Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
N. G. Rudraswami, A. K. Naik, R. P. Tripathi, N. Bhandari, S. G. Karapurkar, M. Shyam Prasad, E. V. S. S. K. Babu, U. V. R. Vijaya Sarathi. Chemical, isotopic and amino acid composition of Mukundpura CM2.0 (CM1) chondrite: Evidence of parent body aqueous alteration[J]. Geoscience Frontiers, 2019, 10(2): 495-504. doi: 10.1016/j.gsf.2018.02.001
Citation: N. G. Rudraswami, A. K. Naik, R. P. Tripathi, N. Bhandari, S. G. Karapurkar, M. Shyam Prasad, E. V. S. S. K. Babu, U. V. R. Vijaya Sarathi. Chemical, isotopic and amino acid composition of Mukundpura CM2.0 (CM1) chondrite: Evidence of parent body aqueous alteration[J]. Geoscience Frontiers, 2019, 10(2): 495-504. doi: 10.1016/j.gsf.2018.02.001

Chemical, isotopic and amino acid composition of Mukundpura CM2.0 (CM1) chondrite: Evidence of parent body aqueous alteration

doi: 10.1016/j.gsf.2018.02.001
  • Received Date: 2017-10-29
  • Rev Recd Date: 2018-01-17
  • Publish Date: 2021-01-07
  • The carbonaceous chondrites are intriguing and unique in the sense that they are the only rocks that provide pristine records of the early solar nebular processes. We report here results of a detailed mineralogical, chemical, amino acid and isotopic studies of a recently observed fall at Mukundpura, near Jaipur in Rajasthan, India. Abundance of olivines in this meteorite is low and of serpentine minerals is high. FeO/SiO2=1.05 in its Poorly Characterized Phases (PCP) is similar to that observed in other CM2.0 chondrites. The water content of ~9.8 wt.% is similar to that found in many other CM chondrites. Microscopic examination of matrix shows that its terrestrial weathering grade is W0 but aqueous parent body alteration is high, as reflected in low abundance of identifiable chondrules and abundant remnants of chondrules (~7%). Thus, most of the chondrules formed initially have been significantly altered or dissolved by aqueous alterations on their parent bodies. The measured bulk carbon (2.3%) and nitrogen content and their isotopic (δ13C=-5.5‰, δ15N=23.6‰) composition is consistent with CM2.0 classification probably bordering CM1. Several amino acids such as Alanine, Serine, Proline, Valine, Threonine, Leucine, Isoleucine, Asparagine and Histamine are present. Tyrosine and Tryptophan may occur in trace amounts which could not be precisely determined. All these data show that Mukundpura chondrite lies at the boundary of CM2.0 and CM1 type carbonaceous chondrites making it one of the most primitive chondrites.
  • loading
  • [1]
    Amelin, Y., Krot, A.N., Hutcheon, I.D., Ulyanov, A.A., 2002. Lead isotopic ages of chondrules and calciumealuminium-rich inclusions. Science 297, 1679-1683.
    [2]
    Anders, E., Grevesse, N., 1989. Abundances of the elementsdmeteoritic and solar.Geochimica et Cosmochimica Acta 53, 197-214.
    [3]
    Beck, P., Quirico, E., Garenne, A., Yin, Q.-Z., Bonal, L., Schmitt, B., Montes-Hernandez, G., Chiriac, R., Toche, F., 2014. The secondary history of Sutter's Mill CM carbonaceous chondrite based on water abundance and the structure of its organic matter from two clasts. Meteoritics & Planetary Science 49, 2064-2073.
    [4]
    Bland, P.A., Zolensky, M.E., Benedix, G.K., Sephton, M.A., 2006. Weathering of chondritic meteorites. In:Lauretta, D.S., McSween, H.Y. (Eds.), Meteorites and the Early Solar System Ⅱ. University of Arizona Press, Tucson, pp. 853-867.
    [5]
    Brearley, A.J., 2006. The action of water. In:Lauretta, D.S., McSween, H.Y. (Eds.), Meteorites and the Early Solar System Ⅱ. University of Arizona Press, Tucson, pp. 587-624.
    [6]
    Brearley, A.J., 1995. Aqueous alteration and brecciation in Bells, an unusual, saponite-bearing, CM chondrite. Geochimica et Cosmochimica Acta 59, 2291-2317.
