Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Mathias Schannor, Cristiano Lana, Marco A. Fonseca. São Francisco-Congo Craton break-up delimited by U-Pb-Hf isotopes and trace-elements of zircon from metasediments of the Araçuaí Belt[J]. Geoscience Frontiers, 2019, 10(2): 611-628. doi: 10.1016/j.gsf.2018.02.011
Citation: Mathias Schannor, Cristiano Lana, Marco A. Fonseca. São Francisco-Congo Craton break-up delimited by U-Pb-Hf isotopes and trace-elements of zircon from metasediments of the Araçuaí Belt[J]. Geoscience Frontiers, 2019, 10(2): 611-628. doi: 10.1016/j.gsf.2018.02.011

São Francisco-Congo Craton break-up delimited by U-Pb-Hf isotopes and trace-elements of zircon from metasediments of the Araçuaí Belt

doi: 10.1016/j.gsf.2018.02.011
Funds:

The authors wish to acknowledge funding from CNPq (401334/2012-0e302058/2015-0e402852/2012-5) and FAPEMIG (APQ03943eRPQ-0067-10eRDP00063-10) grants.

  • Received Date: 2017-08-25
  • Rev Recd Date: 2018-01-04
  • Publish Date: 2021-01-07
  • Detrital zircon U-Pb geochronology combined with Hf isotopic and trace element data from metasedimentary rocks of the Araçuaí Belt in southeastern Brazil provide evidence for break-up of the Congo-São Francisco Craton. The U-Pb age spectra of detrital zircons from metasediments of the Rio Doce Group (RDG) range from 900-650 Ma and define a maximum depositional age of ca. 650 Ma. Zircon trace element and whole rock data constrain an oceanic island arc as source for the deposition setting of the protoliths to the metasediments. Zircon εHf(t) values from these rocks are positive between +1 and +15, supporting previous evidence of a Neoproterozoic extensional phase and oceanic crust formation in a precursor basin to the Araçuaí Belt. Recrystallization of detrital zircon at ca. 630 Ma is compatible with a regional metamorphic event associated with terrane accretion to the Paleoproterozoic basement after transition from an extensional to a convergent regime. The juvenile nature, age spectra and trace element composition recorded in detrital zircons of metasediments from the Araçuaí Belt correspond with zircons from metasedimentary rocks and oceanic crust remnants of other orogenic belts to its south. This suggests that rifting and oceanic crust formation of the entire orogenic system, the so-called Mantiqueira Province, was contemporaneous, most likely related to the opening of a large ocean. It further indicates that the cratonic blocks involved in the orogenic evolution of the Mantiqueira Province were spatially connected as early as 900 Ma.
  • loading
  • [1]
    Alkmim, F.F., Marshak, S., 1998. Transamazonian Orogeny in the Southern Saeo Francisco Craton Region, Minas Gerais, Brazil:Evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Research 90, 29-58.
    [2]
    Alkmim, F.F., Marshak, S., Pedrosa-Soares, A.C., Peres, G.G., Cruz, S.C., Whittington, A., 2006. Kinematic evolution of the araçuaíewest Congo orogen in Brazil and Africa:nutcracker tectonics during the neoproterozoic assembly of Gondwana. Precambrian Research 149, 43-63.
    [3]
    Almeida, F.F.M., Hasui, Y., Brito-Neves, B.B., Fuck, R.A., 1981. Brazilian structural provinces:an introduction. Earth Science Reviews 17, 1-29.
    [4]
    Andersen, T., 2005. Detrital zircons as tracers of sedimentary provenance:limiting conditions from statistics and numerical simulation. Chemical Geology 216, 249-270.
    [5]
    Arena, K.R., Hartmann, L.A., Lana, C., 2016. Evolution of Neoproterozoic ophiolites from the southern Brasiliano Orogen revealed by zircon U-Pb-Hf isotopes and geochemistry. Precambrian Research 285, 299-314.
    [6]
    Arena, K.R., Hartmann, L.A., Lana, C., 2017. Tonian emplacement of ophiolites in the southern Brasiliano Orogen delimited by U-Pb-Hf isotopes of zircon from metasomatites. Gondwana Research 49, 296-332.
