Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Beyene G. Haile, Urszula Czarniecka, Kelai Xi, Aleksandra Smyrak-Sikora, Jens Jahren, Alvar Braathen, Helge Hellevang. Hydrothermally induced diagenesis: Evidence from shallow marine-deltaic sediments, Wilhelmøya, Svalbard[J]. Geoscience Frontiers, 2019, 10(2): 629-649. doi: 10.1016/j.gsf.2018.02.015
Citation: Beyene G. Haile, Urszula Czarniecka, Kelai Xi, Aleksandra Smyrak-Sikora, Jens Jahren, Alvar Braathen, Helge Hellevang. Hydrothermally induced diagenesis: Evidence from shallow marine-deltaic sediments, Wilhelmøya, Svalbard[J]. Geoscience Frontiers, 2019, 10(2): 629-649. doi: 10.1016/j.gsf.2018.02.015

Hydrothermally induced diagenesis: Evidence from shallow marine-deltaic sediments, Wilhelmøya, Svalbard

doi: 10.1016/j.gsf.2018.02.015
  • Received Date: 2017-09-29
  • Rev Recd Date: 2018-01-24
  • Publish Date: 2021-01-07
  • Sedimentary basins containing igneous intrusions within sedimentary reservoir units represent an important risk in petroleum exploration. The Upper Triassic to Lower Jurassic sediments at Wilhelmøya (Svalbard) contains reservoir heterogeneity as a result of sill emplacement and represent a unique case study to better understand the effect of magmatic intrusions on the general burial diagenesis of siliciclastic sediments. Sills develop contact metamorphic aureoles by conduction as presented in many earlier studies. However, there is significant impact of localized hydrothermal circulation systems affecting reservoir sediments at considerable distance from the sill intrusions. Dolerite sill intrusions in the studied area are of limited vertical extent (~12 m thick), but created localized hydrothermal convection cells affecting sediments at considerable distance (more than five times the thickness of the sill) from the intrusions. We present evidence that the sedimentary sequence can be divided into two units: (1) the bulk poorly lithified sediment with a maximum burial temperature much lower than 60-70 ℃, and (2) thinner intervals outside the contact zone that have experienced hydrothermal temperatures (around 140 ℃). The main diagenetic alteration associated with normal burial diagenesis is minor mechanical plastic deformation of ductile grains such as mica. Mineral grain contacts show no evidence of pressure dissolution and the vitrinite reflectance suggests a maximum temperature of ~40 ℃. Contrary to this, part of the sediment, preferentially along calcite cemented flow baffles, show evidence of hydrothermal alteration. These hydrothermally altered sediment sections are characterized by recrystallized carbonate cemented intervals. Further, the hydrothermal solutions have resulted in localized sericitization (illitization) of feldspars, albitization of both K-feldspar and plagioclase and the formation of fibrous illite nucleated on kaolinite. These observations suggest hydrothermal alteration at T > 120-140 ℃ at distances considerably further away than expected from sill heat dissipation by conduction only, which commonly affect sediments about twice the thickness of the sill intrusion. We propose that carbonate-cemented sections acted as flow baffles already during the hydrothermal fluid mobility and controlled the migration pathways of the buoyant hot fluids. Significant hydrothermally induced diagenetic alterations affecting the porosity and hence reservoir quality was not noted in the noncarbonate-cemented reservoir intervals.
  • loading
  • [1]
    Aagaard, P., Jahren, J., Harstad, A., Nilsen, O., Ramm, M., 2000. Formation of graincoating chlorite in sandstones. Laboratory synthesized vs. natural occurrences.Clay Minerals 35, 261-269.
    [2]
    Aarnes, I., Svensen, H., Polteau, S., Planke, S., 2011. Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions. Chemical Geology 281, 181-194.
    [3]
    Aase, N.E., Bjorkum, P.A., Nadeau, P.H., 1996. The effect of grain-coating microquartz on preservation of reservoir porosity. AAPG Bulletin 80, 1654-1673.
    [4]
    Ahmed, W., 2002. Effects of heat-flow and hydrothermal fluids from volcanic intrusions on authigenic mineralization in sandstone formations. Bulletin of the Chemical Society of Ethiopia 16, 37-52.
    [5]
    Ajdukiewicz, J.M., Lander, R.H., 2010. Sandstone reservoir quality prediction:the state of the art. AAPG Bulletin 94, 1083-1091.
    [6]
    Anell, I., Braathen, A., Olaussen, S., Osmundsen, P., 2013. Evidence of faulting contradicts a quiescent northern Barents Shelf during the Triassic. First Break 31, 67-76.