    [7]
    Browning, L.B., McSween Jr., H.Y., Zolensky, M.E., 1996. Correlated alteration effects in CM carbonaceous chondrites. Geochimica et Cosmochimica Acta 60, 2621-2633.
    [8]
    Brownlee, D.E., Bates, B., Schramm, L., 1997. The elemental composition of stony cosmic spherules. Meteoritics & Planetary Science 32, 157-175.
    [9]
    Cronin, J.R., Moore, C.B., 1974. The effect of heating on extractable amino acids in the Murchison carbonaceous chondrite. Meteoritics 2, 327-328.
    [10]
    Cronin, J.R., Pizzarello, S., Cruikshank, D., 1988. Organic matter in carbonaceous chondrites, planetary satellites, asteroids, and comets. In:Kerridge, J.F., Matthews, M.S. (Eds.), Meteorites and the Early Solar System. Univ. of Arizona, Tucson, pp. 819-857.
    [11]
    Engrand, C., McKeegan, K.D., Leshin, L., 1999. Oxygen isotopic compositions of individual minerals in Antarctic micrometeorites:further links to carbonaceous chondrites. Geochimica et Cosmochimica Acta 63, 2623-2636.
    [12]
    Garenne, A., Beck, P., Montes-Hernandez, G., Chiriac, R., Toche, F., Qurico, E., Bonal, L., Schmitt, B., 2014. The abundance and stability of "water" in type 2 carbonaceous chondrites (CI, CM and CR). Geochimica et Cosmochimica Acta 137, 93-112.
    [13]
    Grady, M.M., 2000. Catalogue of Meteorites. Cambridge University Press, Cambridge, 689p.
    [14]
    Hewins, R.H., Bourot-Denise, M., Zanda, B., Leroux, H., Barrat, J.-A., Humayun, M., Göpel, C., Greenwood, R.C., Franchi, I.A., Pont, S., Lorand, J.-P., Courne'de, C., Gattacceca, J., Rochette, P., Kuga, M., Marrocchi, Y., Marty, B., 2014. The Paris meteorite, the least altered CM chondrite so far. Geochimica et Cosmochimica Acta 124, 190-222.
    [15]
    Imae, N., Taylor, S., Iwata, N., 2013. Micrometeorite precursors:clues from the mineralogy and petrology of their relict minerals. Geochimica et Cosmochimica Acta 100, 113-157.
    [16]
    Kerridge, J.F., 1985. Carbon, hydrogen and nitrogen in carbonaceous chondrites:abundances and isotopic compositions in bulk samples. Geochimica et Cosmochimica Acta 49, 1707-1714.
    [17]
    Kurat, G., Koeberl, C., Presper, T., Brandstatter, F., Maurette, M., 1994. Petrology and geochemistry of Antarctic micrometeorites. Geochimica et Cosmochimica Acta 58, 3879-3904.
    [18]
    Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I., Moore, C., 1970. Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228, 923-926.
    [19]
    Lee, M.R., Lindgren, P., Sofe, M.R., 2014. Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites:high fidelity recorders of progressive parent body aqueous alteration. Geochimica et Cosmochimica Acta 144, 126-156.
    [20]
    Love, S.G., Brownlee, D.E., 1993. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550-553.
    [21]
    Maurette, M., Olinger, C., Christophe Michel-Levy, M., Kurat, G., Pourchet, M., Brandstätter, F., Bourot-Denise, M., 1991. A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice. Nature 351, 44-47.
    [22]
    McSween Jr., H.Y., 1979. Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix. Geochimica et Cosmochimica Acta 43, 1761-1770.
    [23]
    Metzler, K., Bischoff, A., Stoffler, D., 1992. Accretionary dust mantles in CM chondrites:evidence for solar nebular processes. Geochimica et Cosmochimica Acta 56, 2873-2897.
    [24]
    Miyamoto, M., 1991. Thermal metamorphism of CI and CM carbonaceous chondrites:an internal heating model. Meteoritics 26, 111-115.
    [25]
    Pearson, V.K., Sephton, M.A., Franchi, I.A., Gibson, J.M., Gilmour, I., 2006. Carbon and nitrogen in carbonaceous chondrites:elemental abundances and stable isotopic compositions. Meteoritics & Planetary Science 41, 1899-1918.
