Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
R. Castaldo, L. D'Auria, S. Pepe, G. Solaro, V. De Novellis, P. Tizzani. The impact of crustal rheology on natural seismicity: Campi Flegrei caldera case study[J]. Geoscience Frontiers, 2019, 10(2): 453-466. doi: 10.1016/j.gsf.2018.02.003
Citation: R. Castaldo, L. D'Auria, S. Pepe, G. Solaro, V. De Novellis, P. Tizzani. The impact of crustal rheology on natural seismicity: Campi Flegrei caldera case study[J]. Geoscience Frontiers, 2019, 10(2): 453-466. doi: 10.1016/j.gsf.2018.02.003

The impact of crustal rheology on natural seismicity: Campi Flegrei caldera case study

doi: 10.1016/j.gsf.2018.02.003
Funds:

This work was carried out within the framework of the GEOTHERMAL ATLAS OF SOUTHERN ITALY project, one of six constituting the program CNR per il Mezzogiorno of the Italian National Research Council, aimed at improving know-how in the fields of advanced technology for energy efficiency, environmental protection, agro-food innovative methodologies for the Made in Italy and biotech medicine production, and was partially funded by 368 DTA. AD004.065.001 Geophysics-Project CNR _PDGP 2016-2018.

  • Received Date: 2017-06-16
  • Rev Recd Date: 2017-12-11
  • Publish Date: 2021-01-07
  • We analyze the crustal rheology beneath the active resurgent Campi Flegrei caldera (CFc) in Southern Italy by modelling the 3D brittle-ductile (B/D) transition, based on available thermal, geological and geophysical data. Firstly, the thermal field in the conductive physical regime is modeled using a finite element method; based on an optimization tool, this method is applied to evaluate the location and dimensions of the deep thermal source beneath the caldera. A horizontally-extended thermal anomaly located at about 5000 m depth below sea level is identified beneath Pozzuoli Bay, a part of the CFc. The same isotherm is located at a depth of 20,000 m beyond the caldera. This indicates a higher horizontal temperature gradient in the caldera with respect to the surrounding area. Next, we utilize this thermal model to image the 3D rheological stratification of the shallow crust below the caldera with two different values of strain rates. Within the caldera, the B/D transitions with ε equal to 10-12 s-1 and 10-8 s-1 are located at 3000 m and 5000 m depths, respectively. Outside the caldera, the transition is very deep (15,000-20,000 m), seemingly uninfluenced by the thermal state of the CFc volcanism. Finally, we compare these results with the spatial distribution of earthquake hypocenters, Benioff strain release and b-value distribution to investigate the relationship between crustal rheology and seismicity characteristics. Our analysis reveals that the image of the B/D transition is in agreement with the distribution of earthquake hypocenters, constraining the potential seismogenic volume of the region. Our study demonstrates that knowledge of the rheological state of a volcanic system is an important element to interpret its dynamic, forecast future activity and improve evaluation of the associated seismic hazard.
  • loading
  • [1]
    Agip, 1987. Geotermia Produzione-Utilizzazioni. AGIP Editor. San Donato, 23 pp.
    [2]
    Aki, K., 1965. Maximum likelihood estimate of b in the formula log N=a-bM and its confidence limits. Bulletin of the Earthquake Research Institute Tokyo University 43, 237-239.
    [3]
    Avallone, A., Zollo, A., Briole, P., Delacourt, C., Beauducel, F., 1999. Subsidence of Campi Flegrei (Italy) detected by SAR interferometry. Geophysical Research Letters 26 (15), 2303-2306.
    [4]
    Benioff, H., 1951. Earthquakes and rock creep, part I:creep characteristics of rocks and the origin of aftershocks. Bulletin of the Seismological Society of America 41, 31-62.
    [5]
    Berrino, G., Corrado, G., Riccardi, U., 2008. Sea gravity data in the Gulf of Naples. A contribution to delineating the structural pattern of the Phlegraean Volcanic District. Journal of Volcanology and Geothermal Research 175, 241-252.