    [7]
    Anell, I., Faleide, J., Braathen, A., 2016. Regional tectono-sedimentary development of the highs and basins of the northwestern barents shelf. Norwegian Journal of Geology 96, 27-41.
    [8]
    Angkasa, S.S., Jerram, D.A., Millett, J.M., Svensen, H.H., Planke, S., Taylor, R.A., Schofield, N., Howell, J., 2017. Mafic intrusions, hydrothermal venting, and the basalt-sediment transition:linking onshore and offshore examples from the North Atlantic igneous province. Interpretation 5 (3), Sk83-Sk101.
    [9]
    Antonsen, P., Elverhoi, A., Dypvik, H., Solheim, A., 1991. Shallow bedrock geology of the Olga basin area, northwestern Barents Sea (1). AAPG Bulletin 75, 1178-1194.
    [10]
    Barker, C.E., Pawlewicz, M.J., 1994. Calculation of vitrinite reflectance from thermal histories and peak temperatures-a comparison of methods. Vitrinite Reflectance as a Maturity Parameter 570, 216-229.
    [11]
    Bauer, A., Velde, B., Gaupp, R., 2000. Experimental constraints on illite crystal morphology. Clay Minerals 35, 587-597.
    [12]
    Bjølykke, K., 1980. Clastic diagenesis and basin evolution. Revista del Instituto de invetigaciones geologicas, Diputacion provincial, Universidad de Barcelona 21-44.
    [13]
    Bjørlykke, K., 1988. Sandstone diagenesis in relation to preservation, destruction and creation of porosity. Developments in Sedimentology 41, 555-588.
    [14]
    Bjørlykke, K., Elverhøi, B.A., Malm, A., 1979. Diagenesis in mesozoic sandstones from spitsbergen and the north Seada comparison. Geologische Rundschau 68, 1152-1171.
    [15]
    Bjørlykke, K., Jahren, J., 2012. Open or closed geochemical systems during diagenesis in sedimentary basins:constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs. AAPG Bulletin 96, 2193-2214.
    [16]
    Bjørlykke, K., Jahren, J., 2015. Sandstones and Sandstone Reservoirs, Petroleum Geoscience. Springer Berlin Heidelberg, pp. 113-140.
    [17]
    Blinova, M., Faleide, J.I., Gabrielsen, R.H., Mjelde, R., 2013. Analysis of structural trends of sub-sea-floor strata in the Isfjorden area of theWest Spitsbergen Foldand-Thrust belt based on multichannel seismic data. Journal of the Geological Society 170, 657-668.
    [18]
    Bloch, S., Lander, R.H., Bonnell, L., 2002. Anomalously high porosity and permeability in deeply buried sandstone reservoirs:origin and predictability. AAPG Bulletin 86, 301-328.
    [19]
    Blomeier, D., Wisshak, M., Dallmann, W., Volohonsky, E., Freiwald, A., 2003. Facies analysis of the old red Sandstone of spitsbergen (wood bay formation):reconstruction of the depositional environments and implications of basin development. Facies 49, 151-174.
    [20]
    Bodnar, R.J., 2003. Reequilibration of fluid inclusions. Fluid Inclusions:Analysis and Interpretation 32, 213-230.
    [21]
    Boles, J., Ramseyer, K., 1988. Albitization of Plagioclase and Vitrinite Reflectance as Paleothermal Indicators, San Joaquin Basin.
    [22]
    Braathen, A., Osmundsen, P.T., Maher, H., Ganerød, M., 2017. The Keisarhjelmen detachment records SilurianeDevonian extensional collapse in Northern Svalbard.Terra Nova 30, 34-39.
    [23]
    Breivik, A.J., Faleide, J.I., Gudlaugsson, S.T., 1998. Southwestern Barents Sea margin:late Mesozoic sedimentary basins and crustal extension. Tectonophysics 293, 21-44.
    [24]
    Brekke, T., Krajewski, K.P., Hubred, J.H., 2014. Organic geochemistry and petrography of thermally altered sections of the middle triassic botneheia formation on south-western Edgeøya, Svalbard. Norwegian Petroleum Directorate Bulletin 11, 111-128.
    [25]
    Bue, E.P., Andresen, A., 2013. Constraining depositional models in the Barents Sea Region using detrital Zircon U-Pb data from mesozoic sediments in Svalbard.Geological Society, London, Special Publications 386, 261-279.
    [26]
    Chuhan, F.A., Kjeldstad, A., Bjørlykke, K., Høeg, K., 2002. Porosity loss in sand by grain crushingdexperimental evidence and relevance to reservoir quality.Marine and Petroleum Geology 19, 39-53.
    [27]
    Ditchfield, P.W., 1997. High northern palaeolatitude Jurassic-Cretaceous palaeotemperature variation:new data from Kong Karls Land, svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology 130, 163-175.