    [7]
    Arena, K.R., Hartmann, L.A., Lana, C., 2018. U-PbeHf isotopes and trace elements of metasomatic zircon delimit the evolution of neoproterozoic Capané ophiolite in the southern Brasiliano Orogen. International Geology Review 60 (7), 911-928.https://doi.org/10.1080/00206814.2017.1355269.
    [8]
    Augustsson, C., Münker, C., Bahlburg, H., Fanning, C.M., 2006. Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin:a combined U-Pb and Hf-isotope study of single detrital zircons. Journal of Geological Society London 163, 983-995.
    [9]
    Ayers, J.C., de la Cruz, K.J., Miller, C.F., Switzer, O., 2003. Experimental study of zircon coarsening in quartzite±H2O at 1.0 GPa and 1000 ℃, with implications for geochronological studies of high-grade metamorphism. American Mineralogist 88, 365-376.
    [10]
    Babinski, M., Chemale Jr., F., Hartmann, L.A., Van Schmus, W.R., Silva, L.C., 1996.Juvenile accretion at 750-700 Ma in southern Brazil. Geology 24, 439-442.
    [11]
    Babinski, M., Pedrosa-Soares, A.C., Trindade, R.I.F., Martins, M., Noce, C.M., Liu, D., 2012. Neoproterozoic glacial deposits from the Araçuaí orogen, Brazil:age, provenance and correlations with the São Francisco craton and West Congo belt. Gondwana Research 21, 451-465.
    [12]
    Basei, M.A.S., Frimmel, H.E., Nutman, A.P., Preciozzi, F., Jacob, J., 2005. A connection between the Neoproterozoic Dom Feliciano (Brazil/Uruguay) and Gariep(Namibia/South Africa) orogenic belts-evidence from a reconnaissance provenance study. Precambrian Research 139, 195-221.
    [13]
    Basei, M.A.S., Frimmel, H.E., Nutman, A.P., Preciozzi, F., 2008. West Gondwana amalgamation based on detrital zircon ages from Neoproterozoic Ribeira and Dom Feliciano belts of South America and comparison with coeval sequences from SW Africa. Journal of Geological Society of Londan 294, 239-256.
    [14]
    Basei, M.A.S., Campos Neto, M.C., Castro, N.A., Nutman, A.P., Wemmer, M.T., Yamamoto, M.T., Hueck, M., Osako, L., Siga Jr., O., Passareli, C.R., 2011. Tectonic evolution of the brusque group, Dom Feliciano belt, santa catarina. Journal of South American Earth Sciences 32, 324-350.
    [15]
    Bento dos Santos, T.M., Tassinari, C.C.G., Fonseca, P.E., 2015. Diachronic collision, slab break-off and long-term high thermal flux in the BrasilianoePan-African orogeny:implications for the geodynamic evolution of the Mantiqueira Province.Precambrian Research 260, 1-22.
    [16]
    Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology 91, 611-627.
    [17]
    Blichert-Toft, J., 2008. The Hf isotopic composition of zircon reference material 91500. Chemical Geology 253, 252-257.
    [18]
    Blichert-Toft, J., Puchtel, I.S., 2010. Depleted mantle sources through time:evidence from LueHf and SmeNd isotope systematics of Archean komatiites. Earth and Planetary Science Letters 297, 598-606.
    [19]
    Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The LueHf and SmeNd isotopic composition of CHUR:constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273, 48-57.
    [20]
    Brito-Neves, B.B., Cordani, U., 1991. Tectonic evolution of south America during the late proterozoic. Precambrian Research 53, 23-40.
    [21]
    Brito-Neves, B.B., Campos Neto, M.C., Fuck, R.A., 1999. From Rodinia to western Gondwana:an approach to the brasiliano-Pan african cycle and orogenic collage. Episodes 22, 155-166.
    [22]
    Campos Neto, M.C., Figueiredo, M.C.H., 1995. The Rio Doce orogeny, southeastern Brazil. Journal of South American Earth Sciences 8, 143-162.
