Volume 14 Issue 5
Jul.  2023
Turn off MathJax
Article Contents
Chenmin Yu, Laiming Zhang, Mingcai Hou, Jianghai Yang, Hanting Zhong, Chengshan Wang. Climate paleogeography knowledge graph and deep time paleoclimate classifications[J]. Geoscience Frontiers, 2023, 14(5): 101450. doi: 10.1016/j.gsf.2022.101450
Citation: Chenmin Yu, Laiming Zhang, Mingcai Hou, Jianghai Yang, Hanting Zhong, Chengshan Wang. Climate paleogeography knowledge graph and deep time paleoclimate classifications[J]. Geoscience Frontiers, 2023, 14(5): 101450. doi: 10.1016/j.gsf.2022.101450

Climate paleogeography knowledge graph and deep time paleoclimate classifications

doi: 10.1016/j.gsf.2022.101450
More Information
  • Corresponding author: E-mail address: lzhang@cugb.edu.cn (L. Zhang)
  • Received Date: 2022-01-21
  • Accepted Date: 2022-07-30
  • Rev Recd Date: 2022-07-03
  • Available Online: 2022-08-03
  • Publish Date: 2023-09-01
  • The climate paleogeography, especially the climate classifications, helps to interpret the global and regional climate changes and intuitively compare the climate conditions in different regions. However, the application of climate classification in deep time (i.e., climate paleogeography) is prohibited due to the usually qualitatively constrained paleoclimate and the inconsistent descriptions and semantic heterogeneity of the climate types. In this study, a climate paleogeography knowledge graph is established under the framework of the Deep-Time Digital Earth program (DDE). The hierarchical knowledge graph consists of five paleoclimate classifications based on various strategies. The classifications are described and their strengths and weaknesses are fully evaluated in four aspects: "simplicity, applicability, quantifiability, and comparability". We also reconstruct the global climate distributions in the Late Cretaceous according to these classifications. The results are compared and the relationships among these climate types in different classifications are evaluated. Our study unifies scientific concepts from different paleoclimate classifications, which provides an important theoretical basis for the application of paleoclimate classifications in deep time.
  • Declaration of Competing Interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2022.101450.
    Appendix A. Supplementary data
  • loading
  • [1]
    Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A., Wood, E.F., 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214. doi: 10.1038/sdata.2018.214
    [2]
    Bergengren, J.C., Thompson, S.L., Pollard, D., DeConto, R.M., 2001. Modeling global climate-vegetation interactions in a doubled CO2 world. Clim. Change 50 (1–2), 31–75.
    [3]
    Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Feitosa, R.Q., Van der Meer, F., Van der Werff, H., Van Coillie, F., Tiede, D., 2014. Geographic object-based image analysis - towards a new paradigm. ISPRS J. Photogrammetry Remote Sens. 87, 180–191. doi: 10.1016/j.isprsjprs.2013.09.014
    [4]
    Boucot, A.J., Shen, X., Scotese, C.R., Morley, R.J., 2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. Society for Sedimentary Geology, Tulsa, Oklahoma.
    [5]
    Bowman, V.C., Francis, J.E., Askin, R.A., Riding, J.B., Swindles, G.T., 2014. Latest Cretaceous–earliest Paleogene vegetation and climate change at the high southern latitudes: palynological evidence from Seymour Island, Antarctic Peninsula. Palaeogeogr. Palaeoclimatol. Palaeoecol. 408, 26–47. doi: 10.1016/j.palaeo.2014.04.018
    [6]
    Cheatham, M., Krisnadhi, A., Amini, R., Hitzler, P., Janowicz, K., Shepherd, A., Narock, T., Jones, M., Ji, P., 2018. The GeoLink knowledge graph. Big Earth Data 2 (2), 131–143. doi: 10.1080/20964471.2018.1469291
    [7]
    Chumakov, N., 1995. The problem of the warm biosphere. Stratigr. Geo. Correl. 3 (3), 205–215.
    [8]
    Chumakov, N.M., 2004. Climatic zones and climate of the Cretaceous period. In: Semikhatov, M.A., Chumakov, N.M. (Eds. ), Climate in the epochs of major biospheric transformations. Transactions of the Geological Institute of the Russian Academy of Sciences, pp. 105–123.