    [28]
    Döbelin, N., 2015. PROFEX:Open Source XRD and Rietveld Refinement.
    [29]
    Dörr, N., Clift, P., Lisker, F., Spiegel, C., 2013. Why is Svalbard an island? Evidence for two-stage uplift, magmatic underplating, and mantle thermal anomalies. Tectonics 32, 473-486.
    [30]
    Dörr, N., Lisker, F., Clift, P., Carter, A., Gee, D.G., Tebenkov, A., Spiegel, C., 2012. Late MesozoiceCenozoic exhumation history of northern Svalbard and its regional significance:constraints from apatite fission track analysis. Tectonophysics 514, 81-92.
    [31]
    Dott Jr., R.H., 1964. Wacke, graywacke and matrixewhat approach to immature Sandstone classification? Journal of Sedimentary Research 34.
    [32]
    Dow, W.G., 1977. Kerogen studies and geological interpretations. Journal of Geochemical Exploration 7, 79-99.
    [33]
    Dypvik, H., Håkansson, E., Heinberg, C., 2002. Jurassic and Cretaceous palaeogeography and stratigraphic comparisons in the North Greenland-Svalbard region. Polar Research 21, 91-108.
    [34]
    Ehrenberg, S., 1993. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite:examples from the Norwegian continental shelf. AAPG Bulletin 77, 1260-1286.
    [35]
    Eide, C.H., Schofield, N., Jerram, D.A., Howell, J.A., 2017. Basin-scale architecture of deeply emplaced sill complexes:Jameson Land, East Greenland. Journal of the Geological Society 174, 23-40.
    [36]
    Einsele, G., 2013. Sedimentary Basins:Evolution, Facies, and Sediment Budget.Springer Berlin Heidelberg.
    [37]
    Einsele, G., Gieskes, J.M., Curray, J., Moore, D.M., Aguayo, E., Aubry, M.-P., Fornari, D., Guerrero, J., Kastner, M., Kelts, K., Lyle, M., Matoba, Y., Molina-Cruz, A., Niemitz, J., Rueda, J., Saunders, A., Schrader, H., Simoneit, B., Vacquier, V., 1980.Intrusion of basaltic sills into highly porous sediments, and resulting hydrothermal activity. Nature 283, 441-445.
    [38]
    Faleide, J.I., Bjørlykke, K., Gabrielsen, R.H., 2015. Geology of the Norwegian Continental Shelf, Petroleum Geoscience. Springer, pp. 603-637.
    [39]
    Faleide, J.I., Gudlaugsson, S.T., Jacquart, G., 1984. Evolution of the western Barents Sea. Marine and Petroleum Geology 1, 123-150.
    [40]
    Faleide, J.I., Tsikalas, F., Breivik, A.J., Mjelde, R., Ritzmann, O., Engen, O., Wilson, J., Eldholm, O., 2008. Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes 31, 82.
    [41]
    Faleide, J.I., Vågnes, E., Gudlaugsson, S.T., 1993. Late Mesozoic-Cenozoic evolution of the south-western Barents Sea in a regional rift-shear tectonic setting. Marine and Petroleum Geology 10, 186-214.
    [42]
    Ferry, J.M., Dipple, G.M., 1991. Fluid flow, mineral reactions, and metasomatism.Geology 19, 211-214.
    [43]
    Folk, R.L., Andrews, P.B., Lewis, D., 1970. Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics 13, 937-968.
    [44]
    Friedman, I., O'Neil, J.R., 1977. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. USGPO.
    [45]
    Gabrielsen, R., 1984. Long-lived fault zones and their influence on the tectonic development of the southwestern Barents Sea. Journal of the Geological Society 141, 651-662.
    [46]
    Galland, O., Cobbold, P.R., Hallot, E., de Bremond d'Ars, J., Delavaud, G., 2006. Use of vegetable oil and silica powder for scale modelling of magmatic intrusion in a deforming brittle crust. Earth and Planetary Science Letters 243, 786-804.
    [47]
    Genthon, P., Rabinowicz, M., Foucher, J.P., Sibuet, J.C., 1990. Hydrothermal circulation in an anisotropic sedimentary basin:application to the Okinawa back arc basin. Journal of Geophysical Research:Solid Earth 95, 19175-19184.
    [48]
    Gjelberg, J., Steel, R., 1981. An outline of Lower-Middle Carboniferous sedimentation on Svalbard:effects of tectonic, climatic and sea level changes in rift basin sequences. In:Fergusson, A.J., Kerr, J.W. (Eds.), Geology of the North Atlantic Borderlands. Canadian Society of Petroleum Geologists. Alberta, Calgary, pp. 543-561.
