Volume 10 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Chris Hawkesworth, Peter A. Cawood, Bruno Dhuime. Rates of generation and growth of the continental crust[J]. Geoscience Frontiers, 2019, 10(1): 165-173. doi: 10.1016/j.gsf.2018.02.004
Citation: Chris Hawkesworth, Peter A. Cawood, Bruno Dhuime. Rates of generation and growth of the continental crust[J]. Geoscience Frontiers, 2019, 10(1): 165-173. doi: 10.1016/j.gsf.2018.02.004

Rates of generation and growth of the continental crust

doi: 10.1016/j.gsf.2018.02.004
Funds:

This research was supported by grants from the Leverhulme Trust RPG-2015-422 and EM-2017-047\4 to Chris Hawkesworth, NERC NE/K008862/1 to Bruno Dhuime, and from Australian Research Council FL160100168 to Peter A. Cawood. We thank two anonymous referees for their detailed and helpful comments.

  • Received Date: 2017-11-28
  • Rev Recd Date: 2018-02-19
  • Models for when and how the continental crust was formed are constrained by estimates in the rates of crustal growth. The record of events preserved in the continental crust is heterogeneous in time with distinctive peaks and troughs of ages for igneous crystallisation, metamorphism, continental margins and mineralisation. For the most part these are global signatures, and the peaks of ages tend to be associated with periods of increased reworking of pre-existing crust, reflected in the Hf isotope ratios of zircons and their elevated oxygen isotope ratios. Increased crustal reworking is attributed to periods of crustal thickening associated with compressional tectonics and the development of supercontinents. Magma types similar to those from recent within-plate and subduction related settings appear to have been generated in different areas at broadly similar times before ∼3.0 Ga. It can be difficult to put the results of such detailed case studies into a more global context, but one approach is to consider when plate tectonics became the dominant mechanism involved in the generation of juvenile continental crust. The development of crustal growth models for the continental crust are discussed, and a number of models based on different data sets indicate that 65%-70% of the present volume of the continental crust was generated by 3 Ga. Such estimates may represent minimum values, but since ∼3 Ga there has been a reduction in the rates of growth of the continental crust. This reduction is linked to an increase in the rates at which continental crust is recycled back into the mantle, and not to a reduction in the rates at which continental crust was generated. Plate tectonics results in both the generation of new crust and its destruction along destructive plate margins. Thus, the reduction in the rate of continental crustal growth at ∼3 Ga is taken to reflect the period in which plate tectonics became the dominant mechanism by which new continental crust was generated.
  • loading
  • [1]
    Albarède, F., 1998. The growth of continental crust. Tectonophysics 296 (1-2), 1-14.
    [2]
    Allègre, C.J., Rousseau, D., 1984. The growth of the continent through geological time studied by Nd isotope analysis of shales. Earth and Planetary Science Letters 67 (1), 19-34.
    [3]
    Armstrong, R.L., 1981. Radiogenic isotopes: the case for crustal recycling on a nearsteady-state no-continental-growth Earth. Philosophical Transactions of the Royal Society of London-Series A: Mathematical and Physical Sciences 301(1461), 443-472.
    [4]
    Arndt, N., Davaille, A., 2013. Episodic Earth evolution. Tectonophysics 609 (0), 661-674.
    [5]
    Barley, M.E., Loader, S.E., McNaughton, N.J., 1998.3430 to 3417 Ma calc-alkaline volcanism in the McPhee Dome and Kelley Belt, and growth of the eastern Pilbara Craton. Precambrian Research 88, 3-24.
    [6]
    Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O'Reilly, S.Y., Pearson, N.J., 2010. The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119 (3-4), 457-466.
    [7]
    Bleeker, W., 2003. The late Archean record: a puzzle in ca. 35 pieces. Lithos 71(2-4), 99-134.
    [8]
    Bradley, D.C., 2008. Passive margins through Earth history. Earth-science Reviews 91 (1-4), 1-26.
    [9]
    Bradley, D.C., 2011. Secular trends in the geologic record and the supercontinent cycle. Earth-science Reviews 108 (1-2), 16-33.
    [10]
    Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34 (11), 961-964.
    [11]
    Brown, M., 2007. Metamorphic conditions in Orogenic Belts: a record of secular change. International Geology Review 49 (3), 193-234.
    [12]
    Brown, M., 2014. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geoscience Frontiers 5 (4), 553-569.