    [9]
    Chumakov, N., Zharkov, M., Herman, A., Doludenko, M., Kalandadze, N., Lebedev, E., Ponomarenko, A., Rautian, A., 1995. Climatic Belts of the MidCretaceous Time. Stratigr. Geo. Correl. 3 (3), 241–260.
    [10]
    Craggs, H., Valdes, P., Widdowson, M., 2012. Climate model predictions for the latest Cretaceous: An evaluation using climatically sensitive sediments as proxy indicators. Palaeogeogr. Palaeoclimatol. Palaeoecol. 315–316, 12–23.
    [11]
    de Bar, M.W., de Nooijer, L.J., Schouten, S., Ziegler, M., Sluijs, A., Reichart, G. -J., 2019. Comparing seawater temperature proxy records for the past 90 Myrs from the shallow shelf record Bass River, New Jersey. Paleoceanogr. Paleocl. 34, 455–475. doi: 10.1029/2018PA003453
    [12]
    DeConto, R.M., Brady, E.C., Bergengren, J., Hay, W.W., 2000. Late Cretaceous climate, vegetation, and ocean interactions. In: Huber, B.T., MacLeod, K.G., Wing, S.L. (Eds. ), Warm Climate in Earth History. Cambridge University Press, Cambridge, United Kingdom.
    [13]
    Deng, S., 2007. Palaeoclimatic implications of main fossil plants of the Mesozoic. J. Palaeogeogr. 9 (6), 559–574. doi: 10.1007/s11044-007-9052-8
    [14]
    Deng, S., Lu, Z., Zhao, Y., Fan, R., Wang, Y., Yang, X., Li, X., Sun, B., 2017. The Jurassic palaeoclimate regionalization and evolution of China. Earth Sci. Front. 24 (1), 106–142. (in Chinese with English abstract)
    [15]
    Donnadieu, Y., Goddéris, Y., Bouttes, N., 2009. Exploring the climatic impact of the continental vegetation on the Mezosoic atmospheric CO2 and climate history. Clim. Past 5 (1), 85–96. doi: 10.5194/cp-5-85-2009
    [16]
    Essenwanger, O.M., 2001. Classification of Climates, World Survey of Climatology 1C, General Climatology. Elsevier, Amsterdam, pp. 102.
    [17]
    Farmer, G.T., Cook, J., 2013. Climate Change Science: A Modern Synthesis: Volume 1 – The Physical Climate. Springer, Netherlands, pp. 564.
    [18]
    Dumitrescu, M., Brassell, S.C., Schouten, S., Hopmans, E.C., Damsté, J.S.S., 2006. Instability in tropical Pacific sea-surface temperatures during the early Aptian. Geology 34, 833–836. doi: 10.3969/j.issn.1671-2552.2006.07.010
    [19]
    Fernández, M.H., Sierra, M., Peláez-Campomanes, P., 2007. Bioclimatic analysis of rodent palaeofaunas reveals severe climatic changes in Southwestern Europe during the Plio-Pleistocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 251 (3–4), 500–526. doi: 10.1157/13112246
    [20]
    Foley, J.A., Levis, S., Costa, M.H., Cramer, W., Pollard, D., 2000. Incorporating dynamic vegetation cover within global climate models. Ecol. Appl. 10 (6), 1620–1632. doi: 10.1890/1051-0761(2000)010[1620:IDVCWG]2.0.CO;2
    [21]
    Fricke, H., Foreman, B., Sewall, J., 2010. Integrated climate model-oxygen isotope evidence for a North America monsoon during the Late Cretaceous. Earth Planet. Sci. Lett. 289, 11–21. doi: 10.1016/j.epsl.2009.10.018
    [22]
    Gil, Y., Pierce, S.A., Babaie, H., Banerjee, A., Borne, K., Bust, G., Cheatham, M., Ebert-Uphoff, I., Gomes, C., Hill, M., Horel, J., 2019. Intelligent systems for geosciences: an essential research agenda. Commun. ACM 62 (1), 76–84.
    [23]
    Guo, Z., Sun, B., Zhang, Z., Peng, S., Xiao, G., Ge, J., Hao, Q., Qiao, Y., Liang, M., Liu, J., Yin, Q., Wei, J., 2008. A major reorganization of Asian climate regime by the Early Miocene. Clim. Past 4, 153–174. doi: 10.5194/cp-4-153-2008
    [24]
    Hallam, A., 1984. Continental humid and arid zones during the jurassic and cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 47 (3–4), 195–223.