    [49]
    Glørstad-Clark, E., Birkeland, E., Nystuen, J., Faleide, J., Midtkandal, I., 2011. Triassic platform-margin deltas in the western Barents Sea. Marine and Petroleum Geology 28, 1294-1314.
    [50]
    Glørstad-Clark, E., Faleide, J.I., Lundschien, B.A., Nystuen, J.P., 2010. Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area.Marine and Petroleum Geology 27, 1448-1475.
    [51]
    González-Acebrón, L., Goldstein, R.H., Mas, R., Arribas, J., 2011. Criteria for recognition of localization and timing of multiple events of hydrothermal alteration in sandstones illustrated by petrographic, fluid inclusion, and isotopic analysis of the Tera Group, Northern Spain. International Journal of Earth Sciences 100, 1811-1826.
    [52]
    Grapes, R., 2010. Pyrometamorphism. Springer Science & Business Media.
    [53]
    Grigsby, J.D., 2001. Origin and growth mechanism of authigenic chlorite in sandstones of the lower Vicksburg Formation, south Texas. Journal of Sedimentary Research 71, 27-36.
    [54]
    Grove, C., 2013. Submarine hydrothermal vent complexes in the Paleocene of the Faroe-Shetland Basin:insights from three-dimensional seismic and petrographical data. Geology 41, 71-74.
    [55]
    Grove, C., 2014. Direct and Indirect Effects of Flood Basalt Volcanism on Reservoir Quality Sandstone. Durham University.
    [56]
    Grove, C., Jerram, D., Gluyas, J., Brown, R., 2017. Sandstone diagenesis in Sedimentelava Sequences:Exceptional examples of volcanically driven diagenetic compartmentalization in Dune Valley, Huab Outliers, Nw Namibia. Journal of Sedimentary Research 87, 1314-1335.
    [57]
    Gustavsen, F.B., Dypvik, H., Solheim, A., 1997. Shallow geology of the northern Barents Sea:implications for petroleum potential. AAPG Bulletin 81, 1827-1842.
    [58]
    Haile, B.G., Hellevang, H., Aagaard, P., Jahren, J., 2015. Experimental nucleation and growth of smectite and chlorite coatings on clean feldspar and quartz grain surfaces. Marine and Petroleum Geology 68, 664-674.
    [59]
    Haile, B.G., Klausen, T.G., Jahren, J., Braathen, A., Hellevang, H., in press. Thermal history of a Triassic sedimentary sequence verified by a multi-method approach:Edgeøya, Svalbard, Norway. Basin Research.Hallam, A., 1985. A review of Mesozoic climates. Journal of the Geological Society 142, 433-445.
    [60]
    Hellevang, H., Haile, B.G., Tetteh, A., 2017. Experimental study to better understand factors affecting the CO2 mineral trapping potential of basalt. Greenhouse Gases:Science and Technology 7, 143-157.
    [61]
    Henriksen, E., Bjørnseth, H., Hals, T., Heide, T., Kiryukhina, T., Kløvjan, O., Larssen, G., Ryseth, A., Rønning, K., Sollid, K., 2011. Uplift and erosion of the greater Barents Sea:impact on prospectivity and petroleum systems. Geological Society, London, Memoirs 35, 271-281.
    [62]
    Holford, S., Schofield, N., Jackson, C.-L., Magee, C., Green, P., Duddy, I., 2013. Impacts of Igneous Intrusions on Source Reservoir Potential in Prospective Sedimentary Basins along the Western Australian Continental Margin.
    [63]
    Holford, S., Schofield, N., MacDonald, J., Duddy, I., Green, P., 2012. Seismic analysis of igneous systems in sedimentary basins and their impacts on hydrocarbon prospectivity:examples from the southern Australian margin. The APPEA Journal 52, 229-252.
    [64]
    Hower, J., Eslinger, E.V., Hower, M.E., Perry, E.A., 1976. Mechanism of burial metamorphism of argillaceous sediment:1. Mineralogical and chemical evidence.Geological Society of America Bulletin 87, 725-737.
    [65]
    Jamtveit, B., Svensen, H., Podladchikov, Y.Y., Planke, S., 2004. Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Physical Geology of High-Level Magmatic Systems 234, 233-241.
    [66]
    Jerram, D., 2015. Hot rocks and oil:are volcanic margins the new frontier. Exploration & Production. Geofacets, Elsevier, Amsterdam. https://www.elsevier.com/__data/assets/pdf_file/0008/84887/ELS_Geofacets-Volcanic-Article_Digital_r5.pdf.