    [13]
    Brown, M., Johnson, T., 2018. Secular change in metamorphism and the onset of global plate tectonics. American Mineralogist 103, 181-196.
    [14]
    Cameron, W.E., Nisbet, E.G., Dietrich, V.J., 1980. Boninites, komatiites and ophiolitic basalts. Nature 280, 550-553.
    [15]
    Campbell, I.H., 2003. Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites. American Journal of Science 303 (4), 319-351.
    [16]
    Campbell, I.H., Allen, C.M., 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience 1, 554-558.
    [17]
    Cawood, P.A., Hawkesworth, C.J., 2015. Temporal relations between mineral deposits and global tectonic cycles. In: Jenkins, G.R.T., Lusty, P.A.J., McDonald, I., Smith, M.P., Boyce, A.J., Wilkinson, J.J. (Eds.), Ore Deposits in an Evolving Earth, Geological Society, London, Special Publications, vol. 393, pp. 9-21.
    [18]
    Cawood, P.A., Hawkesworth, C.J., 2014. Earth's middle age. Geology 42, 503-506.
    [19]
    Cawood, P.A., Hawkesworth, C.J., Dhuime, B., 2013. The continental record and the generation of continental crust. The Geological Society of America Bulletin 125(1-2), 14-32.
    [20]
    Chauvel, C., Garçon, M., Bureau, S., Besnault, A., Jahn, B.-M., Ding, Z., 2014. Constraints from loess on the Hf-Nd isotopic composition of the upper continental crust. Earth and Planetary Science Letters 388, 48-58.
    [21]
    Chowdhury, P., Gerya, T., Chakraborty, S., 2017. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth. Nature Geoscience 10, 698.
    [22]
    Clift, P.D., Vannucchi, P., Morgan, J.P., 2009. Crustal redistribution, crustemantle recycling and Phanerozoic evolution of the continental crust. Earth-Science Reviews 97 (1-4), 80-104.
    [23]
    Condie, K.C., 1998. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters 163 (1-4), 97-108.
    [24]
    Condie, K.C., Aster, R.C., 2010. Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambrian Research 180(3-4), 227-236.
    [25]
    Condie, K.C., Davaille, A., Aster, R.C., Arndt, N., 2015. Upstairs-downstairs: supercontinents and large igneous provinces, are they related? International Geology Review 57 (11-12), 1341-1348.
    [26]
    de Joux, A., Thordarson, T., Fitton, J.G., Hastie, A.R., 2014. The Cosmos greenstone succession, Agnew-Wiluna greenstone belt, Yilgarn Craton, Western Australia:geochemistry of an enriched Neoarchaean volcanic arc succession. Lithos 205, 148-167.
    [27]
    Dhuime, B., Hawkesworth, C.J., Cawood, P.A., Storey, C.D., 2012. A change in the geodynamics of continental growth 3 billion years ago. Science 335 (6074), 1334-1336.
    [28]
    Dhuime, B., Hawkesworth, C.J., Delavault, H., Cawood, P.A., 2017. Continental growth seen through the sedimentary record. Sedimentary Geology 357, 16-32.
    [29]
    Dhuime, B., Hawkesworth, C.J., Storey, C.D., Cawood, P.A., 2011. From sediments to their source rocks: Hf and Nd isotopes in recent river sediments. Geology 39 (4), 407-410.
    [30]
    Dhuime, B., Wuestefeld, A., Hawkesworth, C.J., 2015. Emergence of modern continental crust about 3 billion years ago. Nature Geoscience 8 (7), 552-555.
    [31]
    Evans, D.A.D., 2013. Reconstructing pre-Pangean supercontinents. The Geological Society of America Bulletin 125 (11-12), 1735-1751.
    [32]
    Fyfe, W.S., 1978. The evolution of the Earth's crust: modern plate tectonics to ancient hot spot tectonics? Chemical Geology 23 (1-4), 89-114.
    [33]
    Ganne, J., De Andrade, V., Weinberg, R.F., Vidal, O., Dubacq, B., Kagambega, N., Naba, S., Baratoux, L., Jessell, M., Allibon, J., 2012. Modern-style plate subduction preserved in the Palaeoproterozoic West African Craton. Nature Geoscience 5(1), 60-65.
    [34]
    Garrels, R.M., Mackenzie, F.T., 1971. Evolution of Sedimentary Rocks. Norton, New York, p. 397.
    [35]
    Gastil, R.G., 1960. The distribution of mineral dates in time and space. American Journal of Science 258 (1), 1-35.