    [23]
    Cawood, P.A., Nemchin, A.A., Strachan, R., 2007. Provenance record of Laurentian passive-margin strata in the northern Caledonides:implications for paleodrainage and paleogeography. The Geological Society of America Bulletin 119, 993-1003.
    [24]
    Cawood, P.A., Hawkesworth, C.J., Dhuime, B., 2012. Detrital zircon record and tectonic setting. Geology 40, 875-878.
    [25]
    Cawood, P.A., Stachan, R.A., Pisarevsky, S.A., Gladkochub, D.P., Murphy, J.B., 2016.Linking collisional and accretionary orogens during Rodinia assembly and breakup:implications for models of supercontinent cycles. Earth and Planetary Science Letters 449, 118-126.
    [26]
    Chemale, F., Dussin, I.A., Alkmim, F.F., Martins, M.S., Queiroga, G., Armstrong, R., Santos, M.N., 2012. Unravelling a Proterozoic basin history through detrital zircon geochronology:the case of the Espinhaço Supergroup, Minas Gerais, Brazil. Gondwana Research 22, 200-206.
    [27]
    Chen, R.X., Zheng, Y.F., Xie, L.W., 2010. Metamorphic growth and recrystallization of zircon:distinction by simultaneous in-situ analyses of trace elements, U-Th-Pb and LueHf isotopes in zircons from eclogite-facies rocks in the Sulu orogen. Lithos 114, 132-154.
    [28]
    D'Agrella-Filho, M.S., Cordani, U.G., 2017. The paleomagnetic record of the São Francisco-Congo Craton. In:Heilbron, M., et al. (Eds.), São Francisco Craton, Eastern Brazil, Regional Geology Reviews, pp. 305-320.
    [29]
    Degler, R., Pedrosa-Soares, A., Dussin, I., Queiroga, G., Schulz, B., 2017. Contrasting provenance and timing of metamorphism from paragneisses of the Araçuaí-Ribeira orogenic system, Brazil:Hints for Western Gondwana assembly.Gondwana Research 51, 30-50.
    [30]
    Dickinson, W.R., Gehrels, G.E., 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata:a test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters 288, 115-125.
    [31]
    Duffles, P., Trouw, R.A.J., Mendes, J.C., Gerdes, A., Vinagre, R., 2016. U-Pb age of detrital zircon from the Embu sequence, Ribeira belt, SE Brazil. Precambrian Research 278, 69-86.
    [32]
    Ernst, R.E., Bleeker, W., Söderlund, U., Kerr, A.C., 2013. Large Igneous Provinces and supercontinents:toward completing the plate tectonic revolution. Lithos 174,1-14.
    [33]
    Evans, D.A.D., 2009. The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. Geological Society London Special Publications 327, 371-404.
    [34]
    Evans, D.A.D., Trindade, R.I.F., Catelani, E.L., D'Agrella-Filho, M.S., Heaman, L.M., Oliveira, E.P., Söderlund, U., Ernst, R.E., Smirnov, A.V., Salminen, J.M., 2016. Return to Rodinia? Moderate to high palaeolatitude of the São Francisco/Congo craton at 920 Ma. Geological Society London Special Publications 424, 167-190.
    [35]
    Fernandes, G.L.F., Schmitt, R.S., Bongiolo, E.M., Basei, M.A.S., Mendes, J.C., 2015.Unraveling the tectonic evolution of a Neoproterozoic-Cambrian active margin in the Ribeira Orogen (Se Brazil):U-Pb and Lu-Hf provenance data. Precambrian Research 266, 337-360.
    [36]
    Frimmel, H.E., Basei, M.S., Gaucher, C., 2011. Neoproterozoic geodynamic evolution of SW-Gondwana:a southern African perspective. International Journal of Earth Sciences 100, 323-354.
    [37]
    Grant, M.L., Wilde, S.A., Wu, F., Yang, J., 2009. The application of zircon cathodoluminescence imaging, TheU-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chemical Geology 261, 155-171.
    [38]
    Gehrels, G., 2014. Detrital zircon U-Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Science Letters 42, 127-149.