    [67]
    Johansen, S., Ostisty, B., Birkeland, Ø., Fedorovsky, Y., Martirosjan, V., Christensen, O.B., Cheredeev, S., Ignatenko, E., Margulis, L., 1992. Hydrocarbon potential in the Barents Sea region:play distribution and potential. Arctic Geology and Petroleum Potential, Norwegian Petroleum Society (NPF), Special Publication 2, 273-320.
    [68]
    Johansson, Å., Gee, D.G., Larionov, A.N., Ohta, Y., Tebenkov, A.M., 2005. Grenvillian and Caledonian evolution of eastern Svalbardea tale of two orogenies. Terra Nova 17, 317-325.
    [69]
    Karlsen, D., Dahlgren, S., Jarntveit, B., Kjærnet, T., 1998. Thermal effects of basaltic sill emplacement in Source rocks for maturation and hydrocarbon generation.In:60th EAGE Conference & Exhibition.
    [70]
    Keith, M., Weber, J., 1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta 28, 1787-1816.
    [71]
    Klausen, T., Mørk, A., 2014. The upper triassic paralic deposits of the de Geerdalen Formation on Hopen:outcrop analog to the subsurface snadd formation in the Barents Sea. AAPG Bulletin 98, 1911-1941.
    [72]
    Klausen, T.G., Ryseth, A.E., Helland-Hansen, W., Gawthorpe, R., Laursen, I., 2014.Spatial and temporal changes in geometries of fluvial channel bodies from the triassic snadd formation of offshore Norway. Journal of Sedimentary Research 84, 567-585.
    [73]
    Klausen, T.G., Ryseth, A.E., Helland-Hansen,W., Gawthorpe, R., Laursen, I., 2015. Regional development and sequence stratigraphy of the middle to late triassic snadd formation, Norwegian Barents Sea. Marine and Petroleum Geology 62, 102-122.
    [74]
    Krajewski, K.P., 2008. The botneheia formation (middle triassic) in Edgeøya and barentsøya, svalbard:lithostratigraphy, facies, phosphogenesis, paleoenvironment.Polish Polar Research 29, 319-364.
    [75]
    Lander, R.H., Bonnell, L.M., 2010. A model for fibrous illite nucleation and growth in sandstones. AAPG Bulletin 94, 1161-1187.
    [76]
    Lord, G.S., Johansen, S.K., Støen, S.J., Mørk, A., 2017. Facies development of the upper triassic succession on barentsøya, Wilhelmøya and NE spitsbergen, svalbard.Norwegian Journal of Geology/Norsk Geologisk Forening 97.
    [77]
    Lord, G.S., Solvi, K.H., Klausen, T.G., Mørk, A., 2014. Triassic channel bodies on Hopen, Svalbard:their facies, stratigraphic significance and spatial distribution.Norwegian Petroleum Directorate 11, 41-59. Stavanger.
    [78]
    Lundschien, B.A., Høy, T., Mørk, A., 2014. Triassic hydrocarbon potential in the Northern Barents Sea; integrating Svalbard and stratigraphic core data. Norwegian Petroleum Directorate Bulletin 11, 3-20.
    [79]
    Machel, H.G., Lonnee, J., 2002. Hydrothermal dolomiteda product of poor definition and imagination. Sedimentary Geology 152, 163-171.
    [80]
    Maher Jr., H.D., 2001. Manifestations of the Cretaceous high arctic large igneous province in svalbard. The Journal of Geology 109, 91-104.
    [81]
    McBride, E.F., 1963. A classification of common sandstones. Journal of Sedimentary Research 33.
    [82]
    Mckinley, J.M., Worden, R.H., Ruffell, A.H., 2001. Contact diagenesis:the effect of an intrusion on reservoir quality in the triassic sherwood Sandstone group, northern Ireland. Journal of Sedimentary Research 71, 484-495.
    [83]
    Meunier, A., Velde, B., 1982. Phengitization, sericitization and potassium-beidellite in a hydrothermally altered granite. Clay Minerals 17, 285-299.
    [84]
    Morad, S., Al-Ramadan, K., Ketzer, J.M., De Ros, L., 2010. The impact of diagenesis on the heterogeneity of sandstone reservoirs:a review of the role of depositional facies and sequence stratigraphy. AAPG Bulletin 94, 1267-1309.
    [85]
    Morad, S., Bergan, M., Knarud, R., Nystuen, J.P., 1990. Albitization of detrital plagioclase in triassic reservoir sandstones from the snorre field, Norwegian North Sea. Journal of Sedimentary Research 60.
    [86]
    Moraes, M.A., De Ros, L.F., 1990. Infiltrated clays in fluvial Jurassic sandstones of Recôncavo Basin, northeastern Brazil. Journal of Sedimentary Research 60.