    [25]
    Hallam, A., 1985. A review of Mesozoic climates. J. Geol. Soc. 142 (3), 433–445. doi: 10.1144/gsjgs.142.3.0433
    [26]
    Haxeltine, A., Prentice, I.C., 1996. BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem. Cycles 10 (4), 693–709. doi: 10.1029/96GB02344
    [27]
    Hearing, T.W.W., Pohl, A., Williams, M., Donnadieu, Y., Harvey, T.H.P., Scotese, C.R., Sepulchre, P., Franc, A., Vandenbroucke, T.R.A., 2021. Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate. Nat. Commun. 12, 3868. doi: 10.1038/s41467-021-24141-5
    [28]
    Hogan, A., Blomqvist, E., Cochez, M., d'Amato, C., de Melo, G., Gutierrez, C., Gayo, J.E. L., Kirrane, S., Neumaier, S., Polleres, A., Navigli, R., 2020. Knowledge Graphs. arXiv preprint arXiv: 2003.02320.
    [29]
    Huang, H., Yu, J., Liao, X., Xi, Y., 2019. Review on knowledge graphs. Computer Systems & Applications 28 (6), 1–12.
    [30]
    Iannuzzi, R., Rösler, O., 2000. Floristic migration in South America during the Carboniferous: phytogeographic and biostratigraphic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 161 (1–2), 71–94.
    [31]
    Iglesias, A.R.I., Artabe, A.E., Morel, E.M., 2011. The evolution of Patagonian climate and vegetation from the Mesozoic to the present. Biol. J. Linn. Soc. 103 (2), 409–422. doi: 10.1111/j.1095-8312.2011.01657.x
    [32]
    Kaplan, J.O., Bigelow, N.H., Prentice, I.C., Harrison, S.P., Bartlein, P.J., Christensen, T. R., Cramer, W., Matveyeva, N.V., McGuire, A.D., Murray, D.F., Razzhivin, V.Y., Smith, B., Walker, D.A., Anderson, P.M., Andreev, A.A., Brubaker, L.B., Edwards, M.E., Lozhkin, A.V., 2003. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J. Geophys. Res. : Atmos. 108 (D19), 8171. doi: 10.1029/2002JD002559
    [33]
    Köppen, W., 1884. Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorologische Z. 1, 215–226 (in German).
    [34]
    Köppen, W., 2011. The thermal zones of the Earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world. Meteorologische Z. 20 (3), 351–360. doi: 10.1127/0941-2948/2011/105
    [35]
    Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Z. 15 (3), 259–263. doi: 10.1127/0941-2948/2006/0130
    [36]
    Krisnadhi, A., Hu, Y., Janowicz, K., Hitzler, P., Arko, R., Carbotte, S., Chandler, C., Cheatham, M., Fils, D., Finin, T., Ji, P., 2015. The GeoLink modular oceanography ontology. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d'Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (Eds. ), Proceedings of the 14th International Semantic Web Conference, pp. 301–309.
    [37]
    Ladant, J.B., Poulsen, C.J., Fluteau, F., Tabor, C.R., MacLeod, K.G., Martin, E.E., Haynes, S.J., Rostami, M.A., 2020. Paleogeographic controls on the evolution of Late Cretaceous ocean circulation. Clim. Past 16, 973–1006. doi: 10.5194/cp-16-973-2020
    [38]
    Lambrix, P., Habbouche, M., Perez, M., 2003. Evaluation of ontology development tools for bioinformatics. Bioinf. 19 (12), 1564–1571.
    [39]
    Larsson, L.M., Vajda, V., Dybkjær, K., 2010. Vegetation and climate in the latest Oligocene-earliest Miocene in Jylland. Denmark. Rev. Palaeobot. Palyno. 159 (3–4), 166–176.