    [6]
    Bianchi, R., Coradini, C., Federico, C., Giberti, G., Lanciano, P., Pozzi, J.P., Sartoris, G., Scandone, R., 1987. Modeling of surface deformations in volcanic areas. The 1970-72 and 1982-84 crises of Campi Flegrei, Italy. Journal of Geophysical Research 92, 14139-14150.
    [7]
    Brocchini, D., Principe, C., Castratori, D., Laurenzi, M.A., Gorla, L., 2001. Quaternary evolution of the sector of the Campanian Plain and Somma-Vesuvius early activity:trecase 1 well insight. Mineralogy and Petrology 73, 67-91.
    [8]
    Bryan, C.J., Sherburn, S., Bibby, H.M., Bannister, S.C., Hurst, A.W., 1999. Shallow seismicity of the central Taupo Volcanic Zone, New Zealand:its distribution and nature. New Zealand Journal of Geology and Geophysics 42, 533-542.
    [9]
    Carlino, S., Somma, R., Troise, C., De Natale, G., 2013. The geothermal exploration of Campanian volcanoes:historical review and future development. Renewable and Sustainable Energy Reviews 16, 1004-1030. https://doi.org/10.1016/j.rser.2011.09.023.
    [10]
    Castaldo, R., Gola, G., Santilano, A., De Novellis, V., Pepe, S., Manzo, M., Manzella, A., Tizzani, P., 2017. The role of thermo-rheological properties of the crust beneath Ischia Island (Southern Italy) in the modulation of the ground deformation pattern. Journal of Volcanology and Geothermal Research 344, 154-173, 15 September 2017.
    [11]
    Chapman, D.S., Furlong, K.P., 1992. In:Fountain, D.M., Arculus, R.J., Kay, R.M. (Eds.), Continental Lower Crust. Elsevier Science, Amsterdam, pp. 179-199.
    [12]
    Chelini, W., Sbrana, A., 1987. Subsurface geology. In:Rosi, M., Sbrana, A. (Eds.), Phlegrean Fields. CNR Quaderni de "La Ricerca Scientifica", vol. 114, pp. 94-103.
    [13]
    Chiarabba, C., Moretti, M., 2006. An insight into the unrest phenomena at the Campi Flegrei caldera from Vp and Vp/Vs tomography. Terra Nova 18 (6), 373-379.https://doi.org/10.1111/j.1365-3121.2006.00701.x.
    [14]
    Chiodini, G., Caliro, S., Cardellini, C., Granieri, D., Avino, R., Baldini, A., Donnini, M., Minopoli, C., 2010. Long term variations of the Campi Flegrei (Italy) volcanic system as revealed by the monitoring of hydrothermal activity. Journal of Geophysical Research 115, B03205. https://doi.org/10.1029/2008JB006258.
    [15]
    Chiodini, G., Paonita, A., Aiuppa, A., Costa, A., Caliro, S., De Martino, P., Acocella, V., Vandemeulebrouck, J., 2016. Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nature Communications 7, 13712.https://doi.org/10.1038/ncomms13712.
    [16]
    Civetta, L., Carluccio, E., Innocenti, F., Sbrana, A., Taddeucci, G., 1991. Magma chamber evolution at Phlegrean Fields during the last 10 ka, in the light of trace elements and isotope composition. European Journal of Mineralogy 3, 415-428.
    [17]
    Convertito, V., Zollo, A., 2011. Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy. Bulletin of Volcanology 73, 767-783. https://doi.org/10.1007/s00445-011-0455-2.
    [18]
    Corrado, G., De Lorenzo, S., Mongelli, F., Tramacere, A., Zito, G., 1998. Surface heat flow density at the Phlegrean Fields Caldera Southern Italy. Geothermics 27 (4), 469-484.
    [19]
    De Lorenzo, S., Zollo, A., Mongelli, F., 2001. Source parameters and threedimensional attenuation structure from the inversion of microearthquake pulse width data:Qp imaging and inference on the thermal state of the Campi Flegrei caldera (southern Italy). Journal of Geophysical Research 106 (B8), 16265-16286.