    [26]
    Pearson, V.K., Sephton, M.A., Kearsley, A.T., Bland, P.A., Franchi, I.A., Gilmour, I., 2002. Clay mineral-organic matter relationships in the early solar system.Meteoritics & Planetary Science 37, 1829-1833.
    [27]
    Prasad, M.S., Rudraswami, N.G., Araujo, A., Babu, E.V.S.S.K., Vijaya Kumar, T., 2015.Ordinary chondritic micrometeorites from the Indian Ocean. Meteoritics & Planetary Science 50, 1013-1031.
    [28]
    Rubin, A.E., Trigo-Rodrıguez, J.M., Huber, H., Wasson, J.T., 2007. Progressive aqueous alteration of CM carbonaceous chondrites. Geochimica et Cosmochimica Acta 71, 2361-2382.
    [29]
    Rudraswami, N.G., Parashar, K., Shyam Prasad, M., 2011. Micrometer and nanometer size platinum group nuggets in micrometeorites from the deep sea sediments of Indian Ocean. Meteoritics & Planetary Science 46, 470-491.
    [30]
    Rudraswami, N.G., Shyam Prasad, M., Babu, E.V.S.S.K., Vijaya Kumar, T., Feng, W., Plane, J.M.C., 2012. Fractionation and fragmentation of glass cosmic spherules during atmospheric entry. Geochimica et Cosmochimica Acta 99, 110-127.
    [31]
    Rudraswami, N.G., Shyam Prasad, M., Dey, S., Plane, J.M.C., Feng, W., Taylor, S., 2015.Evaluating changes in the elemental composition of micrometeorites during entry into the Earth's atmosphere. The Astrophysical Journal 814, 78.
    [32]
    Rudraswami, N.G., Shyam Prasad, M., Dey, S., Fernandes, D., Plane, J., M. C, Feng, W., Taylor, S., Carrillo-Sánchez, J.D., 2016. Relict olivines in micrometeorites:precursors and interactions in the Earth's atmosphere. The Astrophysical Journal 831. https://doi.org/10.3847/0004-637X/831/2/197.
    [33]
    Sephton, M.A., 2002. Organic compounds in carbonaceous meteorites. Natural Product Reports 19, 292-311.
    [34]
    Taylor, S., Lever, J.H., Harvey, R.P., 1998. Accretion rate of cosmic spherules measured at the South Pole. Nature 392, 899-903.
    [35]
    Tomeoka, K., Buseck, P.R., 1988. Matrix mineralogy of the Orgueil CI carbonaceous chondrite. Geochimica et Cosmochimica Acta 52, 1627-1640.
    [36]
    Trigo-Rodriguez, J.M., Rubin, A.E., Wasson, J.T., 2006. Non-nebular origin of dark mantles around chondrules and inclusions in CM chondrites. Geochimica et Cosmochimica Acta 70, 1271-1290.
    [37]
    Tripathi, R.P., Dixit, A., Bhandari, N., 2018. Characterisation of Mukundpura carbonaceous chondrite. Current Science 114, 214-217.
    [38]
    Weisberg, M.K., McCoy, T.J., Krot, A.N., 2006. Systematics and evaluation of meteorite classification. In:Lauretta, D.S., McSween Jr., H.Y. (Eds.), Meteorites and the Early Solar System Ⅱ. The University of Arizona Press, pp. 9-53.
    [39]
    Wlotzka, F., 1993. A weathering scale for the ordinary chondrites (abstract). Meteoritics 28, 460.
    [40]
    Zinner, E., Tang, M., Anders, E., 1989. Interstellar SiC in the Murchison and Murray meteorites:Isotopic composition of Ne, Xe, Si, C, and N. Geochimica et Cosmochimica Acta 53, 3273-3290.
    [41]
    Zolensky, M.E., Mittlefehldt, D.W., Lipschutz, M.E., Wang, M.-S., Clayton, R.N., Mayeda, T.K., Grady, M.M., Pillinger, C.T., Barber, D.J., 1997. CM chondrites exhibit the complete petrologic range from type 2 to 1. Geochimica et Cosmochimica Acta 61, 5099-5115.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (41) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return