    [87]
    Mørk, A., Bjorøy, M., 1984. Mesozoic Source Rocks on Svalbard, Petroleum Geology of the North European Margin. Springer, pp. 371-382.
    [88]
    Mørk, A., Embry, A.F., Weitschat, W., 1989. Triassic Transgressive-regressive Cycles in the Sverdrup Basin, Svalbard and the Barents Shelf, Correlation in Hydrocarbon Exploration. Springer, pp. 113-130.
    [89]
    Mørk, A., Dallmann, W., Dypvik, H., Johannessen, E., Larssen, G., Nagy, J., Nøttvedt, A., Olaussen, S., Pchelina, T., Worsley, D., 1999. Mesozoic lithostratigraphy.In:Dallmann, W.k. (Ed.), Lithostratigraphic lexicon of Svalbard.Review and recommendations for nomenclature use. Upper Palaeozoic to Quaternary bedrock. Norwegian Polar Institute, Tromsø, pp. 127-214.
    [90]
    Mørk, M.B.E., 1999. Compositional variations and provenance of triassic sandstones from the Barents Shelf. Journal of Sedimentary Research 69, 690-710.
    [91]
    Mørk, M.B.E., 2013. Diagenesis and quartz cement distribution of low-permeability Upper TriassiceMiddle Jurassic reservoir sandstones, Longyearbyen CO2 lab well site in Svalbard, Norway. AAPG Bulletin 97, 577-596.
    [92]
    Nejbert, K., Krajewski, K.P., Dubińska, E., Pécskay, Z., 2011. Dolerites of svalbard, north-west Barents Sea Shelf:age, tectonic setting and significance for geotectonic interpretation of the high-arctic large igneous province. Polar Research 30.
    [93]
    Nøttvedt, A., Berglund, L., Rasmussen, E., Steel, R., 1988. Some aspects of tertiary tectonics and sedimentation along the Western Barents Shelf. Geological Society, London, Special Publications 39, 421-425.
    [94]
    Nøttvedt, A., Cecchi, M., Gjelberg, J., Kristensen, S., Lønøy, A., Rasmussen, A., Rasmussen, E., Skott, P., Van Veen, P., 1992. Svalbard-Barents Sea correlation:a short review. Arctic Geology and Petroleum Potential, Norwegian Petroleum Society (NPF), Special Publication 2, 363-375.
    [95]
    Nyland, B., Jensen, L., Skagen, J., Skarpnes, O., Vorren, T., 1992. Tertiary uplift and erosion in the Barents Sea:magnitude, timing and consequences. In:Larsen, R.M., Brekke, H., Larsen, B.T., Talleraas, E. (Eds.), Structural and Tectonic Modelling and its Application to Petroleum Geology, Norwegian Petrol. Soc.Spec. Publ, pp. 153-162.
    [96]
    Ochoa, M., Arribas, J., Mas, R., Goldstein, R., 2007. Destruction of a fluvial reservoir by hydrothermal activity (Cameros Basin, Spain). Sedimentary Geology 202, 158-173.
    [97]
    Parnell, J., 2010. Potential of palaeofluid analysis for understanding oil charge history.Geofluids 10, 73-82.
    [98]
    Peters, K., Simoneit, B., Brenner, S., Kaplan, I., 1978. Vitrinite Reflectancetemperature Determinations for Intruded Cretaceous Black Shale in the Eastern Atlantic, Symposium in Geochemistry:Low Temperature Metamorphism of Kerogen and Clay Minerals. Society for Sedimentary Geology.
    [99]
    Pettijohn, F.J., Potter, P.E., Siever, R., 2012. Sand and Sandstone. Springer Science & Business Media.
    [100]
    Pittman, E.D., Larese, R.E., Heald, M.T., 1992. Clay coats:Occurrence and Relevance to Preservation of Porosity in Sandstones.
    [101]
    Polteau, S., Hendriks, B.W., Planke, S., Ganerød, M., Corfu, F., Faleide, J.I., Midtkandal, I., Svensen, H.S., Myklebust, R., 2016. The early Cretaceous Barents Sea Sill complex:distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation.Palaeogeography, Palaeoclimatology, Palaeoecology 441, 83-95.
    [102]
    Que, M., Allen, A.R., 1996. Sericitization of plagioclase in the Rosses granite complex, Co. Donegal, Ireland. Mineralogical Magazine 60, 927-936.
    [103]
    Rateau, R., Schofield, N., Smith, M., 2013. The potential role of igneous intrusions on hydrocarbon migration, West of Shetland. Petroleum Geoscience 19, 259-272.