    [20]
    De Natale, G., Iannaccone, G., Martini, M., Zollo, A., 1987. Seismic sources and attenuation properties at the Campi Flegrei volcanic area. Pure and Applied Geophysics 125 (6), 883-917.
    [21]
    De Natale, G., Zollo, A., Ferraro, A., Virieux, J., 1995. Accurate fault mechanism determinations for a 1984 earthquake swarm at Campi Flegrei caldera (Italy)during an unrest episode:implications for volcanological research. Journal of Geophysical Research 100, 24167-24185.
    [22]
    De Siena, L., Chiodini, G., Vilardo, G., Del Pezzo, E., Castellano, M., Colombelli, S., Tisato, N., Ventura, G., 2017. Source and dynamics of a volcanic caldera unrest:Campi Flegrei, 1983-84. Scientific Reports 7. https://doi.org/10.1038/s41598-017-08192-7. Article number:8099(2017).
    [23]
    De Vivo, B., Belkin, H.E., Barbieri, M., Chelini, W., Lattanzi, P., Lima, A., Tolomeo, L., 1989. The Campi Flegrei (Italy) geothermal system:a fluid inclusion study of the Mofete and San Vito fields. Journal of Volcanology and Geothermal Research 36, 303-326.
    [24]
    Del Gaudio, C., Aquino, I., Ricciardi, G.P., Ricco, C., Scandone, R., 2010. Unrest episodes at Campi Flegrei:a reconstruction of vertical ground movements during 1905-2009. Journal of Volcanology and Geothermal Research 195 (1), 48-56.https://doi.org/10.1016/j.jvolgeores.2010.05.014.
    [25]
    DeNosaquo, K., Smith, R.B., Lowry, A.R., 2009. Density and lithospheric strength models of the Yellowstone-Snake River Plain volcanic system from gravity and heat flow data. Journal of Volcanology and Geothermal Research 188, 108-127.https://doi.org/10.1016/j.jvolgeores.2009.08.006.
    [26]
    Di Vito, M.A., Isaia, R., Orsi, G., Southon, J., De Vita, S., D'Antonio, M., Pappalardo, L., Piochi, M., 1999. Volcanic and deformational history of the Campi Flegrei caldera in the past 12 ka. Journal of Volcanology and Geothermal Research 91, 221-246.
    [27]
    Di Vito, M.A., Acocella, V., Aiello, G., Barra, D., Battaglia, M., Carandente, A., Del Gaudio, C., de Vita, S., Ricciardi, G.P., Ricco, C., Scandone, R., Terrasi, F., 2016.Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption.Scientific Reports 6, 32245. https://doi.org/10.1038/srep32245.
    [28]
    Doglioni, C., Barba, S., Carminati, E., Riguzzi, F., 2014. Role of the brittleeductile transition on fault activation. Physics of the Earth and Planetary Interiors 184, 160-171.
    [29]
    D'Antonio, M., Civetta, L., Orsi, G., Pappalardo, L., Piochi, M., Carandente, A., De Vita, S., Di Vito, M.A., Isaia, R., Southon, J., 1999. The present state of the magmatic system of the Campi Flegrei caldera based on the reconstruction of its behaviour in the past 12 ka. Journal of Volcanology and Geothermal Research 91, 247-268.
    [30]
    D'Auria, L., Giudicepietro, F., Aquino, I., Borriello, G., Del Gaudio, C., Lo Bascio, D., Martini, M., Ricciardi, G., Ricciolino, P., Ricco, C., 2011. Repeated fluid-transfer episodes as a mechanism for the recent dynamics of Campi Flegrei caldera(1989-2010). Journal of Geophysical Research 116, B04313. https://doi.org/10.1029/2010JB007837.
