Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Jindrich Kynicky, Martin P. Smith, Wenlei Song, Anton R. Chakhmouradian, Cheng Xu, Antonin Kopriva, Michaela Vasinova Galiova, Martin Brtnicky. The role of carbonate-fluoride melt immiscibility in shallow REE deposit evolution[J]. Geoscience Frontiers, 2019, 10(2): 527-537. doi: 10.1016/j.gsf.2018.02.005
Citation: Jindrich Kynicky, Martin P. Smith, Wenlei Song, Anton R. Chakhmouradian, Cheng Xu, Antonin Kopriva, Michaela Vasinova Galiova, Martin Brtnicky. The role of carbonate-fluoride melt immiscibility in shallow REE deposit evolution[J]. Geoscience Frontiers, 2019, 10(2): 527-537. doi: 10.1016/j.gsf.2018.02.005

The role of carbonate-fluoride melt immiscibility in shallow REE deposit evolution

doi: 10.1016/j.gsf.2018.02.005

This work was supported by H2020 grant project (HiTech AlkCarb) and by project CEITEC 2020 (LQ1601).

  • Received Date: 2017-08-05
  • Rev Recd Date: 2017-12-11
  • Publish Date: 2021-01-07
  • The Lugiin Gol nepheline syenite intrusion, Mongolia, hosts a range of carbonatite dikes mineralized in rare-earth elements (REE). Both carbonatites and nepheline syenite-fluorite-calcite veinlets are host to a previously unreported macroscale texture involving pseudo-graphic intergrowths of fluorite and calcite. The inclusions within calcite occur as either pure fluorite, with associated REE minerals within the surrounding calcite, or as mixed calcite-fluorite inclusions, with associated zirconosilicate minerals. Consideration of the nature of the texture, and the proportions of fluorite and calcite present (~29 and 71 mol%, respectively), indicates that these textures most likely formed either through the immiscible separation of carbonate and fluoride melts, or from cotectic crystallization of a carbonate-fluoride melt. Laser ablation ICP-MS analyses show the pure fluorite inclusions to be depleted in REE relative to the calcite. A model is proposed, in which a carbonate-fluoride melt phase enriched in Zr and the REE, separated from a phonolitic melt, and then either unmixed or underwent cotectic crystallization to generate an REE-rich carbonate melt and an REE-poor fluoride phase. The separation of the fluoride phase (either solid or melt) may have contributed to the enrichment of the carbonate melt in REE, and ultimately its saturation with REE minerals. Previous data have suggested that carbonate melts separated from silicate melts are relatively depleted in the REE, and thus melt immiscibility cannot result in the formation of REE-enriched carbonatites. The observations presented here provide a mechanism by which this could occur, as under either model the textures imply initial separation of a mixed carbonate-fluoride melt from a silicate magma. The separation of an REE-enriched carbonate-fluoride melt from phonolitic magma is a hitherto unrecognized mechanism for REE-enrichment in carbonatites, and may play an important role in the formation of shallow magmatic REE deposits.
  • loading
  • [1]
    Acosta, M.F., Ganschow, S., Klimm, D., Serrano-Zabaleta, S., Larrea, A., Merino, R.I., 2014. Directional solidification of the eutectic LiF-LiYF4 using Bridgman and micro-pulling down techniques:microstructural study and some properties.Journal of the European Ceramic Society 34, 2051-2059. https://doi.org/10.1016/j.jeurceramsoc.2013.09.010.
    Baatar, M., Ochir, G., Kynicky, J., Iizumi, S., Comin-Chiaramonti, P., 2013. Some notes on the Lugiin Gol, Mushgai Khudag and Bayan Khoshuu alkaline complexes, Southern Mongolia. International Journal of Geosciences 4 (8), 1200-1214.https://doi.org/10.4236/ijg.2013.48114.
    Batbold, D., 1997. Mineralogy of the Carbonatite from the Lugiin Gol Alkaline Pluton.Unpubl. MSc thesis. Shimane University, Japan, 143 pp.
    Bau, M., 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect.Contributions to Mineralogy and Petrology 123, 323-333. https://doi.org/10.1007/s004100050159.
    Bell, K., 1998. Radiogenic isotope constraints on relationships between carbonatites and associated silicate rocks-a brief review. Journal of Petrology 39, 1987-1996. https://doi.org/10.1093/petroj/39.11-12.1987.