    [39]
    Gerdes, A., Zeh, A., 2006. Combined U-Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons:comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters 249, 47-61.
    [40]
    Gerdes, A., Zeh, A., 2009. Zircon formation versus zircon alteration d new insights from combined U-Pb and LueHf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology 261, 230-243.
    [41]
    Gonçalves, L., Farina, F., Lana, C., Pedrosa-Soares, A.C., Alkmim, F., Nalini Jr., H.A., 2014. New U-Pb ages and lithochemical attributes of the Ediacaran Rio Doce magmatic arc, Araçuaí confined orogen, southeastern Brazil. Journal of South American Earth Sciences 52, 129-148.
    [42]
    Gonçalves, L., Alkmim, F.F., Pedrosa-Soares, A.C., Dussin, I.A., Valeriano, C.M., 2015.
    [43]
    Granites of the intracontinental termination of a magmatic arc:an example from the Ediacaran Araçuaí orogen, southeastern Brazil. Gondwana Research 36, 439-458.
    [44]
    Griffin,W.L.,Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X., Zhou, X., 2002.Zircon chemistry and magma mixing, SE China:in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237-269.
    [45]
    Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F., Wooden, J.L., Cheadle, M.J., Hanghøj, K., Schwartz, J.J., 2007. The trace element chemistry of zircons from oceanic crust:a method for distinguishing detrital zircon provenance. Geology 35, 643-646.
    [46]
    Grimes, C.B., John, B.E., Cheadle, M.J., Mazdab, F.K., Wooden, J.L., Swapp, S., Schwartz, J.J., 2009. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contributions to Mineralogy and Petrology 158, 757-783.
    [47]
    Grimes, C.B., Wooden, J.L., Cheadle, M.J., John, B.E., 2015. "Fingerprinting" tectonomagmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology 170, 46.
    [48]
    Heilbron, M., Machado, N., 2003. Timing of terrane accretion in the neoproterozoiceopalaeozoic Ribeira orogen SE Brazil. Precambrian Research 125, 87-112.
    [49]
    Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P., 1998. A neoproterozoic snow-ball earth. Science 281, 1342-1346.
    [50]
    Howard, K.E., Hand, M., Barovich, K.M., Reid, A., Wade, B.P., Belousova, E.A., 2009.Detrital zircon ages:improving interpretation via Nd and Hf isotopic data.Chemical Geology 262, 277-292.
    [51]
    Hudson, T., Plafker, G., 1982. Paleogene metamorphism of an accretionary flysch terrane, eastern Gulf of Alaska. The Geological Society of America Bulletin 93, 1280-1290.
    [52]
    Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211, 47-69.
    [53]
    Kuchenbecker, M., Pedrosa-Soares, A.C., Babinski, M., Fanning, M., 2015. Detrital zircon age patterns and provenance assessment for pre-glacial to post-glacial successions of the Neoproterozoic Macaúbas Group, Araçuaí orogen, Brazil.Precambrian Research 266, 12-26.
    [54]
    Leite, J.A.D., Hartmann, L.A., Fernandes, L.A.D., Mc Naughton, N.J., Soliani Jr., E., Koester, E., Santos, J.O.S., Vasconcellos, M.A.Z., 2000. Zircon U-Pb SHRIMP dating of gneissic basement of the Dom Feliciano Belt, southernmost Brazil.Journal of South American Earth Sciences 13, 739-750.
    [55]
    Lena, L.O.F., Pimentel, M.M., Philipp, R.P., Armstrong, R., Sato, K., 2014. The evolution of the Neoproterozoic São Gabriel juvenile terrane, southern Brazil based on high spatial resolution U-Pb ages and δ18O data from detrital zircons. Precambrian Research 247, 126-138.
    [56]
    Lenz, C., Fernandes, L.A.D., McNaughton, N.J., Porcher, C.C., Masquelin, H., 2011.U-Pb SHRIMP ages for the cerro bori orthogneisses, Dom Feliciano belt in Uruguay:evidences of a ~800 Ma magmatic and ~650 Ma metamorphic event. Precambrian Research 185, 149-163.
