Citation: | Mahsa Malmir, Saman Javadi, Ali Moridi, Aminreza Neshat, Babak Razdar. A new combined framework for sustainable development using the DPSIR approach and numerical modeling[J]. Geoscience Frontiers, 2021, 12(4): 101169. doi: 10.1016/j.gsf.2021.101169 |
Relying on the conceptual DPSIR framework and MODFLOW analysis, this study used a mixed approach to produce groundwater resource management solutions for the Najafabad area in central Iran. According to DPSIR results, agricultural activities put the highest pressure on groundwater resources in this region. The results showed the effectiveness of reducing water withdrawal over 30 years in maintaining the aquifer in a state of equilibrium. The best scenario consisted of cutting down extraction by 10% over the said period. Output maps of the water table rise at the Najafabad aquifer clearly showed that the groundwater management scenario involving a 10% reduction of water withdrawal was the most effective solution, as it would raise the water level by 6.7 m. Regarding other scenarios, reducing cultivated area by 20% was found to raise the water table by 5.03 m on average, while cutting down water withdrawal by 5% increased the water table by 3.6 m, and a 10% reduction of the cultivated area resulted in a 1.85 m rise. The combined model proposed here can be used for similar aquifers and can aid decision-makers and managers.
[1] |
Agricultural Statistic Report, 2016. Agricultural and Horticultural Products. Ministry of Agriculture https://nnt.sci.org.ir/sites/Apps/yearbook/Lists/year_book_req/Item/newifs.aspx (In Persian).
|
[2] |
Bidone, E.D., Lacerda, L.D., 2004. The use of DPSIR framework to evaluate sustainability in coastal areas. Casestudy:Guanabara Bay basin, Rio de Janeiro, Brazil. Reg. Environ.Change 4 (1), 5-16. https://doi.org/10.1007/s10113-003-0059-2.
|
[3] |
Bordbar, M., Neshat, A., Javadi, S., 2019. Modification of the GALDIT framework using statistical and entropy models to assess coastal aquifer vulnerability. Hydrol. Sci. J. 64(9), 1117-1128. https://doi.org/10.1080/02626667.2019.1620951.
|
[4] |
Bordbar, M., Neshat, A., Javadi, S., Pradhan, B., Aghamohammadi, H., 2020. Meta-heuristic algorithms in optimizing GALDIT framework:a comparative study for coastal aquifer vulnerability assessment. J. Hydrol. 585, 124768. https://doi.org/10.1016/j.jhydrol.2020.124768.
|
[5] |
Borji, M., Moghaddam Nia, A., Malekian, A., Salajegheh, A., Khalighi, S., 2018. Comprehensive evaluation of groundwater resources based on DPSIR conceptual framework.Arab. J. Geosci. 11 (8), 158. https://doi.org/10.1007/s12517-018-3453-2.
|
[6] |
Business and Income Report, Iran Statistics Center. https://nnt.sci.org.ir/sites/Apps/yearbook/Lists/year_book_req/Item/newifs.aspx, 2016 (In Persian).
|
[7] |
Chandrakumar, C., McLaren, S.J., 2018. Towards a comprehensive absolute sustainability assessment method for effective Earth system governance:defining key environmental indicators using an enhanced-DPSIR framework. Ecol. Indic. 90, 577-583. https://doi.org/10.1016/j.ecolind.2018.03.063.
|
[8] |
Daniels, P.L., 2010. Climate change, economics and Buddhism Part 2:new views and practices for sustainable world economies. Ecol. Econ. 69 (5), 962-972. https://doi.org/10.1016/j.ecolecon.2010.01.012.
|
[9] |
Eini, M.R., Javadi, S., Delavar, M., Monterio, J.A.F., Darand, M., 2019. High accuracy of precipitation reanalyses resulted in good river discharge simulations in a semi-arid basin. Ecol. Eng. 131, 107-119. https://doi.org/10.1016/j.ecoleng.2019.03.005.
|
[10] |
Elliott, M., Burdon, D., Atkins, J.P., Borja, A., Cormier, R., de Jonge, V.N., Turner, R.K., 2017."And DPSIR begat DAPSI(W)R(M)!"-a unifying framework for marine environmental management. Mar. Pollut. Bull. 118 (1-2), 27-40. https://doi.org/10.1016/j.marpolbul.2017.03.049.
|
[11] |
Gari, S.R., Newton, A., Icely, J.D., 2015. A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean Coast. Manag. 103, 63-77. https://doi.org/10.1016/j.ocecoaman.2014.11.013.