    Bell, K., Rukhlov, A.S., 2004. Carbonatites from the Kola Alkaline Province:origin, evolution and source characteristics. In:Wall, F., Zaitsev, A.N. (Eds.), Phoscorites and Carbonatites from Mantle to Mine:The Key Example of the Kola Alkaline Province, vol. 10. Mineralogical Society of Great Britain & Ireland, Mineralogical Society Series, pp. 433-468. https://doi.org/10.1180/MSS.10.
    Best, M.G., 2003. Igneous and Metamorphic Petrology, second ed. Blackwell Publishing, Malden, USA. 729 pp.
    Brooker, R.A., Kjarsgaard, B.A., 2011. Silicate-carbonate liquid immiscibility and phase relations in the system SiO2-Na2O-Al2O3-CaO-CO2 at 0.1-2.5 GPa with applications to carbonatite genesis. Journal of Petrology 52, 1281-1305. https://doi.org/10.1093/petrology/egq081.
    Castle, R.O., Lindsley, D.H., 1993. An exsolution silica-pump model for the origin of myrmekite. Contributions to Mineralogy and Petrology 115, 58-65. https://doi.org/10.1007/BF00712978.
    Chakhmouradian, A.R., Smith, M.P., Kynicky, J., 2015. From "strategic" tungsten to "green" neodymium:a century of critical metals at a glance. Ore Geology Reviews 64, 455-458. https://doi.org/10.1016/j.oregeorev.2014.06.008.
    Chakhmouradian, A.R., Wall, F., 2012. Rare earth elements:minerals, mines, magnets(and more). Elements 8, 333-340. https://doi.org/10.2113/gselements.8.5.333.
    Cox, C., Kynicky, J., 2017. The rapid evolution of speculative investment in the 0REE market before, during, and after the rare earth crisis of 2010-2012.The Extractive Industries and Society. https://doi.org/10.1016/j.exis.2017.09.002.
    Dawson, J.B., Hinton, R.W., 2003. Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Mineralogical Magazine 67, 921-930. https://doi.org/10.1180/0026461036750151.
    Dingwell, D., Genova, D., Hess, K.U., Cimarelli, C., 2014. Viscosities of Highly Fluid Melts:Carbonatites and Analogues. AGU Fall meeting, V13C4807.
    Dolejš, D., Baker, D.R., 2007. Liquidus equilibria in the system K2O-Na2O-Al2O3-SiO2-F2O_1-H2O to 100 MPa:I. Silicateefluoride liquid immiscibility in anhydrous systems. Journal of Petrology 48, 785-806. https://doi.org/10.1093/petrology/egm001.
    Fenn, P.M., 1986. On the origin of graphic granite. American Mineralogist 71, 325-330.
    Fulignati, P., Kamenetsky, V.S., Marianelli, P., Sbrana, A., Mernagh, T.P., 2001. Melt inclusion record of immiscibility between silicate, hydrosaline and carbonate melts:applications to skarn genesis at Mount Vesuvius. Geology 29, 1043-1046.https://doi.org/10.1130/0091-7613(2001)029<1043:MIROIB>2.0.CO;2.
    Gittins, J., McKie, D., 1980. Alkalic carbonatite magmas:Oldoinyo Lengai and its wider applicability. Lithos 13, 213-215. https://doi.org/10.1016/0024-4937(80) 90021-3.
    Gittins, J., Beckett, M.F., Jago, B.C., 1990. Composition of the fluid phase accompanying carbonatite magma:a critical examination. American Mineralogist 75, 1106-1109.
    Gittins, J., Tuttle, O.F., 1964. The system CaF2-Ca(OH)2-CaCO3. American Journal of Science 262, 66-75. https://doi.org/10.2475/ajs.262.1.66.
    Halama, R., Vennemann, T., Siebel, W., Markl, G., 2005. The Grønnedal-Ika carbonatiteesyenite complex, South Greenland:carbonatite formation by liquid immiscibility. Journal of Petrology 46, 191-217. https://doi.org/10.1093/petrology/egh069.
    Harmer, R.E., 1999. The petrogenetic association of carbonatite and alkaline magmatism:constraints from the Spitskop Complex, South Africa. Journal of Petrology 40, 525-548. https://doi.org/10.1093/petroj/40.4.525.