    [36]
    Goldstein, S.J., Jacobsen, S.B., 1988. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth and Planetary Science Letters 87 (3), 249-265.
    [37]
    Goodwin, A.M., 1996. Principles of Precambrian Geology. Academic Press, London, p. 327.
    [38]
    Gurnis, M., Davies, G.F., 1986. Apparent episodic crustal growth arising from a smoothly evolving mantle. Geology 14 (5), 396-399.
    [39]
    Hawkesworth, C., Cawood, P., Dhuime, B., 2013. Continental growth and the crustal record. Tectonophysics 609, 651-660.
    [40]
    Hawkesworth, C., Cawood, P., Kemp, T., Storey, C., Dhuime, B., 2009. A matter of preservation. Science 323, 49-50.
    [41]
    Hawkesworth, C.J., Cawood, P.A., Dhuime, B., 2016. Tectonics and crustal evolution.Geological Society of America Today 26 (9), 4-11.
    [42]
    Hawkesworth, C.J., Cawood, P.A., Dhuime, B., Kemp, T.I.S., 2017. Earth's continental lithosphere through time. Annual Review of Earth and Planetary Sciences 45(1), 169-198.
    [43]
    Hoffman, P.F., 1996. Tectonic genealogy of North America. In: Van der Pluijm, B.A., Marshak, S. (Eds.), Earth Structure: An Introduction to Structural Geology and Tectonics. McGraw-Hill, New York, pp. 459-464.
    [44]
    Hurley, P.M., Rand, J.R., 1969. Predrift continental nuclei. Science 164, 1229-1242.
    [45]
    Iizuka, T., Yamaguchi, T., Itano, K., Hibiya, Y., Suzuki, K., 2017. What Hf isotopes in zircon tell us about crustemantle evolution. Lithos 274-275, 304-327.
    [46]
    Jacobsen, S.B., 1988. Isotopic constraints on crustal growth and recycling. Earth and Planetary Science Letters 90 (3), 315-329.
    [47]
    Jenner, F.E., Bennett, V.C., Nutman, A.P., Friend, C.R.L., Norman, M.D., Yaxley, G., 2009. Evidence for subduction at 3.8 Ga: geochemistry of arc-like metabasalts from the southern edge of the Isua Supracrustal Belt. Chemical Geology 261(1-2), 82-97.
    [48]
    Jenner, F.E., Bennett, V.C., Yaxley, G., Friend, C.R.L., Nebel, O., 2013. Eoarchean within-plate basalts from southwest Greenland. Geology 41 (3), 327-330.
    [49]
    Jicha, B.R., Jagoutz, O., 2015. Magma production rates for Intraoceanic Arcs. Elements 11, 105-112.
    [50]
    Keller, B., Schoene, B., 2018. Plate tectonics and continental basaltic geochemistry throughout Earth history. Earth and Planetary Science Letters 481, 290-304.
    [51]
    Keller, C.B., Boehnke, P., Schoene, B., 2017. Temporal variation in relative zircon abundance throughout Earth history. Geochemical Perspectives Letters 3 (2), 179-189.
    [52]
    Kramers, J.D., 2002. Global modelling of continent formation and destruction through geological time and implications for CO2 drawdown in the Archaean Eon. In: Fowler, C.M.R., Ebinger, C.J., Hawkesworth, C.J. (Eds.), The Early Earth:Physical, Chemical and Biological Development, Geological Society, London, Special Publications 199, pp. 259-274.
    [53]
    Kramers, J.D., Tolstikhin, I.N., 1997. Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust.Chemical Geology 139 (1-4), 75-110.
    [54]
    Kump, L.R., 2008. The rise of atmospheric oxygen. Nature 451 (7176), 277-278.
    [55]
    Laurent, O., Martin, H., Moyen, J.F., Doucelance, R., 2014. The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos 205, 208-235.
    [56]
    Lee, C.-T.A., Yeung, L.Y., McKenzie, N.R., Yokoyama, Y., Ozaki, K., Lenardic, A., 2016.Two-step rise of atmospheric oxygen linked to the growth of continents. Nature Geoscience 9 (6), 417-424.
    [57]
    Macey, P.H., Thomas, R.J., Minnaar, H.M., Gresse, P.G., Lambert, C.W., Groenewald, C.A., Miller, J.A., Indongo, J., Angombe, M., Shifotoka, G., Frei, D., Diener, J.F.A., Kisters, A.F.M., Dhansay, T., Smith, H., Doggart, S., Le Roux, P., Hartnady, M.I., Tinguely, C., 2017. Origin and evolution of the ~1.9 Ga Richtersveld Magmatic Arc, SW Africa. Precambrian Research 292, 417-451.