    [57]
    Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., Zhang, S., Zhou, H., 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia. Precambrian Research 122, 85-109.
    [58]
    Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V., 2008. Assembly, configuration, and break-up history of Rodinia:a synthesis. Precambrian Research 160, 179-210.
    [59]
    Ludwig, K.R., 2003. Isoplot/Ex Version 3.00:a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, CA.
    [60]
    Machado, N., Schrank, A., Abreu, F.R., Knauer, L.G., Abreu, P.A.A., 1989. Resultados preliminares da geocronologia U-Pb na serra do Espinhaço Meridional. Boletin Socioeconomico Brasileira de Geologia Núcleo MG 10, 171-174.
    [61]
    McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chemical Geology 120, 223-253.
    [62]
    Meert, J.G., Lieberman, B.S., 2008. The neoproterozoic assembly of Gondwana and its relationship to the ediacaranecambrian radiation. Gondwana Research 14, 5-21.
    [63]
    Melo, M.G., Stevens, G., Lana, C., Pedrosa-Soares, A.C., Frei, D., Alkmim, F.F., Alkmim, L.A., 2017. Two cryptic anatectic events within a syn-collisional granitoid from the Araçuaí orogen (southeastern Brazil):evidence from the polymetamorphic Carlos Chagas batholith. Lithos 277, 51-71.
    [64]
    Monger, J.W.H., Price, R.A., Tempelman Kluit, D.J., 1982. Tectonic accretion and the origin of the two major metamorphic and plutonic welts in the Canadian Cordillera. Geology 10, 70-75.
    [65]
    Murphy, J.B., Nance, R.D., 2013. Speculations on the mechanisms for the formation and breakup of supercontinents. Geoscience Frontiers 4, 185-194.
    [66]
    Nance, R.D., Murphy, J.B., Santosh, M., 2014. The supercontinent cycle:a retrospective essay. Gondwana Research 25, 4-29.
    [67]
    Noce, C., Pedrosa-Soares, A.C., Silva, L., Armstrong, R., Piuzana, D., 2007. Evolution of polycyclic basement complexes in the Araçuaí Orogen based on U-Pb SHRIMP data:implications for BrazileAfrica links in Paleoproterozoic time. Precambrian Research 159, 60-78.
    [68]
    Novo, T.A., 2013. Caracterização do Complexo Pocrane, magmatismo básico mesoproterozóico-unidades neoproterozóicas do sistema Araçuaí-Ribeira, com ênfase em geocronologia U-Pb (SHRIMP-LA-ICP-MS). Universidade Federal de Minas Gerais. Belo Horizonte 193.
    [69]
    Oriolo, S., Oyhantçabal, P., Wemmer, K., Siegesmund, S., 2017. Contemporaneous assembly of Western Gondwana and final Rodinia break-up:implications for the supercontinent cycle. Geoscience Frontiers 8, 1431-1445.
    [70]
    Pedrosa-Soares, A.C., Vidal, F., Leonardos, O.H., Brito-Neves, B.B., 1998. Neoproterozoic oceanic remnants in eastern Brazil:further evidence and refutation of an exclusively ensialic evolution for the Araçuaí-West Congo Orogen. Geology 26, 519-522.
    [71]
    Pedrosa-Soares, A.C., Noce, C.M., Wiedmann, C.M., Pinto, C.P., 2001. The Araçuaí-West-Congo Orogen in Brazil:an overview of a confined orogen formed during Gondwanaland assembly. Precambrian Research 110, 307-323.
    [72]
    Pedrosa-Soares, A.C., Campos, C.P., Noce, C.M., Silva, L.C., Novo, T.A., Roncato, J., Medeiros, S., Castañeda, C., Queiroga, G.N., Dantas, E., Dussin, I.A., Alkmim, F.F., 2011. Late neoproterozoic-cambrian granitic magmatism in the Araçuaí orogen(Brazil), the eastern brazilian pegmatite province and related mineral resources.Journal of Geological. Society London 350, 25-51.