    Kempe, U., Möckel, R., Graupner, T., Kynicky, J., Dombon, E., 2015. The genesis of ZreNbeREE mineralisation at Khalzan Buregte (Western Mongolia) reconsidered.Ore Geology Reviews 64, 602-625.
    Klemme, S., Dalpé, C., 2003. Trace element partitioning between apatite and carbonatite melt. American Mineralogist 88, 639-646. https://doi.org/10.2138/am-2003-0417.
    Kovalenko, V.I., Vladykin, N.V., Goreglyad, A.V., Smirnov, V.N., 1974. The Lugiingol massif of pseudoleucite syenite in the People's Republic of Mongolia (first find).Izvestia Akademie Nauk SSSR, Ser. Geol. 1974 (8), 38-49 (in Russian).
    Kynicky, J., 2006. Carbonatites of South Mongolia. Unpublished PhD Thesis. Mendel University, Brno, p. 181.
    Kynicky, J., Chakhmouradian, A.R., Xu, C., Krmicek, L., Galiova, M., 2011. Distribution and evolution of zirconium mineralization in perkalkaline granites and associated pegmatites of the Khan Bogd complex, southern Mongolia. The Canadian Mineralogist 49, 947-965.
    Kynicky, J., Smith, M.P., Xu, C., 2012. Diversity of rare earth deposits:the key example of China. Elements 8, 361-367.
    Le Bas, M.J., 1987. Nephelinites and carbonatites. In:Fitton, J.G., Upton, B.G. (Eds.), Proceedings of Rare Earths'04 MS. International Journal of Mass Spectrometry, vol. 253, pp. 87-97.
    Lee,W.J., Wyllie, P.J., 1997. Liquid immiscibility between nephelinite and carbonatite from 1.0 to 2.5 Ga compared with mantle melt compositions. Contributions to Mineralogy and Petrology 127, 1-16. https://doi.org/10.1007/s004100050261.
    Lee, W.J., Wyllie, P.J., 1998. Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. Journal of Petrology 39, 2005-2013. https://doi.org/10.1093/petroj/39.11-12.2005.
    Lin, S.B., Burley, B.J., 1969. The system CaF2-CaMgSi2O6. Canadian Journal of Earth Sciences 6, 269-280. https://doi.org/10.1139/e69-024.
    London, D., 2009. The origin of primary textures in granitic pegmatites. The Canadian Mineralogist 47, 697-724. https://doi.org/10.3749/canmin.47.4.697.
    London, D., Morgan VI, G.B., 2012. The pegmatite puzzle. Elements 8, 263-268.https://doi.org/10.2113/gselements.8.4.263.
    MacLellan, H.E., Trembath, L.T., 1991. The role of quartz crystallisation in the development and preservation of igneous texture in granitic rocks:experimental evidence at 1 kbar. American Mineralogist 76, 1291-1305.
    Mariano, A.N., Mariano Jr., A., 2012. Rare earth mining and exploration in North America. Elements 8, 369-375.
    Martin, L.H.J., Schmidt, M.W., Mattsson, H.B., Guenther, D., 2013. Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1-3 GPa. Journal of Petrology 54, 2301-2338.
    Mitchell, R.H., 1997. Carbonate-carbonate immiscibility, neighborite and potassium iron sulphide in Oldoinyo Lengai natrocarbonatite. Mineralogical Magazine 61, 779-789. https://doi.org/10.1180/minmag.1997.061.409.03.
    Mitchell, R.H., 2005. Carbonatites and carbonatites and carbonatites. The Canadian Mineralogist 43, 2049-2068..
    Mitchell, R.H., Dawson, J.B., 2012. Carbonateesilicate immiscibility and extremely peralkaline silicate glasses from Nasira cone and recent eruptions at Oldoinyo Lengai Volcano, Tanzania. Lithos 152, 40-46. https://doi.org/10.1016/j.lithos.2012.01.006.
    Mitchell, R.H., Kjarsgaard, B.A., 2008. Experimental studies of the system Na2Ca(CO3)2-NaCl-KCl at 0.1 GPa:implications for the differentiation and low-temperature crystallization of natrocarbonatite. The Canadian Mineralogist 46, 971-980. https://doi.org/10.3749/canmin.46.4.971.
