.P., McBride, J.H., Martínez Catalán, J.R. (Eds.), 4-D Framework of Continental Crust. Geological Society of America Memoir. Colorado, Boulder, pp. 403-423.
    [84]
    Martínez Catalán, J.R., Rubio Pascual, F.J., Díez Montes, A., Díez Fernández, R., Gómez Barreiro, J., Dias da Silva, Í., González Clavijo, E., Ayarza, P., Alcock, J.E., 2014. The Late Variscan HT/LP metamorphic event in NWand central Iberia:relationships to crustal thickening, extension, orocline development and crustal evolution.Geological Society London Special Publications 405, 225-247.
    [85]
    Martínez, F.J., Julivert, M., Sebastian, A., Arboleya, M.L., Gil Ibarguchi, J.I., 1988.Structural and thermal evolution of high-grade areas in the Northwestern parts of the Iberian Massif. American Journal of Science 288, 969-996.
    [86]
    Martínez, F.J., Corretgé, L.G., Suárez, O., 1990. Central-Iberian Zone. Autochthonous sequences. Distribution, characteristics and evolution of metamorphism. In:Dallmeyer, R.D., Martínez García, E. (Eds.), Pre-mesozoic Geology of Iberia.Springer-Verlag, Berlin, pp. 207-211.
    [87]
    Matte, P., 1991. Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196, 309-337.
    [88]
    McBirney, A.R., Murase, T., 1984. Rheological Properties of magmas. Annual Review of Earth and Planetary Sciences 12, 337-357.
    [89]
    McFadden, R.R., Siddoway, C.S., Teyssier, C., Fanning, C.M., 2010. Cretaceous oblique extensional deformation and magma accumulation in the Fosdick Mountains migmatite-cored gneiss dome, West Antarctica. Tectonics 29, TC4022.
    [90]
    McLellan, E.L., 1988. Migmatite structures in the Central Gneiss Complex, Boca de Quadra, Alaska. Journal of Metamorphic Geology 6, 517-542.
    [91]
    Merle, O., 1986. Patterns of stretch trajectories and strain rates within spreadinggliding nappes. Tectonophysics 124, 211-222.
    [92]
    Mezger, J.E., Passchier, C.W., 2003. Polymetamorphism and ductile deformation of stauroliteecordierite schist of the Bossòst dome:indication for Variscan extension in the Axial Zone of the central Pyrenees. Geological Magazine 140, 595-612.
    [93]
    Miller, R.B., Paterson, S.R., 1994. The transition from magmatic to high-T solid-state deformation:implications from the Mount Stuart batholith, Washington.Journal of Structural Geology 16, 853-865.
    [94]
    Oen, I.S., 1974. A note on lower pressure and higher pressure metamorphism belts in North Portugal. Geologie en Mijnbouw 53, 193-194.
    [95]
    Olivier, P., Druguet, E., Castaño, L.M., Gleizes, G., 2016. Granitoid emplacement by multiple sheeting during Variscan dextral transpression:the Saint-Laurent-La Jonquera pluton (Eastern Pyrenees). Journal of Structural Geology 82, 80-92.
    [96]
    Orozco, M., Alonso-Chaves, F.M., Nieto, F., 1997. Gravity-induced recumbent folds and low-angle normal faults in the Alpujarras region (Betic Cordilleras, Spain):indications of Miocene extensional tectonics in the western Mediterranean.Comptes Rendus de l'Académie des Sciences-Series ⅡA-Earth and Planetary Science 325, 215-219.
    [97]
    Rubio Pascual, F.J., Martín Parra, L.M., Díez Montes, A., Díez Fernández, R., Gallastegui, G., Valverde Vaquero, P., Rodríguez Fernández, L.R., Heredia, N., 2015. Metamorphic records of partial subduction and continental collision in and around the parautochthon of the NW Iberian Massif. The Variscan belt:correlations and plate dynamics. Special meeting of the French & Spanish Geological Societies (Rennes). Géologie de la France 1, 123-124.
    [98]
    Passchier, C.W., 1998. Monoclinic model shear zones. Journal of Structural Geology 20, 1121-1137.
    [99]
    Passchier, C.W., Trouw, R.A.J., 2005. In:Microtectonics, second ed. Springer-Verlag, Berlin.
