Citation: | Qizhi Chen, Hong Yao, Shengwen Li, Xinchuan Li, Xiaojun Kang, Wenwen Lai, Jian Kuang. Fact-condition statements and super relation extraction for geothermic knowledge graphs construction[J]. Geoscience Frontiers, 2023, 14(5): 101412. doi: 10.1016/j.gsf.2022.101412 |
[1] |
Ammar, W., Groeneveld, D., Bhagavatula, C., Beltagy, I., Crawford, M., Downey, D., Etzioni, O., 2018. Construction of the literature graph in semantic scholar. arXiv preprint arXiv: 1805.02262.
|
[2] |
Ashish, V., Noam, S., Niki, P., Jakob, U., Llion, J., Aidan, N.G., Łukasz, K., Illia, P., 2017. Attention is all you need. Adv. Neural Inf. Processing Syst., Decem(Nips), 5999–6009.
|
[3] |
Beltagy, I., Lo, K., Cohan, A., 2019. SCIBERT: A pretrained language model for scientific text. In: Proc. 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 3615–3620.
|
[4] |
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J., 2008. Freebase: a collaboratively created graph database for structuring human knowledge. Proc. 2008 ACM SIGMOD International Conference on Management of data, 1247–1250.
|
[5] |
Chen, T., Xu, R., He, Y., Wang, X., 2017. Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Expert Syst. Appl. 72, 221–230. doi: 10.1016/j.eswa.2016.10.065
|
[6] |
Devlin, J., Chang, M.W., Lee, K., Toutanova, K., 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proc NAACL HLT 2019–2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186.
|
[7] |
Fan, R., Wang, L., Yan, J., Song, W., Zhu, Y., Chen, X., 2019. Deep learning-based named entity recognition and knowledge graph construction for geological hazards. ISPRS Int. J. Geo-Info. 9 (1), 15. doi: 10.3390/ijgi9010015
|
[8] |
Howard, J., Ruder, S., 2018. Universal language model fine-tuning for text classification, in: Proc. ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, 1, 328–339.
|
[9] |
Huang, Z., Xu, W., Yu, K., 2015. Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv: 1508.01991.
|
[10] |
Jiang, M., Shang, J., Cassidy, T., Ren, X., Kaplan, L.M., Hanratty, T.P., Han, J., 2017. Metapad: Meta pattern discovery from massive text corpora. In: Proc 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 877–886.
|
[11] |
Jiang, T., Zhao, T., Qin, B., Liu, T., Chawla, N.V., Jiang, M., 2020. Multi-input multioutput sequence labeling for joint extraction of fact and condition tuples from scientific text. In: Proc EMNLP-IJCNLP 2019–2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, pp. 302–312.
|
[12] |
Kolluru, K., Adlakha, V., Aggarwal, S., Mausam, Chakrabarti, S., 2020. OpenIE6: Iterative grid labeling and coordination analysis for open information extraction. arXiv preprint arXiv: 2010.03147.
|
[13] |
Labeau, M., Löser, K., Allauzen, A., 2015. Non-lexical neural architecture for finegrained POS tagging. In: Proc. 2015 Conference on Empirical Methods in Natural Language Processing, pp. 232–237.
|
[14] |
Luan, Y., Ostendorf, M., Hajishirzi, H., 2017. Scientific information extraction with semi-supervised neural tagging. In: Proc 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2641–2651.
|
[15] |
Luo, X., Zhou, W., Wang, W., Zhu, Y., Deng, J., 2018. Attention-based relation extraction with bidirectional gated recurrent unit and highway network in the analysis of geological data. IEEE Access 6, 5705–5715. doi: 10.1109/ACCESS.2017.2785229
|
[16] |
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L., 2018. Deep contextualized word representations. arXiv preprint arXiv: 1802.05365.
|
[17] |
Qiu, Q., Xie, Z., Wu, L., Tao, L., 2020. Dictionary-based automated information extraction from geological documents using a deep learning algorithm. Earth Space Sci. 7 (3). https://doi.org/10.1029/2019EA000993. doi: 10.1029/2019EA000993
|
[18] |
Qiu, Q., Xie, Z., Wu, L., Tao, L., Li, W., 2019a. BiLSTM-CRF for geological named entity recognition from the geoscience literature. Earth Sci. Inform. 12 (4), 565–579. doi: 10.1007/s12145-019-00390-3
|
[19] |
Qiu, Q., Xie, Z., Wu, L., Tao, L., 2019b. GNER: A generative model for geological named entity recognition without labeled data using deep learning. Earth Space Sci. 6 (6), 931–946. doi: 10.1029/2019EA000610
|
[20] |
Ren, X., Shen, J., Qu, M., Wang, X., Wu, Z., Zhu, Q., Han, J., 2017. Life-inet: A structured network-based knowledge exploration and analytics system for life sciences. Proc. ACL 2017, System Demonstrations.
|
[21] |
Shang, J., Liu, J., Jiang, M., Ren, X., Voss, C.R., Han, J., 2018. Automated phrase mining from massive text corpora. IEEE Trans. Knowl. Data. Eng. 30 (10), 1825–1837. doi: 10.1109/TKDE.2018.2812203
|
[22] |
Shi, L., Jianping, C., Jie, X., 2018. Prospecting information extraction by text mining based on convolutional neural networks-a case study of the Lala Copper Deposit, China. IEEE Access 6, 52286–52297. doi: 10.1109/ACCESS.2018.2870203
|
[23] |
Singhal A, Introducing the knowledge graph: Things, not strings.
|
[24] |
Swarnadeep Saha, Harinder Pal, and Mausam, 2017. Bootstrapping for numerical OpenIE, in: Proc.55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 317–323.
|
[25] |
Takamatsu, S., Sato, I., Nakagawa, H., 2012. Reducing wrong labels in distant supervision for relation extraction. In: Proc ACL 50th Annual Meeting of the Association for Computational Linguistics, pp. 721–729.
|
[26] |
Tang, J., 2016. AMiner: Toward understanding big scholar data, in: Proc. ninth ACM international Conference on Web Search and Data Mining, 467-467.
|
[27] |
Wang, C., Ma, X., Chen, J., Chen, J., 2018a. Information extraction and knowledge graph const.ruction from geoscience literature. Comput. Geosci. 112, 112–120.
|
[28] |
Wang, S., Zhang, Y., Che, W., Liu, T., 2018c. Joint extraction of entities and relations based on a novel graph scheme, in: Proc. IJCAI International Joint Conference on Artificial Intelligence, 4461–4467.
|
[29] |
Wang, X., Zhang, Y., Li, Q., Chen, Y., Han, J., 2018b. Open information extraction with meta-pattern discovery in biomedical literature. In: Proc. 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 291–300.
|
[30] |
Wu, S., Fan, K., Zhang, Q., 2019. Improving distantly supervised relation extraction with neural noise converter and conditional optimal selector. In: Proc AAAI Conference on Artificial Intelligence, pp. 7273–7280.
|
[31] |
Zhu, Y., Zhou, W., Xu, Y., Liu, J., Tan, Y., 2017. Intelligent learning for knowledge graph towards geological data. Sci. Program.
|
[32] |
Zhu, Y.K., Ryan, K., Rich, Z., Ruslan, S., Raquel, U., Antonio, T., Sanja, F., 2015. Aligning books and movies: towards story-like visual explanations by watching movies and reading books. In: The IEEE International Conference on Computer Vision, pp. 19–27.
|