|
[12] |
Gari, S.R., Ortiz Guerrero, C.E., A-Uribe, B., Icely, J.D., Newton, A., 2018. A DPSIR analysis of water uses and related water quality issues in the Colombian Alto and Medio Dagua Community Council. Water Sci. 32 (2), 318-337. https://doi.org/10.1016/j.wsj.2018.06.001.
|
[13] |
Goble, B.J., Hill, T.R., Phillips, M.R., 2017. An assessment of integrated coastal management governance and implementation using the DPSIR framework:KwaZulu-Natal, South Africa. Coast. Manage. 45 (2), 107-124. https://doi.org/10.1080/08920753.2017.1278144.
|
[14] |
Groundwater Budget Report, Groundwater Resources (Qualitative and Quantitative), Gavkhuni Basin, Iranian Ministry of Energy. http://wrbs.wrm.ir/SC.php?type=static&id=161, 2012 (In Persian).
|
[15] |
Groundwater Budget Report, 2016. Najafabad Study Balance Report. Isfahan Regional Water Company http://esrw.ir/old/(In Persian).
|
[16] |
Harbaugh, A.W., Banta, E.R., Hill, M.C., Mcdonald, M.G., 2000. Modflow-2000, The U.S.Geological Survey Modular Ground-water Model-User Guide to Modularization Concepts and the Ground-water Flow Process. Open-file Report. U.S. Geological Survey, Reston, Virginia 134 pp.
|
[17] |
Hazarika, N., Nitivattananon, V., 2016. Strategic assessment of groundwater resource exploitation using DPSIR framework in Guwahati city, India. Habit. Int. 51, 79-89.https://doi.org/10.1016/j.habitatint.2015.10.003.
|
[18] |
Howard, K.F., 2015. Sustainable cities and the groundwater governance challenge. Environ. Earth Sci. 73 (6), 2543-2554. https://doi.org/10.1007/s12665-014-3370-y.
|
[19] |
Jafari, F., Javadi, S., Golmohammadi, G., Mohammadi, K., Khodadadi, A., Mohammadzade, M., 2016. Groundwater risk mapping prediction using mathematical modeling and the Monte Carlo technique. Environ. Earth Sci. 75 (6), 491. https://doi.org/10.1007/s12665-016-5335-9.
|
[20] |
Jago-on, K.A.B., Kaneko, S., Fujikura, R., Fujiwara, A., Imai, T., Matsumoto, T., Zhang, J., Tanikawa, H., Tanaka, K., Lee, B., Taniguchi, M., 2009. Urbanization and subsurface environmental issues:an attempt at DPSIR model application in Asian cities. Sci. Total Environ. 407 (9), 3089-3104. https://doi.org/10.1016/j.scitotenv.2008.08.004.
|
[21] |
Javadi, S., Kavehkar, N., Mousavizadeh, M.H., Mohammadi, K., 2011. Modification of DRASTIC model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas. J. Agric. Sci. Technol. 13 (2), 239-249.
|
[22] |
Jia, X., O'Connor, D., Hou, D., Jin, Y., Li, G., Zheng, C., Sik Ok, Y., Tsang, D., Luo, J., 2019.Groundwater depletion and contamination:spatial distribution of groundwater resources sustainability in China. Sci. Total Environ. 672, 551-562. https://doi.org/10.1016/j.scitotenv.2019.03.457.
|
[23] |
Kagalou, I., Leonardos, I., Anastasiadou, C., Neofytou, C., 2012. The DPSIR approach for an integrated river management framework. Apreliminary application on a Mediterranean site (Kalamas River-NWGreece). Water Resour. Manag. 26 (6), 1677-1692.https://doi.org/10.1007/s11269-012-9980-9.
|
[24] |
Karageorgis, A., Kapsimalis, V., Kontogianni, A., Skourtos, M., Turner, R.K., Salomons, W., 2006. Impact of 100-year human interventions on the deltaic coastal zone of the Inner Thermaikos Gulf (Greece):a DPSIR framework analysis. Environ. Manag. 38(2), 304-315. https://doi.org/10.1007/s00267-004-0290-8.
|
[25] |
Kaur, M., Hewage, K., Sadiq, R., 2020. Investigating the impacts of urban densification on buried water infrastructure through DPSIR framework. J. Clean. Prod. 259, 120897.https://doi.org/10.1016/j.jclepro.2020.120897.
|
[26] |
Kelble, C.R., Loomis, D.K., Lovelace, S., Nuttle, W.K., Ortner, P.B., 2013. The EBM-DPSER conceptual model:integrating ecosystem services into the DPSIR framework. PLoS One 8 (8), e70766.