    [31]
    D'Auria, L., Giudicepietro, F., Martini, M., Lanari, R., 2012. The 4D imaging of the source of ground deformation at Campi Flegrei caldera (southern Italy). Journal of Geophysical Research 117, B08209. https://doi.org/10.1029/2012JB009181.
    [32]
    Fedi, M., Nunziata, C., Rapolla, A., 1991. The Campania-Campi Flegrei area:a contribution to discern the best structural model from gravity interpretation.Journal of Volcanology and Geothermal Research 48, 51-59.
    [33]
    Ferrucci, F., Gaudiosi, G., Pino, N.A., Luongo, G., Hirn, A., Mirabile, L., 1986. Seismic detection of a major moho upheaval beneath the Campanian volcanic area.Geophysical Research Letters 16 (11), 1317-1320.
    [34]
    Ferrucci, F., Hirn, A., De Natale, G., Virieux, J., Mirabile, L., 1992. P-SV conversions at a shallow boundary beneath Campi Flegrei Caldera (Italy):evidence for the magma chamber. Journal of Geophysical Research 97, 15351-15359.
    [35]
    Festa, G., Zollo, A., Manfredi, G., Polese, M., Cosenza, E., 2004. Simulation of earthquake ground motion and effects on engineering structures during the preeruptive phase of an active volcano. Bulletin of the Seismological Society of America 94 (6), 2213-2221.
    [36]
    Goetze, C., Evans, B., 1979. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophysical J. R. Astronomical Society 59, 463-478.
    [37]
    Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press.Ito, K., 1993. Cutoff depth of seismicity and large earthquakes near active volcanoes in Japan. Tectonophysics 217, 11-21.
    [38]
    Kirby, S.H., 1983. Rheology of the lithosphere. Reviews of Geophysics 21 (6), 1458-1487.
    [39]
    Lundgren, P., Usai, S., Sansosti, E., Lanari, R., Tesauro, M., Fornaro, G., Berardino, P., 2001. Modeling surface deformation observed with synthetic aperture radar interferometry at Campi Flegrei caldera. Journal of Geophysical Research 106, 19355-19366.
    [40]
    Luongo, G., Cubellis, E., Obrizzo, F., Petrazzuoli, S.M., 1991. The mechanics of the Campi Flegrei resurgent caldera-a model. Journal of Volcanology and Geothermal Research 45, 161-172.
    [41]
    Meissner, R., Strehlau, J., 1982. Limits of stresses in continental crusts and their relation to the depth-frequency distribution of shallow earthquakes. Tectonics 1(1), 73-89. https://doi.org/10.1029/TC001i001p00073.
    [42]
    Mori, J., McKee, C., 1987. Outward-dipping ring-fault structure at Rabaul caldera as shown by earthquake locations. Science 235, 193-195.
    [43]
    Mormone, A., Troise, C., Piochi, M., Balassone, G., Joachimski, M., De Natale, G., 2015. Mineralogical, geochemical and isotopic features of tuff from the CFDDP 506 m hole:hydrothermal activity in the eastern side of the Campi Flegrei volcano (southern Italy). Journal of Volcanology and Geothermal Research 290, 39-52. https://doi.org/10.1016/j.jvolgeores.2014.12.003.
    [44]
    Ord, A., Hobbs, B.E., 1989. The strength of the continental crust, detachment zones and the development of plastic instabilities. Tectonophysics 158, 269-289.
    [45]
    Orsi, G., Civetta, L., Del Gaudio, C., de Vita, S., Di Vito, M.A., Isaia, R., Petrazzuoli, S.M., Ricciardi, G.P., Ricco, C., 1999. Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy):an example of active block-resurgence in a densely populated area. Journal of Volcanology and Geothermal Research 91, 415-451.
    [46]
    Ortiz, R., Arana, V., Astiz, M., Valentin, A., 1984. Magnetotelluric survey in the brady seismic area of Campi Flegrei. Bulletin of Volcanology 47, 239-246.