    [58]
    McLennan, S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2 (4).
    [59]
    Mjelde, R., Wessel, P., Müller, R.D., 2010. Global pulsations of intraplate magmatism through the Cenozoic. Lithosphere 2, 361-376.
    [60]
    Moyen, J.-F., Laurent, O., 2018. Archaean tectonic systems: a view from igneous rocks. Lithos 302-303, 99-125.
    [61]
    O'Neil, J., Mauruce, C., Stevensn, R.K., Larocque, J., Cloquet, C., David, J., Francis, D., 2007. The geology of the 3.8 Ga Nuvvuagittuq (Porpoise Cove) Greenstone Belt, Northeastern Superior Province, Canada. In: van Kranendonk, M.J., Smithies, H., Bennett, V.C. (Eds.), Earth's Oldest Rocks, vol. 15. Elsevier, pp. 219-254.
    [62]
    Parman, S.W., 2015. Time-lapse zirconography: imaging punctuated continental evolution. Geochemical Perspective Letters 1, 43-52.
    [63]
    Payne, J.L., Hand, M., Pearson, N.J., Barovich, K.M., McInerney, D.J., 2015. Crustal thickening and clay: controls on O isotope variation in global magmatism and siliciclastic sedimentary rocks. Earth and Planetary Science Letters 412 (0), 70-76.
    [64]
    Payne, J.L., McInerney, D.J., Barovich, K.M., Kirkland, C.L., Pearson, N.J., Hand, M., 2016. Strengths and limitations of zircon Lu-Hf and O isotopes in modelling crustal growth. Lithos 248-251, 175-192.
    [65]
    Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100(1-4), 14-48.
    [66]
    Pearson, D.G., Wittig, N., 2013. The Formation and Evolution of Cratonic Mantle Lithosphere-Evidence from Mantle Xenoliths In: Treatise on Geochemistry, second ed., vol. 3, pp. 255-292
    [67]
    Polat, A., Kerrich, R., 2004. Precambrian arc associations: boninites, adakites, magnesian andesites, and Nb-enriched basalts. In: Kusky, T.M. (Ed.), Precambrian Ophiolites and Related Rocks. Elsevier, Amsterdam, pp. 567-597.
    [68]
    Puchtel, I.S., Blichert-Toft, J., Touboul, M., Walker, R.J., Byerly, G.R., Nisbet, E.G., Anhaeusser, C.R., 2013. Insights into early Earth from Barberton komatiites:evidence from lithophile isotope and trace element systematics. Geochimica et Cosmochimica Acta 108, 63-90.
    [69]
    Pujol, M., Marty, B., Burgess, R., Turner, G., Philippot, P., 2013. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics. Nature 498, 87-90.
    [70]
    Rey, P.F., Coltice, N., 2008. Neoarchean lithospheric strengthening and the coupling of Earth's geochemical reservoirs. Geology 36 (8), 635-638.
    [71]
    Rino, S., Komiya, T., Windley, B.F., Katayama, I., Motoki, A., Hirata, T., 2004. Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Physics of the Earth and Planetary Interiors 146, 369-394.
    [72]
    Roberts, N.M.W., Spencer, C.J., 2015. The Zircon Archive of Continent Formation through Time. In: Geological Society, London, Special Publications, 389 (1), pp. 197-225.
    [73]
    Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. In: Rudnick, R.L.(Ed.), Treatise on Geochemistry, The Crust, vol. 3. Elsevier, Amsterdam, p. 64.
    [74]
    Satkoski, A.M., Fralick, P., Beard, B.L., Johnson, C.M., 2017. Initiation of modern-style plate tectonics recorded in Mesoarchean marine chemical sediments. Geochimica et Cosmochimica Acta 209, 216-232.
    [75]
    Scholl, D.W., von Huene, R., 2007. Exploring the implications for continental basement tectonics if estimated rates of crustal removal (recycling) at Cenozoic subduction zones are applied to Phanerozoic and Precambrian convergent ocean margins. In: Hatcher Jr., R.D., Carlson, M.P., McBride, J.H., Catalán, J.M.(Eds.), 4-D Framework of Continental Crust, Memoir 200. Geological Society of America, Boulder, Colorado, pp. 9-32.