|
[27] |
Khatibi, R., Nadiri, A.A., 2021. Inclusive Multiple Models (IMM) for predicting groundwater levels and treating heterogeneity. Geosci. Front. 12 (2), 713-724. https://doi.org/10.1016/j.gsf.2020.07.011.
|
[28] |
Kinzelbach, W., Bauer, P., Siegfried, T., Brunner, P., 2003. Sustainable groundwater management-problems and scientific tool. Episodes 26 (4), 279-284.
|
[29] |
Langrudi, M.A.O., Khashei Siuki, A., Javadi, S., Hashemi, S.R., 2016. Evaluation of vulnerability of aquifers by improved fuzzy drastic method:case study:Aastane Kochesfahan plain in Iran. Ain Shams Eng. J. 7 (1), 11-20. https://doi.org/10.1016/j.asej.2015.11.013.
|
[30] |
Lin, T., Xue, X.Z., Lu, C., 2007. Analysis of coastal wetland changes using the "DPSIR" model:a case study in Xiamen, China. Coast. Manag. 35 (2-3), 289-303. https://doi.org/10.1080/08920750601169592.
|
[31] |
Liu, X., Liu, H., Chen, J., Liu, T., Deng, Z., 2018. Evaluating the sustainability of marine industrial parks based on the DPSIR framework. J. Clean. Prod. 188, 158-170. https://doi.org/10.1016/j.jclepro.2018.03.271.
|
[32] |
Llamas, M.R., Custodio, E., 2002. Intensive Use of Groundwater:Challenges and Opportunities. CRC Press, Boca Raton 484 pp.
|
[33] |
Malekmohammadi, B., Jahanishakib, F., 2017. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol. Indic. 82, 293-303. https://doi.org/10.1016/j.ecolind.2017.06.060.
|
[34] |
Master Water Report, Population Studies Report, Gavkhuni Basin, Ministry of Energy.http://wrs.wrm.ir/amar/login.asp, 2012 (In Persian).
|
[35] |
Master Water Report, Agricultural Studies, Gavkhuni Basin, Ministry of Energy. http://esrw.ir/old/SC.php?type=static&id=103, 2016 (In Persian).
|
[36] |
Maxim, L., Spangenbergm, J.H., O'Connor, M., 2009. An analysis of risks for biodiversity under the DPSIR framework. Ecol. Econ. 69 (1), 12-23. https://doi.org/10.1016/j.ecolecon.2009.03.017.
|
[37] |
Mimidis, K., Andrikakou, P., Kallioras, A., Pliakas, F., 2017. The DPSIR approach to groundwater management for sustainable development in coastal areas:the case of Nea Peramos aquifer system, Kavala, Greece. Water Util. J. 16, 67-80.
|
[38] |
Miranda, M., Silva, A., Pereira, F., 2020. Microplastics in the environment:a DPSIR analysis with focus on the responses. Sci. Total Environ. 718, 134968. https://doi.org/10.1016/j.scitotenv.2019.134968.
|
[39] |
Nadiri, A.A., Khatibi, R., Khalifi, P., Feizizadeh, B., 2020. A study of subsidence hotspots by mapping vulnerability indices through innovatory ‘ALPRIFT’ using artificial intelligence at two levels. Bull. Eng. Geol. Environ. 79, 3989-4003. https://doi.org/10.1007/s10064-020-01781-3.
|
[40] |
Neshat, A., Pradhan, B., 2017. Evaluation of groundwater vulnerability to pollution using DRASTIC framework and GIS. Arab. J. Geosci. 10 (22), 501. https://doi.org/10.1007/s12517-017-3292-6.
|
[41] |
Neshat, A., Pradhan, B., Pirasteh, S., Mohd Shafri, H., 2014a. Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ. Earth Sci. 71 (7), 3119-3131. https://doi.org/10.1007/s12665-013-2690-7.
|
[42] |
Neshat, A., Pradhan, B., Dadras, M., 2014b. Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resour. Conserv. Recycl. 86, 74-86. https://doi.org/10.1016/j.resconrec.2014.02.008.
|
[43] |
Newton, A., Weichselgartner, J., 2014. Hotspots of coastal vulnerability:a DPSIR analysis to find societal pathways and responses. Estuar. Coast. Shelf Sci. 140, 123-133.https://doi.org/10.1016/j.ecss.2013.10.010.
|
[44] |
OECD, 1993. OECD Core Set of Indicators for Environmental Performance Reviews. OECD Environmental Directorate Monographs, Paris (No. 83).