    [104]
    Reeckmann, S., Duddy, I., Gleadow, A., 1985. Igneous intrusions in porous Sandstone Sequencesewidespread thermal effects measured by fission track annealing and Vitrinite reflectance:ABSTRACT. AAPG Bulletin 69, 299-300.
    [105]
    Riis, F., Lundschien, B.A., Høy, T., Mørk, A., Mørk, M.B.E., 2008. Evolution of the triassic shelf in the northern Barents Sea region. Polar Research 27, 318-338.
    [106]
    Rød, R.S., Hynne, I.B., Mørk, A., 2014. Depositional environment of the upper triassic de Geerdalen FormationeAn EW transect from Edgeøya to central spitsbergen, svalbard. Norwegian Petroleum Directorate Bulletin 11, 21-40.
    [107]
    Rossi, C., Goldstein, R.H., Ceriani, A., Marfil, R., 2002. Fluid inclusions record thermal and fluid evolution in reservoir sandstones, Khatatba Formation, Western Desert, Egypt:a case for fluid injection. AAPG Bulletin 86.
    [108]
    Salem, A.M., Morad, S., Mato, L.F., Al-Aasm, I., 2000. Diagenesis and reservoir-quality evolution of fluvial sandstones during progressive burial and uplift:evidence from the upper Jurassic boipeba member, reconcavo basin, northeastern Brazil.AAPG Bulletin 84, 1015-1040.
    [109]
    Sanderson, I.D., 1984. Recognition and significance of inherited quartz overgrowths in quartz arenites. Journal of Sedimentary Research 54.
    [110]
    Schofield, N., Holford, S., Millett, J., Brown, D., Jolley, D., Passey, S.R., Muirhead, D., Grove, C., Magee, C., Murray, J., Hole, M., Jackson, C.A.L., Stevenson, C., 2015a.Regional magma plumbing and emplacement mechanisms of the Faroe-Shetland Sill Complex:implications for magma transport and petroleum systems within sedimentary basins. Basin Research 29, 41-63.
    [111]
    Schofield, N., Jerram, D.A., Holford, S., Archer, S., Mark, N., Hartley, A., Howell, J., Muirhead, D., Green, P., Hutton, D., Stevenson, C., 2015b. Sills in Sedimentary Basins and Petroleum Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1-22.
    [112]
    Schofield, N., Jolley, D., Holford, S., Archer, S., Watson, D., Hartley, A., Howell, J., Muirhead, D., Underhill, J., Green, P., 2017. Challenges of future exploration within the UK rockall basin. In:Geological Society, London, Petroleum Geology Conference Series, vol. 8.
    [113]
    Senger, K., Millett, J., Planke, S., Ogata, K., Eide, C.H., Festøy, M., Galland, O., Jerram, D.A., 2017. Effects of igneous intrusions on the petroleum system:a review. First Break 35, 47-56.
    [114]
    Senger, K., Roy, S., Braathen, A., Buckley, S.J., Bælum, K., Gernigon, L., Mjelde, R., Noormets, R., Ogata, K., Olaussen, S., 2013. Geometries of doleritic intrusions in central Spitsbergen, Svalbard:an integrated study of an onshore-offshore magmatic province with implications for CO2 sequestration. Norwegian Journal of Geology 93, 3-4.
    [115]
    Senger, K., Tveranger, J., Ogata, K., Braathen, A., Planke, S., 2014. Late mesozoic magmatism in svalbard:a review. Earth-Science Reviews 139, 123-144.
    [116]
    Smith, A.G., Smith, D.G., Funnell, B.M., 1994. Atlas of Mesozoic and Cenozoic Coastlines. Cambridge University Press, Cambridge.
    [117]
    Sobolev, P., 2012. Cenozoic uplift and erosion of the Eastern Barents Seaeconstraints from offshore well data and the implication for petroleum system modelling[Känozoische Hebung und Erosion der östlichen BarentsseeeAbschätzungen aus Offshore-Bohrungsdaten und Auswirkung auf die Erdölsystem-Modellierung)]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 163, 309-324.
    [118]
    Steel, R.J., Worsley, D., 1984. Patterns and palaeogeographic, petroleum geology of the north European margin. In:Proceedings of the North European Margin Symposium (NEMS'83), Organized by the Norwegian Petroleum Society and Held at the Norwegian Institute of Technology (NTH) in Trondheim 9-11 May, 1983. Springer Science & Business Media, p. 109.
    [119]
    Stemmerik, L., Worsley, D., 1989. Late Palaeozoic Sequence Correlations, North Greenland, Svalbard and the Barents Shelf, Correlation in Hydrocarbon Exploration.Springer, pp. 99-111.