    [73]
    Pertille, J., Hartmann, L.A., Philipp, R.P., Petry, T.S., Lana, C., 2015. Origin of the ediacaran Porongos group, Dom Feliciano belt, southern brazilian shield, with emphasis on whole rock and detrital zircon geochemistry and U-Pb, LueHf isotopes. Journal of South American Earth Sciences 64, 69-93.
    [74]
    Pertille, J., Hartmann, L.A., Santos, J.O.S., McNaughton, N.J., Armstrong, R., 2017.Reconstructing the CryogenianeEdiacaran evolution oft he Porongos fold and thrust belt, Southern Brasiliano Orogen, based on Zircon U-PbeHfeO isotopes.International Geology Review 59, 1532-1560.
    [75]
    Pidgeon, R.T., 1992. Recrystallization of oscillatory zoned zircon:some geochronological and petrological implications. Contributions to Mineralogy and Petrology 110, 463-472.
    [76]
    Rapela, C.W., Fanning, C.M., Casquet, C., Pankhurst, R.J., Spalletti, L., Poiré, D., Baldo, E.G., 2011. The Rio de la Plata craton and the adjoining Pan-African/brasiliano terranes:their origins and incorporation into south-west Gondwana.Godwana Research 20, 673-690.
    [77]
    Richter, F., Lana, C., Stevens, G., Buick, I., Pedrosa-Soares, A.C., Alkmim, F.F., Cutts, K., 2016. Sedimentation, metamorphism and granite generation in a back-arc region:records from the ediacaran Nova Venécia Complex (Araçuaí orogen, southeastern Brazil). Precambrian Research 272, 78-100.
    [78]
    Rosa, M.L.S., Conceição, H., Macambira, M.J., Galarza, M.A., Cunha, M.P., Menezes, R.C.L., Marinho, M.M., Cruz-Filho, B.E., Rios, D.C., 2007. Neoproterozoic anorogenic magmatism in the Southern Bahia Alkaline Province of NE Brazil:U-Pb and PbePb ages of the blue sodalite syenites. Lithos 97, 88-97.
    [79]
    Roser, B.P., Korsch, R.J., 1988. Provenance signatures of sandstone mudstone suites determined using discriminant function analysis of major element data.Chemical Geology 67, 119-139.
    [80]
    Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. In:Rudnick, R.L.(Ed.), Treatise on Geochemistry. Elsevier-Pergamon, Oxford, pp. 1-64.
    [81]
    Saalmann, K., Hartmann, L.A., Remus, M.V.D., Koester, E., Conceição, R.V., 2005.SmeNd isotope geochemistry of metamorphic volcano-sedimentary successions in the São Gabriel belt, southernmost Brazil:evidence for the existence of juvenile Neoproterozoic oceanic crust to the east of the La Plata Craton. Precambrian Research 136, 159-175.
    [82]
    Santos, M.M., Lana, C., Scholz, R., Buick, I., Schmitz, M.D., Kamo, S.L., Gerdes, A., Corfu, F., Tapster, S., Lancaster, P., Storey, C.D., Basei, M.A.S., Tohver, E., Alkmim, A., Nalini, H., Krambrock, K., Fantini, C., Wiedenbeck, M., 2017. A new appraisal of Sri Lankan BB zircon as a reference material for LA-ICP-MS U-Pb geochronology and Lu-Hf isotope tracing. Geostandards and Geoanalytical Research. https://doi.org/10.1111/ggr.12167.
    [83]
    Silva, L.C., Hartmann, L.A., McNaughtoon, N.J., Fletcher, I.R., 1999. Shrimp U-Pb zircon dating of Neoproterozoic granitic magmatism and collision in the Pelotas Batholith, southernmost Brazil. International Geology Review 41, 531-551.
    [84]
    Silva, L.C., McNaughton, N.J., Armstrong, R., Hartmann, L., Fletcher, I., 2005. The Neoproterozoic Mantiqueira Province and its African connections:a zirconbased U-Pb geochronological subdivision for the Brasiliano/Pan-African systems of orogens. Precambrian Research 136, 203-240.