    [47]
    Pappalardo, L., Civetta, L., D'Antonio, M., Deino, A., Di Vito, M.A., Orsi, G., Carandente, A., de Vita, S., Isaia, R., Piochi, M., 1999. Chemical and isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite(37 ka) and the Neapolitan Yellow Tuff (12 ka) eruptions. Journal of Volcanology and Geothermal Research 91, 141-166.
    [48]
    Prejean, S., Ellsworth, W., Zoback, M., Waldhauser, F., 2002. Journal of Geophysical Research 107 (B12), 2355. https://doi.org/10.1029/2001JB001168.
    [49]
    Ranalli, G., 2001. Rheology of the Earth, second ed. Chapman & Hall, London.Ranalli, G., Murphy, D., 1987. Rheological stratification of the lithosphere. Tectonophysics 132, 281-295.
    [50]
    Ratdomopurbo, A., Poupinet, G., 2000. An overview of the seismicity of Merapi volcano (Java, Indonesia), 1983-1994. Journal of Volcanology and Geothermal Research 100, 193-214.
    [51]
    Rosi, M., Sbrana, A., 1987. Phlegrean fields, introduction, geological setting of the area, stratigraphy, description of mapped products, petrography, tectonics.Quaderni de "La Ricerca Scientifica" Consiglio Nazionale delle Ricerche 114, 9-93.
    [52]
    Scarpati, C., Perrotta, A., Lepore, S., Calvert, A., 2013. Eruptive history of Neapolitan volcanoes:constraints from 40Ar-39Ar dating. Geological Magazine 150 (3), 412-425. https://doi.org/10.1017/S0016756812000854.
    [53]
    Sen, M.K., Stoffa, P.L., 2013. Global Optimization Methods in Geophysical Inversion, second ed. Cambridge University Press.
    [54]
    Sibson, R.H., 1974. Frictional constraints on thrust, wrench and normal faults. Nature 249, 542-544.
    [55]
    Smith, V.C., Isaia, R., Pearce, N.J.G., 2011. Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions:implications for eruption history and chronostratigraphic markers. Quaternary Science Reviews 30, 3638-3660.
    [56]
    Solaro, G., Tizzani, P., Milano, G., Pauselli, C., 2007. Rheological behaviour of the crust in Southern Apennine (Italy):results from a thermal and seismological study. Terra Nova 19, 353-359.
    [57]
    Trasatti, E., Casu, F., Giunchi, C., Pepe, S., Solaro, G., Tagliaventi, S., Berardino, P., Manzo, M., Pepe, A., Ricciardi, G.P., Sansosti, E., Tizzani, P., Zeni, G., Lanari, R., 2008. The 2004-2006 uplift episode at Campi Flegrei Caldera (Italy):constraints from SBAS-DInSAR ENVISAT data and Bayesian source inference.Geophysical Research Letters 35 (L07308). https://doi.org/10.1029/2007GL033091.
    [58]
    Turcotte, D.L., Schubert, G., 2002. Geodynamics, second ed. Cambridge University Press.
    [59]
    Villemant, B., 1988. Trace element evolution in the Phlegrean Fields (Central Italy):fractional crystallization and selective enrichment. Contributions to Mineralogy and Petrology 98, 169-183.
    [60]
    Wohletz, K., Civetta, L., Orsi, G., 1999. Thermal evolution of the Phlegraean magmatic system. Journal of Volcanology and Geothermal Research 91 (381), 414.
    [61]
    Wyss, M., Klein, F., Nagamine, K., Wiemer, S., 2001. Anomalously high B-values in the South Flank of Kilauea volcano, Hawaii-evidence for the distribution of magma below Kilauea's east rift zone. Journal of Volcanology and Geothermal Research 106, 23-37.
    [62]
    Zhang, Z., Zhu, J.Z., 1998. Analysis of the super convergent patch recovery technique and a posteriori error estimator in the finite element method (Ⅱ). Computer Methods in Applied Mechanics and Engineering 163 (1-4), 159-170. https://doi.org/10.1016/S0045-7825(98)00010-3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (170) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return