|
[45] |
Olsson, J.A., Bockstaller, C., Stapleton, L.M., Ewert, F., Knapen, R., Therond, O., Geniaux, G., Bellon, S., Correira, T., Turpin, N., Bezlepkina, I., 2009. A goal oriented indicator framework to support integrated assessment of new policies for agri-environmental systems. Environ. Sci. Pol. 12 (5), 562-572. https://doi.org/10.1016/j.envsci.2009.01.012.
|
[46] |
Pandey, V., Chapagain, S., Kazama, F., 2010. Evaluation of groundwater environment of Kathmandu Valley. Environ. Earth Sci. 60, 1329-1342. https://doi.org/10.1007/s12665-009-0263-6.
|
[47] |
Pinto, R., de Jonge, V.N., Neto, J.M., Domingos, T., Marques, J.C., Patrício, J., 2013. Towards a DPSIR driven integration of ecological value, water uses and ecosystem services for estuarine systems. Ocean Coast. Manag. 72, 64-79. https://doi.org/10.1016/j.ocecoaman.2011.06.016.
|
[48] |
Potschin, M., 2009. Land use and the state of the natural environment. Land Use Policy 26, 170-177. https://doi.org/10.1016/j.landusepol.2009.08.008.
|
[49] |
Qu, X.L., Alvarez, P.J., Li, Q.L., 2013. Applications of nanotechnology in water and wastewater treatment. Water Res. 47 (12), 3931-3946. https://doi.org/10.1016/j.watres.2012.09.058.
|
[50] |
Rasi Nezami, S., Nazariha, M., Moridi, A., Baghvand, A., 2013. Environmentally sound water resources management in catchment level using DPSIR model and scenario analysis. Int. J. Environ. Res. 7 (3), 569-580.
|
[51] |
Rushton, K.R., 2004. Groundwater Hydrology Conceptual and Computational Models.John Wiley & Sons, Hoboken 430 pp.
|
[52] |
Saadati, A., Motevallian, S.S., Rheinheimer, D.E., Najafi, H., 2013. Indicators for sustainable management of wetland ecosystems using a DPSIR approach:a case study in Iran. 6th International Perspective on Water Resources & the Environment Conference (IPWE), Wuhan, China, 2013.
|
[53] |
Sadeghfam, S., Hassanzadeh, Y., Khatibi, R., Nadiri, A.A., Moazamnia, M., 2019. Groundwater remediation through pump-treat-inject technology using optimum control by artificial intelligence (OCAI). Water Resour. Manag. 33 (3), 1123-1145. https://doi.org/10.1007/s11269-018-2171-6.
|
[54] |
Sheikhipour, B., Javadi, S., Banihabib, M.E., 2018. A hybrid multiple criteria decisionmaking model for the sustainable management of aquifers. Environ. Earth Sci. 77(19), 712. https://doi.org/10.1007/s12665-018-7894-4.
|
[55] |
Simonovic, S.P., Rajasekaram, V., 2004. Integrated analyses of Canada's water resources:a system dynamic approach. Can. Water Resour. J. 29 (4), 223-250. https://doi.org/10.4296/cwrj223.
|
[56] |
Skoulikidis, N.T., 2009. The environmental state of rivers in the Balkans-a review within the DPSIR framework. Sci. Total Environ. 407 (8), 2501-2516. https://doi.org/10.1016/j.scitotenv.2009.01.026.
|
[57] |
Spanò, M., Gentile, F., Davies, C., Lafortezza, R., 2017. The DPSIR framework in support of green infrastructure planning:a case study in Southern Italy. Land Use Policy 61, 242-250. https://doi.org/10.1016/j.landusepol.2016.10.051.
|
[58] |
Sun, S., Wanga, Y., Liu, J., Cai, H., Wub, P., Geng, Q., Xu, L., 2016. Sustainability assessment of regional water resources under the DPSIR framework. J. Hydrol. 532, 140-148.https://doi.org/10.1016/j.jhydrol.2015.11.028.
|
[59] |
Sun, C., Wu, Y., Zou, W., Zhao, L., Liu, W., 2018. A rural water poverty analysis in China using the DPSIR-PLS model. Water Resour. Manag. 32 (6), 1933-1951. https://doi.org/10.1007/s11269-017-1819-y.
|
[60] |
Torkashvand, M., Neshat, A., Javadi, S., Yousefi, H., 2020. DRASTIC framework improvement using Stepwise Weight Assessment Ratio Analysis (SWARA) and combination of Genetic Algorithm and Entropy. Environ. Sci. Pollut. Res. 1-21. https://doi.org/10.1007/s11356-020-11406-7.
|
[61] |
Walmsley, J.J., 2002. Framework for measuring sustainable development in catchment systems. Environ. Manag. 29 (2), 195-206. https://doi.org/10.1007/s00267-001-0020-4.
|