Ravish Lal, H. S. Saini, N. C. Pant, S. A. I. Mujtaba. Tectonics induced switching of provenance during the Late Quaternary aggradation of the Indus River Valley, Ladakh, India[J]. Geoscience Frontiers, 2019, 10(1): 285-297. DOI: 10.1016/j.gsf.2017.12.016
Citation: Ravish Lal, H. S. Saini, N. C. Pant, S. A. I. Mujtaba. Tectonics induced switching of provenance during the Late Quaternary aggradation of the Indus River Valley, Ladakh, India[J]. Geoscience Frontiers, 2019, 10(1): 285-297. DOI: 10.1016/j.gsf.2017.12.016

Tectonics induced switching of provenance during the Late Quaternary aggradation of the Indus River Valley, Ladakh, India

  • The Indus River flows through Ladakh, one of the driest and coldest places on earth, in a tectonically active domain. Fluvial, glaciofluvial, lacustrine and debris dominated sequences represent the Late Quaternary sedimentary record along the river course. Karakoram Fault, a major crustal scaled feature reported to be active during the Quaternary, is associated with the Indus River drainage. Linkages between a major, active fault and deposits formed during the activity period of the fault are explored using heavy mineral deduced provenance and Optically Stimulated Luminescence (OSL) chronology.
    Five deposits in a ∼200 km long stretch of the Indus River have been examined for a ∼80 ka period to decipher the climate linked aggradation history. Damming of the Indus River at ∼79 ka and existence of the Spituk Lake for >30 ka is demonstrated. Using geology of the provenance in relation to the mineralogical attributes of the Quaternary deposits, the major drainage reorganization when the connection of the Tangtse Valley to the Indus was blocked, is inferred at ∼73 ka. It is supported by the geological-geomorphological evidence. The study demonstrates the application of provenance linked mineralogy in terrestrial aggradation in a tectonically active region.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return