    [100]
    Paterson, S.R., Vernon, R.H., 1995. Bursting the bubble of ballooning plutons:a return to nested diapirs emplaced by multiple processes. The Geological Society of America Bulletin 107, 1356-1380.
    [101]
    Paterson, S.R., Vernon, R.H., Tobisch, O.T., 1989. A review of criteria for the identification of magmatic and tectonic foliations in granitoids. Journal of Structural Geology 11, 349-363.
    [102]
    Paterson, S.R., Fowler Jr., T.K., Schmidt, K.L., Yoshinobu, A.S., Yuan, E.S., Miller, R.B., 1998. Interpreting magmatic fabric patterns in plutons. Lithos 44, 53-82.
    [103]
    Paterson, S.R., Pignotta, G.S., Farris, D., Memeti, V., Miller, R.B., Vernon, R.H., Žák, J., 2008. Is stoping a volumetrically significant pluton emplacement process?:Discussion. The Geological Society of America Bulletin 120, 1075-1079.
    [104]
    Pérez-Estaún, A., Martinez-Catalán, J.R., Bastida, F., 1991. Crustal thickening and deformation sequence in the footwall to the suture of the Variscan belt of northwest Spain. Tectonophysics 191, 243-253.
    [105]
    Petford, N., Cruden, A.R., McCaffrey, K.J.W., Vigneresse, J.L., 2000. Granite magma formation, transport and emplacement in the Earth's crust. Nature 408, 669-673.
    [106]
    Pitcher, W.S., 1979. The nature, ascent and emplacement of granitic magmas.Journal of the Geological Society 136, 627-662.
    [107]
    Pitcher, W.S., 1993. The Nature and Origin of Granite. Blackie Academic & Professional, London.
    [108]
    Platt, J.P., 1982. Emplacement of a fold-nappe, Betic orogen, southern Spain. Geology 10, 97-102.
    [109]
    Ramberg, H., 1963. Fluid dynamics of viscous buckling applicable to folding of layered rocks. Bulletin of the American Association of Petroleum Geologists 47, 484-505.
    [110]
    Ramberg, H., 1981. Gravity, Deformation and the Earth's Crust, second ed. Academic Press, London.
    [111]
    Ramsay, J.G., 1967. Folding and Fracturing of Rocks. McGraw-Hill, New York.
    [112]
    Ramsay, J.G., 1989. Emplacement kinematics of a granite diapir:the Chindamora batholith, Zimbabwe. Journal of Structural Geology 11, 191-209.
    [113]
    Ramsay, J.G., Huber, M.I., 1987. The Techniques of Modern Structural Geology:Folds and Fractures. Academic Press, London.
    [114]
    Ramsay, J.G., Casey, M., Kligfield, R., 1983. Role of shear in development of the Helvetic fold-thrust belt of Switzerland. Geology 11, 439-442.
    [115]
    Ribeiro, A., Pereira, E., Dias, R., 1990. Structure in the northwest of the iberian Peninsula. In:Dallmeyer, R.D., Martínez García, E. (Eds.), Pre-mesozoic Geology of Iberia. Springer-Verlag, Berlin, Germany, pp. 220-236.
    [116]
    Ribeiro, A., Munhá, J., Dias, R., Mateus, A., Pereira, E., Ribeiro, L., Fonseca, P., Araújo, A., Oliveira, T., Romão, J., Chaminé, H., Coke, C., Pedro, J., 2007. Geodynamic evolution of the sw Europe variscides. Tectonics 26, TC6009.
    [117]
    Roman-Berdiel, T., Gapais, D., Brun, J.P., 1995. Analogue models of laccolith formation.Journal of Structural Geology 17, 1337-1346.
    [118]
    Rosenberg, C.L., 2004. Shear zones and magma ascent:a model based on a review of the Tertiary magmatism in the Alps. Tectonics 23, TC3002.
    [119]
    Rosenberg, C.L., Handy, M.R., 2005. Experimental deformation of partially melted granite revisited:implications for the continental crust. Journal of Metamorphic Geology 23, 19-28.
    [120]
    Sanderson, D.J., 1982. Models of strain variation in nappes and thrust sheets:a review. Tectonophysics 88, 201-233.
    [121]
    Sant Ovaia, H., Olivier, P., Ferreira, N., Noronha, F., Leblanc, D., 2010.Magmatic structures and kinematics emplacement of the Variscan granites from Central Portugal (Serra da Estrela and Castro Daire areas). Journal of Structural Geology 32, 1450-1465.