    [40]
    Ma, X., 2022. Knowledge graph construction and application in geosciences: a review. Comput. Geosci. 161, 105082. doi: 10.1016/j.cageo.2022.105082
    [41]
    Ma, X., Fox, P., Rozell, E., West, P., Zednik, S., 2014. Ontology dynamics in a data life cycle: Challenges and recommendations from a Geoscience Perspective. J. Earth Science 25, 407–412. doi: 10.1007/s12583-014-0408-8
    [42]
    Ma, X., Ma, C., Wang, C., 2020. A new structure for representing and tracking version information in a deep time knowledge graph. Comput. Geosci. 145, 104620. doi: 10.1016/j.cageo.2020.104620
    [43]
    McClelland, H.L.O., Halevy, I., Wolf-Gladrow, D.A., Evans, D., Bradley, A.S., 2021. Statistical uncertainty in paleoclimate proxy reconstructions. Geophys. Res. Lett. 48, e2021GL092773.
    [44]
    Miller, J.J., 2013. Graph database applications and concepts with Neo4j. In: Proceedings of the southern association for information systems conference, Atlanta, GA, USA 2324 (36).
    [45]
    Morbach, J., Yang, A., Marquardt, W., 2007. OntoCAPE—a large-scale ontology for chemical process engineering. Eng. Appl. Artif. Intel. 20 (2), 147–161. doi: 10.1016/j.engappai.2006.06.010
    [46]
    Mosbrugger, V., 2009. Nearest-Living-Relative Method. In: Gornitz, V. (Ed. ), Encyclopedia of Paleoclimatology and Ancient Environments. Springer, Netherlands, Dordrecht, pp. 607–609.
    [47]
    Nanda, M.K., 2018. Climatic classification. In: Khan, D.K. (Ed. ), Environmental science, pp. 1–16.
    [48]
    Oliver, J.E., 2005. Encyclopedia of World Climatology. Springer, Dordrecht, The Netherland.
    [49]
    Parrish, J.T., 1998. Interpreting Pre-Quaternary Climate from the Geologic Record. Columbia University Press, New York, p. 348.
    [50]
    Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644. doi: 10.5194/hess-11-1633-2007
    [51]
    Peters, S.E., Ross, I., Czaplewski, J., Glassel, A., Husson, J., Syverson, V., Zaffos, A., Livny, M., 2017. A new tool for deep-down data mining. Eos Transactions American Geophysical Union 98. https://doi.org/10.1029/2017EO082377. doi: 10.1029/2017EO082377
    [52]
    Price, G.D., Valdes, P.J., Sellwood, B.W., 1997. Quantitative palaeoclimate GCM validation: Late Jurassic and mid-Cretaceous case studies. J. Geol. Soc. 154 (5), 769–772. doi: 10.1144/gsjgs.154.5.0769
    [53]
    Qi, H., Dong, S., Zhang, L., Hu, H., Fan, J., 2020. Construction of Earth Science knowledge graph and its future perspectives. Geol. J. China Universities 26, 2–10 (in Chinese with English abstract).
    [54]
    Roche, C., 2003. Ontology: a survey. IFAC Proceedings Volumes 36 (22), 187–192. doi: 10.1016/S1474-6670(17)37715-7
    [55]
    Roscher, M., Stordal, F., Svensen, H., 2011. The effect of global warming and global cooling on the distribution of the latest Permian climate zones. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309, 186–200. doi: 10.1016/j.palaeo.2011.05.042
    [56]
    Royer, D.L., 2012. Climate reconstruction from leaf size and shape: New developments and challenges. The Paleontological Society Papers 18, 195–212. doi: 10.1017/s1089332600002618
    [57]
    Rubel, F., Kottek, M., 2011. Comments on: "The thermal zones of the Earth" by Wladimir Köppen (1884). Meteorologische Z. 20, 361–365. doi: 10.1127/0941-2948/2011/0285
    [58]
    Saltzman, E.S., Barron, E.J., 1982. Deep circulation in the Late Cretaceous: Oxygen isotope paleotemperatures from Inoceramus remains in D.S.D.P. cores. Palaeogeogr. Palaeoclimatol. Palaeoecol. 40, 167–181. doi: 10.1016/0031-0182(82)90088-8
    [59]
    Saward, S.A., McCabe, P.J., Parrish, J.T., 1992. A global view of Cretaceous vegetation patterns, in: McCabe, P.J., Parrish, J.T. (Eds. ), Controls on the Distribution and Quality of Cretaceous Coals. Geol. Soc. Am. Vol. 26, doi: 10.1130/SPE267-p17.