    [76]
    Scholl, D.W., von Huene, R.E., 2009. Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional)
    [77]
    and collisional (suturing) orogens. In: Cawood, P.A., Kröner, A. (Eds.), Earth Accretionary Systems in Space and Time, Geological Society, London, Special Publication 318, pp. 105-125.
    [78]
    Shields, G., Veizer, J., 2002. Precambrian marine carbonate isotope database:version 1.1. Geochemistry, Geophysics, Geosystems 3 (6), 1-12.
    [79]
    Shields, G.A., 2007. A normalised seawater strontium isotope curve: possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth. eEarth 2, 35-42.
    [80]
    Shimizu, K., Nakamura, E., Maruyama, S., 2005. The geochemistry of ultramafic to mafic volcanics from the Belingwe Greenstone Belt, Zimbabwe: magmatism in an Archean continental large igneous province. Journal of Petrology 46 (11), 2367-2394.
    [81]
    Shirey, S.B., Richardson, S.H., 2011. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333 (6041), 434-436.
    [82]
    Smit, M.A., Mezger, K., 2017. Earth's early O2 cycle suppressed by primitive continents.Nature Geoscience 10, 788.
    [83]
    Smithies, R.H., Champion, D.C., Sun, S.-S., 2004. The case for Archean boninites.Contributions to Mineralogy and Petrology 147, 705-721.
    [84]
    Smithies, R.H., Champion, D.C., Van Kranendonk, M.J., 2005. Modern-style subduction processes in the Mesoarchean: geochemical evidence from the 3.12 Ga Whundo intra-oceanic arc. Earth and Planetary Science Letters 231, 221-237.
    [85]
    Spencer, C.J., Cawood, P.A., Hawkesworth, C.J., Raub, T.D., Prave, A.R., Roberts, N.M.W., 2014. Proterozoic onset of crustal reworking and collisional tectonics: reappraisal of the zircon oxygen isotope record. Geology 42 (5), 451-454.
    [86]
    Stern, C.R., 2011. Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Research 20 (2-3), 284-308.
    [87]
    Stern, R.J., 2005. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33, 557-560.
    [88]
    Stockwell, C.W., 1961. Structural Provinces, Orogenies and Time Classification of Rocks of the Canadian Shield. In: Geological Survey of Canada Paper 61-17.Geological Survey of Canada, Ottawa, pp. 108-118.
    [89]
    Tang, G.-J., Chung, S.-L., Hawkesworth, C.J., Cawood, P.A., Wang, Q., Wyman, D.A., Xu, Y.-G., Zhao, Z.-H., 2017. Short episodes of crust generation during protracted accretionary processes: evidence from Central Asian Orogenic Belt, NW China.Earth and Planetary Science Letters 464, 142-154.
    [90]
    Tang, M., Chen, K., Rudnick, R.L., 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351, 372-375.
    [91]
    Taylor, S.R., 1967. The origin and growth of continents. Tectonophysics 4 (1), 17-34.
    [92]
    Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: its Composition and Evolution. Blackwell Scientific Publications, Oxford, p. 312.
    [93]
    Turner, S., Rushmer, T., Reagan, M., Moyen, J.-F., 2014. Heading down early on? Start of subduction on Earth. Geology 42 (2), 139-142.
    [94]
    Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, M.A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., Peck, W.H., Sinha, A.K., Wei, C.S., 2005.4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology 150 (6), 561-580.
    [95]
    Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., Strauss, H., 1999.87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater.Chemical Geology 161 (1-3), 59-88.
    [96]
    Voice, P.J., Kowalewski, M., Eriksson, K.A., 2011. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated Detrital Zircon grains. The Journal of Geology 119 (2), 109-126.
    [97]
    Walker, R.J., Carlson, R.W., Shirey, S.B., Boyd, F.R., 1989. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: implications for the chemical evolution of subcontinental mantle. Geochimica et Cosmochimica Acta 53 (7), 1583-1595.
    [98]
    Weller, O.M., St-Onge, M.R., 2017. Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson Orogen. Nature Geoscience 10, 305-311.
    [99]
    White, S.M., Crisp, J.A., Spera, F.J., 2006. Long-term volumetric eruption rates and magma budgets. Geochemistry, Geophysics, Geosystems 7 (3).
    [100]
    Zhao, G., Cawood, P.A., Wilde, S.A., Sun, M., 2002. Review of global 2.1-1.8 Ga Orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews 59, 125-162.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (153) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return