    [85]
    Silva, L.C., Soares, A.C.P., Texeira, L.R., Armstrong, R., 2008. Tonian rift-related, Atype continental plutonism in the Araçuaí Orogen, eastern Brazil:new evidence for the breakup stage of the São FranciscoeCongo Paleocontinent. Gondwana Research 13, 527-537.
    [86]
    Sláma, J., Kosler, J., Condon, D.J., Crowely, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plesovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249, 1-35.
    [87]
    Söderlund, U., Patchett, J.P., Vervoort, J.D., Isachsen, C.E., 2004. The 176Lu decay constant determined by LueHf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311-324.
    [88]
    Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207-221.
    [89]
    Tack, L., Wingate, M.T.D., Liégeois, J.-P., Fernandez-Alonso, M., Deblond, A., 2001.Early neoproterozoic magmatism (1000-910Ma) of the zadinian and mayumbian groups (bas-Congo):onset of rodinian rifting at the western edge of the Congo craton. Precambrian Research 110, 277-306.
    [90]
    Tassinari, C.C.G., Munhá, J.M.U., Dias Neto, C.M., Bento dos Santos, T., Cordani, U.G., Nutmann, A., Fonseca, P.E., 2006. In:Constraints on the thermochronological evolution of Ribeira fold belt, Se Brazil:evidence for longterm elevated geothermal gradient of neoproterozoic orogenies. Abstracts of the V South American Symposium on Isotope Geology, Punta del Este, pp. 200-203.
    [91]
    Trompette, R., 1997. Neoproterozoic (~600 Ma) aggregation of western Gondwana:a tentative scenario. Precambrian Research 82, 101-112.
    [92]
    Tuller, M., 2000. Projeto leste-MG. Folha ipanema (SE.24-Y-C-IV), belo horizonte, SEME/COMIG/CPRM. Escala 1, 100.000.
    [93]
    Tupinambá, M., Heilbron, M., Valeriano, C.M., Porto Jr., R., Dios, F.B., Machado, N., Almeida, J.C.H., 2012. Juvenile contribution of the neoproterozoic Rio Negro magmatic arc (Ribeira belt, Brazil):implications for western Gondwana amalgamation.Gondwana Research 21, 422-438.
    [94]
    Van Achterbergh, E., Ryan, C.G., Jackson, S.E., Griffin, W., 2001. Data reduction software for LA-ICP-MS. In:Sylvester, P. (Ed.), Laser Ablation ICPMS in the Earth Sciences, 29. Mineralogical Association of Canada, pp. 239-243.
    [95]
    Vavra, G., Gebauer, D., Schmid, R., Compston, W., 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps):an ion microprobe(SHRIMP) study. Contributions to Mineralogy and Petrology 122, 337-358.
    [96]
    Vavra, G., Schmid, R., Gebauer, D., 1999. Internal morphology, habit and UeThePb microanalysis of amphibolite-to-granulite facies zircons:geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology 134, 380-404.
    [97]
    Verma, S.P., Armstrong-Altrin, J.S., 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology 355, 117-133.
    [98]
    Vermeesch, P., 2012. On the visualization of detrital age distributions. Chemical Geology 312-313, 190-194.
    [99]
    Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., Albarede, F., 1999. Relationships between LueHf and SmeNd isotopic systems in the global sedimentary system.Earth and Planetary Science Letters 168, 79-99.
    [100]
    Vieira, V.S., 2007. Significado do Grupo Rio Doce no Contexto do Orógeno Araçuaí.Belo Horizonte (Ph.D. thesis). Universidade Federal de Minas Gerais.
    [101]
    Woodhead, J.D., Hergt, J.M., 2005. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research 29, 183-195.
    [102]
    Wu, F.Y., Yang, Y.H., Xie, L.W., Yang, J.H., Xu, P., 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology 234, 105-126.
    [103]
    Zheng, Y.F.,Wu, Y.B., Zhao, Z.F., Zhang, S.B., Xu, P.,Wu, F.Y., 2005. Metamorphic effect on zircon LueHf and U-Pb isotope systems in ultrahigh-pressure eclogitefacies metagranite and metabasite. Earth and Planetary Science Letters 240, 378-400.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return