    [60]
    Schlanser, K.M., Diefendorf, A.F., Greenwood, D.R., Mueller, K.E., West, C.K., Lowe, A. J., Basinger, J.F., Currano, E.D., Flynn, A.G., Fricke, H.C., Geng, J., Meyer, H.W., Peppe, D.J., 2019. Leaf wax n-alkane carbon isotope data from sediment samples collected from fossil leaf sites extending from New Mexico to the High Arctic. PANGAEA. https://doi.org/10.1594/PANGAEA.909151. doi: 10.1594/PANGAEA.909151
    [61]
    Sewall, J.O., van de Wal, R.S.W., van der Zwan, K., van Oosterhout, C., Dijkstra, H.A., Scotese, C.R., 2007. Climate model boundary conditions for four Cretaceous time slices. Clim. Past 3 (4), 647–657. doi: 10.5194/cp-3-647-2007
    [62]
    Shi, S., Lv, H., Dong, S., Li, Y., Tang, X., Zhou, C., 2020. An editing platform of geoscience knowledge system. Acta Metall. Sin. 26 (4), 384–394.
    [63]
    Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J.O., Levis, S., Lucht, W., Sykes, M.T., Thonicke, K., Venevsky, S., 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. GCB Bioenergy 9, 161–185.
    [64]
    Sun, X., Wang, P., 2005. How old is the Asian monsoon system? - Palaeobotanical records from China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222 (3–4), 181–222.
    [65]
    Upchurch, G., Otto-Bliesner, B., Scotese, C., 1998. Vegetation-atmosphere interactions and their role in global warming during the latest Cretaceous. Philosophical Transactions of the Royal Society B: Biological Sciences 353 (1365), 97–112. doi: 10.1098/rstb.1998.0194
    [66]
    Utescher, T., Mosbrugger, V., Ashraf, A.R., 2000. Terrestrial climate evolution in Northwest Germany over the last 25 million years. Palaios 15, 430–449. doi: 10.1669/0883-1351(2000)015<0430:TCEING>2.0.CO;2
    [67]
    Vakhrameev, V., 1982. Classopollis pollen as an indicator of Jurassic and Cretaceous climate. Int. Geol. Rev. 24 (10), 1190–1196.
    [68]
    Vakhrameev, V.A., Hughes, N.F., Litvinov, J.V., 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge University Press, Cambridge, p. 340.
    [69]
    Walter, H., 2002. Walter's Vegetation of the Earth. Springer, Berlin, p. 527.
    [70]
    Wang, C., Hazen, R.M., Cheng, Q., Stephenson, M.H., Zhou, C., Fox, P., Shen, S. -Z., Oberhänsli, R., Hou, Z., Ma, X., Feng, Z., Fan, J., Ma, C., Hu, X., Luo, B., Wang, J., Schiffries, C.M., 2021. The Deep-Time Digital Earth program: data-driven discovery in geosciences. Natl. Sci. Rev. 9, 151–161. doi: 10.3390/rs14010151
    [71]
    Wang, Y., Mosbrugger, V., Zhang, H., 2005. Early to Middle Jurassic vegetation and climatic events in the Qaidam Basin, Northwest China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224 (1–3), 200–216.
    [72]
    Warren, J.K., 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Sci. Rev. 98 (3–4), 217–268.
    [73]
    Wolfe, J.A., Upchurch, G.R., 1987. North American nonmarine climates and vegetation during the Late Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 61, 33–77.
    [74]
    Zhang, C., Govindaraju, V., Borchardt, J., Foltz, T., Ré, C., Peters, S., 2013. GeoDeepDive: statistical inference using familiar data-processing languages. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, USA, pp. 993–996.
    [75]
    Zhang, J., Liu, Y., Fang, X., Wang, C., Yang, Y., 2019. Large dry-humid fluctuations in Asia during the Late Cretaceous due to orbital forcing: A modeling study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 533, 109230.
    [76]
    Zhang, L., Wang, C., Li, X., Cao, K., Song, Y., Hu, B., Lu, D., Wang, Q., Du, X., Cao, S., 2016. A new paleoclimate classification for deep time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 443, 98–106.
    [77]
    Zharkov, M.A., 1981. History of Paleozoic Salt Accumulation. Springer-Verlag, Berlin, p. 308.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (108) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return