    [120]
    Surdam, R.C., Boese, S.W., Crossey, L.J., 1983. The chemistry of secondary porosity:Part 2. Aspects of porosity modification. In:McDonald, D.A., C.Surdam, R.(Eds.), Clastic Diagenesis. American Association of Petroleum Geologists, pp. 127-149.
    [121]
    Sweeney, J.J., Burnham, A.K., 1990. Evaluation of a simple model of Vitrinite reflectance based on chemical kinetics (1). AAPG Bulletin 74, 1559-1570.
    [122]
    Taylor, T.R., Giles, M.R., Hathon, L.A., Diggs, T.N., Braunsdorf, N.R., Birbiglia, G.V., Kittridge, M.G., Macaulay, C.I., Espejo, I.S., 2010. Sandstone diagenesis and reservoir quality prediction:models, myths, and reality. AAPG Bulletin 94, 1093-1132.
    [123]
    Verati, C., Jourdan, F., 2014. Modelling effect of sericitization of plagioclase on the 40K/40Ar and 40Ar/39Ar chronometers:implication for dating basaltic rocks and mineral deposits. Geological Society, London, Special Publications 378, 155-174.
    [124]
    Vorren, T.O., Richardsen, G., Knutsen, S.-M., Henriksen, E., 1991. Cenozoic erosion and sedimentation in the western Barents Sea. Marine and Petroleum Geology 8, 317-340.
    [125]
    Walderhaug, O., 1994. Temperatures of quartz cementation in Jurassic sandstones from the Norwegian continental shelfeevidence from fluid inclusions. Journal of Sedimentary Research 64.
    [126]
    Weigand, P.W., Testa, S.M., 1982. Petrology and geochemistry of Mesozoic dolerites from the Hinlopenstretet area. Svalbard. Polar Research 1982, 35-52.
    [127]
    Weiss, H., Wilhelms, A., Mills, N., Scotchmer, J., Hall, P., Lind, K., Brekke, T., 2000.NIGOGA-The Norwegian Industry Guide to Organic Geochemical Analyses[Online]. Edition 4.0 Published by Norsk Hydro, Statoil, Geolab Nor, SINTEF Petroleum Research and the Norwegian Petroleum Directorate. pp. 102.Availabel at. http://www.npd.no/english/nigoga/nigoga.pdf.
    [128]
    Wilkinson, M., Haszeldine, R.S., 2002. Fibrous illite in oilfield sandstones-a nucleation kinetic theory of growth. Terra Nova 14, 56-60.
    [129]
    Williams, H., Turner, F.J., Gilbert, C.M., 1982. Petrography:an Introduction to the Study of Rocks in Thin Section. WH Freeman and Company.
    [130]
    Williams, L.A., Parks, G.A., Crerar, D.A., 1985. Silica diagenesis, I. Solubility controls.Journal of Sedimentary Research 55.
    [131]
    Wilson, J., Cressey, G., Cressey, B., Cuadros, J., Ragnarsdottir, K.V., Savage, D., Shibata, M., 2006. The effect of iron on montmorillonite stability. (Ⅱ) Experimental investigation. Geochimica et Cosmochimica Acta 70, 323-336.
    [132]
    Wilson, J.C., McBride, E.F., 1988. Compaction and porosity evolution of pliocene sandstones, ventura basin, California. AAPG Bulletin 72, 664-681.
    [133]
    Wilson, M.D., Pittman, E.D., 1977. Authigenic clays in sandstones:recognition and influence on reservoir properties and paleoenvironmental analysis. Journal of Sedimentary Research 47.
    [134]
    Wilson, M.E., Evans, M.J., Oxtoby, N.H., Nas, D.S., Donnelly, T., Thirlwall, M., 2007.Reservoir quality, textural evolution, and origin of fault-associated dolomites.AAPG Bulletin 91, 1247-1272.
    [135]
    Worden, R., Morad, S., 2000. Quartz cementation in oil field sandstones:a review of the key controversies. Quartz cementation in sandstones. Special Publications of International Association of Sedimentologists 29, 1-20.
    [136]
    Worden, R., Morad, S., 2003. Clay minerals in Sandstones:Controls on Formation, Distribution and Evolution. Wiley Online Library.
    [137]
    Worsley, D., 1973. The Wilhelmøya Formationda new lithostratigraphical unit from the Mesozoic of eastern Svalbard. Norsk Polarinstitutt Årbok 1971, 17-34.
    [138]
    Worsley, D., 2008. The post-Caledonian development of Svalbard and the western Barents Sea. Polar Research 27, 298-317.
    [139]
    Zhu, C., Veblen, D.R., Blum, A.E., Chipera, S.J., 2006. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona:electron microscopic characterization. Geochimica et Cosmochimica Acta 70, 4600-4616.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (62) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return