    [122]
    Sawyer, E.W.,1994.Melt segregation in the continental crust. Geology 22, 1019-1022.
    [123]
    Sawyer, E.W., 2001. Melt segregation in the continental crust:distribution and movement of melt in anatectic rocks. Journal of Metamorphic Geology 19, 291-309.
    [124]
    Treagus, S.H., 1973. Buckling stability of a viscous single-layer system, oblique to the principal compression. Tectonophysics 19, 271-289.
    [125]
    Ugidos, J.M., Armenteros, I., Barba, P., Valladares, M.I., Colmenero, J.R., 1997.Geochemistry and petrology of recycled orogen-derived sediments:a case study from Upper Precambrian siliciclastic rocks of the Central Iberian Zone, Iberian Massif, Spain. Precambrian Research 84, 163-180.
    [126]
    Urai, J.L., Spaeth, G., van der Zee,W., Hilgers, C., 2001. Evolution of mullion (formerly boudin) structures in the Variscan of the Ardennes and Eifel. Journal of the Virtual Explorer 3, 1-16.
    [127]
    Valladares, M.I., Ugidos, J.M., Recio, C., 1993. Criterios geoquímicos de correlación y posible área fuente de las pelitas del Precámbrico Superior-Cámbrico Inferior de la Zona Centro Ibérica (Macizo Ibérico, España). Revista de la Sociedad Geológica de España 6, 37-45 (in Spanish with English abstract).
    [128]
    Valle Aguado, B., Azevedo, M.R., Nolan, J., Medina, J., Costa, M.M., Corfu, F., Martínez Catalán, J.R., 2017. Granite emplacement at the termination of a major Variscan transcurrent shear zone:the late collisional Viseu batholith. Journal of Structural Geology 98, 15-37.
    [129]
    van der Molen, I., Paterson, M.S., 1979. Experimental deformation of partiallymelted granite. Contributions to Mineralogy and Petrology 70, 299-318.
    [130]
    Vanderhaeghe, O., 2009. Migmatites, granites and orogeny:flow modes of partiallymolten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics 477, 119-134.
    [131]
    Vanderhaeghe, O., Burg, J.P., Teyssier, C., 1999. Exhumation of Migmatites in Two Collapsed Orogens:Canadian Cordillera and French Variscides. Geological Society, London, Special Publications 154, 181-204.
    [132]
    Vernon, R.H., 2000. Review of microstructural evidence of magmatic and solid-state flow. Visual Geosciences 5, 1-23.
    [133]
    Vigneresse, J.L., 1995a. Control of granite emplacement by regional deformation.Tectonophysics 249, 173-186.
    [134]
    Vigneresse, J.L., 1995b. Crustal regime of deformation and ascent of granitic magma.Tectonophysics 249, 187-202.
    [135]
    Vigneresse, J.L., Burg, J.P., 2000. Continuous vs. discontinuous melt segregation in migmatites:insights from a cellular automaton model. Terra Nova 12, 188-192.
    [136]
    Vigneresse, J.L., Tikoff, B., 1999. Strain partitioning during partial melting and crystallizing felsic magmas. Tectonophysics 312, 117-132.
    [137]
    Vigneresse, J.L., Barbey, P., Cuney, M., 1996. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Journal of Petrology 37, 1579-1600.
    [138]
    Villar Alonso, P.M., Escuder Viruete, J.E., Martínez Catalán, J.R., 1992. La zona de cizalla de Juzbado-Peñalba do Castelo en el sector español. Ⅲ Congreso geológico de España y VⅢ Congreso Latinoamericano de Geología 2, 446-458(in Spanish with English abstract).
    [139]
    Weinberg, R.F., Mark, G., 2008. Magma migration, folding, and disaggregation of migmatites in the karakoram shear zone, Ladakh, NW India. The Geological Society of America Bulletin 120, 994-1009.
    [140]
    Whitney, D.L., Teyssier, C., Vanderhaeghe, O., 2004. Gneiss domes and crustal flow.In:Whitney, D.L., Teyssier, C., Siddoway, C.S. (Eds.), Gneiss Domes in Orogeny.Geological Society of America Special Paper, pp. 15-33. https://doi.org/10.1130/1130-8137-2380-1139.1115.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (107) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return