    Mondillo, N., Boni, M., Balassone, G., Spoleto, S., Stellato, F., Marino, A., Santoro, L., Spratt, J., 2016. Rare earth elements (REE)-minerals in the Silius fluorite vein system (Sardinia, Italy). Ore Geology Reviews 74, 211-224. https://doi.org/10.1016/j.oregeorev.2015.11.016.
    Nafziger, R.H., Lincoln, R.L., Riazance, N., 1976. Fluoride flux systems for electroslag melting. In:Nafziger, R.H., et al. (Eds.), The Electroslag Melting Process:US Bureau of Mines, Bulletin, vol. 669, pp. 38-75.
    Newton, R.C., Manning, C.E., 2002. Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures:implications for metasomatic processes in shear zones. American Mineralogist 87, 1401-1409. https://doi.org/10.2138/am-2002-1016.
    Panina, L.I., 2005. Multiphase carbonate-salt immiscibility in carbonatite melts:data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia).Contributions to Mineralogy and Petrology 150, 19-36. https://doi.org/10.1007/s00410-005-0001-3.
    Pouchou, J.L., Pichoir, F., 1991. Quantitative-analysis of homogeneous or stratified microvolumes applying the model PAP. In:Heinrich, K.F.J., Newbury, D.E. (Eds.).Electron Probe Quantitation, Plenum Press, New York, pp. 31-75.
    Rasband, W.S., 2015. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA, pp. 1997-2015. http://imagej.nih.gov/ij/.
    Schairer, J.F., 1957. Melting relations of the common rock-forming oxides. Journal of the American Ceramic Society 40, 215-235. https://doi.org/10.1111/j.1151-2916.1957.tb12608.x.
    Schönenberger, J., Köhler, J., Markl, G., 2008. REE systematics of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland. Chemical Geology 247, 16-35.
    Tadros, T.F., 2013. Emulsion formation, stability, and rheology. In:Tadros, T.F. (Ed.), Emulsion Formation and Stability. WileyeVCH, Weinheim, Germany, pp. 1-75.
    Thomas, R., Davidson, P., Beurlen, H., 2012. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research. Mineralogy and Petrology 106, 55-73. https://doi.org/10.1007/s00710-012-0212-z.
    Tomkute, V., Solheim, A., Sakirzanovas, S., Øye, B., Olsen, E., 2014. Phase equilibria Evaluation for CO2 Capture:CaO-CaF2-NaF, CaCO3-NaF-CaF2, and Na2CO3-CaF2-NaF. Journal of Chemical and Engineering Data 59, 1257-1263.https://doi.org/10.1021/je400999a.
    Vasyukova, O., Williams-Jones, A.E., 2014. Fluorideesilicate melt immiscibility and its role in REE ore formation:evidence from the Strange Lake rare metal deposit, Que'bec-Labrador, Canada. Geochimica et Cosmochimica Acta 139, 110-130. https://doi.org/10.1016/j.gca.2014.04.031.
    Veksler, I.V., 2004. Liquid immiscibility and its role at the magmaticehydrothermal transition:a summary of experimental studies. Chemical Geology 210, 7-31.https://doi.org/10.1016/j.chemgeo.2004.06.002.
    Veksler, I.V., Dorfman, A.M., Kamenetsky, M., Dulski, P., Dingwell, D.B., 2005. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochimica et Cosmochimica Acta 69, 2847-2860. https://doi.org/10.1016/j.gca.2004.08.007.
    Veksler, I.V., Dorfman, A.M., Dulski, P., Kamenetsky, V.S., Danyushevsky, L.V., Jeffries, T., Dingwell, D.B., 2012. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochimica et Cosmochimica Acta 79, 20-40. https://doi.org/10.1016/j.gca.2011.11.035.
    Wakita, H., Rey, P., Schmidt, R.A., 1971. Abundances of the 14 rare-earth elements and 12 other trace elements in Apollo 12 samples:five igneous and one breccia rocks and four soils. In:Proceedings of the Second Lunar Science Conference. Geochimica et Cosmochimica Acta Supplement, vol. 2, pp. 1319-1329.
    Xu, C., Kynicky, J., Chakhmouradian, A.R., Li, X.H., Song,W.L., 2015. A case example of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in South Qinling orogen:Miaoya rare-metal deposit, central China.Lithos 227, 107-121.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (86) PDF downloads(6) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint