Volume 12 Issue 3
Jul.  2021
Turn off MathJax
Article Contents
Abu Reza Md Towfiqul Islam, Swapan Talukdar, Susanta Mahato, Sonali Kundu, Kutub Uddin Eibek, Quoc Bao Pham, Alban Kuriqi, Nguyen Thi Thuy Linh. Flood susceptibility modelling using advanced ensemble machine learning models[J]. Geoscience Frontiers, 2021, 12(3): 101075. doi: 10.1016/j.gsf.2020.09.006
Citation: Abu Reza Md Towfiqul Islam, Swapan Talukdar, Susanta Mahato, Sonali Kundu, Kutub Uddin Eibek, Quoc Bao Pham, Alban Kuriqi, Nguyen Thi Thuy Linh. Flood susceptibility modelling using advanced ensemble machine learning models[J]. Geoscience Frontiers, 2021, 12(3): 101075. doi: 10.1016/j.gsf.2020.09.006

Flood susceptibility modelling using advanced ensemble machine learning models

doi: 10.1016/j.gsf.2020.09.006
Funds:

The authors would like to thank the USGS and other agencies of Bangladesh for providing the data for conducting this research. The authors also would like to acknowledge the Department of Geography, University of Gour Banga, India, for providing necessary facilities to carry out this research. The authors are grateful to the anonymous reviewers for their valuable comments and suggestions to improve this manuscript further. Alban Kuriqi was supported by a PhD scholarship granted by Fundação para a Ciência e a Tecnologia, I.P. (FCT), Portugal, under the PhD Programme FLUVIO-River Restoration and Management, grant number:PD/BD/114558/2016.

  • Received Date: 2020-05-13
  • Rev Recd Date: 2020-07-29
  • Floods are one of nature's most destructive disasters because of the immense damage to land, buildings, and human fatalities. It is difficult to forecast the areas that are vulnerable to flash flooding due to the dynamic and complex nature of the flash floods. Therefore, earlier identification of flash flood susceptible sites can be performed using advanced machine learning models for managing flood disasters. In this study, we applied and assessed two new hybrid ensemble models, namely Dagging and Random Subspace (RS) coupled with Artificial Neural Network (ANN), Random Forest (RF), and Support Vector Machine (SVM) which are the other three state-of-the-art machine learning models for modelling flood susceptibility maps at the Teesta River basin, the northern region of Bangladesh. The application of these models includes twelve flood influencing factors with 413 current and former flooding points, which were transferred in a GIS environment. The information gain ratio, the multicollinearity diagnostics tests were employed to determine the association between the occurrences and flood influential factors. For the validation and the comparison of these models, for the ability to predict the statistical appraisal measures such as Freidman, Wilcoxon signed-rank, and t-paired tests and Receiver Operating Characteristic Curve (ROC) were employed. The value of the Area Under the Curve (AUC) of ROC was above 0.80 for all models. For flood susceptibility modelling, the Dagging model performs superior, followed by RF, the ANN, the SVM, and the RS, then the several benchmark models. The approach and solution-oriented outcomes outlined in this paper will assist state and local authorities as well as policy makers in reducing flood-related threats and will also assist in the implementation of effective mitigation strategies to mitigate future damage.
  • loading
  • [1]
    Abba, S.I., Pham, Q.B., Usman, A.G., Linh, N.T.T., Aliyu, D.S., Nguyen, Q., Bach, Q.V., 2020. Emerging evolutionary algorithm integrated with kernel principal component analysis for modeling the performance of a water treatment plant. J. Water Process Eng. 33, 101081.
    [2]
    Abdel Hamid, H.T., Wenlong, W., Qiaomin, L., 2020. Environmental sensitivity of flash flood hazard using geospatial techniques. Global J. Environ. Sci. Manag. 6 (1), 31-46.
    [3]
    Ahmadlou, M., Karimi, M., Alizadeh, S., Shirzadi, A., Parvinnejhad, D., Shahabi, H., Panahi, M., 2019. Flood susceptibility assessment using integration of adaptive networkbased fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto Int. 34 (11), 1252-1272.
    [4]
    Akter, J., Das, L., Meher, J.K., Deb, A., 2019. Evaluation of different large-scale predictorbased statistical downscaling models in simulating zone-wise monsoon precipitation over India. Int. J. Climatol. 39 (1), 465-482.
    [5]
    Alexander, K., Hettiarachchi, S., Ou, Y., Sharma, A., 2019. Can integrated green spaces and storage facilities absorb the increased risk of flooding due to climate change in developed urban environments? J. Hydrol. 579, 124201.
    [6]
    Ali, R., Kuriqi, A., Abubaker, S., Kisi, O., 2019. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen's Innovative Trend Method. Water 11 (9), 1855.
    [7]
    Ali, S.A., Parvin, F., Pham, Q.B., Vojtek, M., Vojteková, J., Costache, R., Linh, N.T.T., Nguyen, H.Q., Ahmad, A., Ghorbani, M.A., 2020. GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression:A case of Topľa basin, Slovakia. Ecol. Indic. 117, 106620.
    [8]
    Al-Quraishi, A.M.F., Qader, S.H., Wu, W., 2020. Drought monitoring using spectral and meteorological based indices combination:a case study in Sulaimaniyah, Kurdistan region of Iraq. Environmental Remote Sensing and GIS in Iraq. Springer, Cham, pp. 377-393.
    [9]
    Altman, D.G., 1990. Practical statistics for medical research. CRC Press.
    [10]
    Amiri, M., Pourghasemi, H.R., Ghanbarian, G.A., Afzali, S.F., 2019. Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. Geoderma 340, 55-69.
    [11]
    Antoniazza, G., Bakker, M., Lane, S.N., 2019. Revisiting the morphological method in twodimensions to quantify bed-material transport in braided rivers. Earth Surf. Process. Landf. 44.
    [12]
    Arabameri, A., Saha, S., Chen, W., Roy, J., Pradhan, B., Bui, D.T, 2020. Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. Journal of Hydrology 125007.
    [13]
    Ardıçlıoğlu, M., Kuriqi, A., 2019. Calibration of channel roughness in intermittent rivers using HEC-RAS model:Case of Sarimsakli creek, Turkey. SN Appl. Sci. 1 (9), 1080.
    [14]
    Aristizábal, E., Carmona, M.I.A., Gómez, F.J., Castro, S.M.L., Severiche, A.D.V., Quintanilla, A.F.R., 2020. Hazard Analysis of Hydrometeorological Concatenated Processes in the Colombian Andes. Advances in Natural Hazards and Hydrological Risks:Meeting the Challenge. Springer, Cham, pp. 7-10.
    [15]
    Arora, A., Pandey, M., Siddiqui, M.A., Hong, H., Mishra, V.N., 2019. Spatial flood susceptibility prediction in Middle Ganga Plain:comparison of frequency ratio and Shannon's entropy models. Geocarto Int. 1-32.
    [16]
    Avand, M., Janizadeh, S., Naghibi, S.A., Pourghasemi, H.R., Khosrobeigi Bozchaloei, S., Blaschke, T., 2019. A comparative assessment of Random Forest and k-Nearest Neighbor classifiers for gully erosion susceptibility mapping. Water 11 (10), 2076.
    [17]
    Basin, L.T.R., 2017. Identification of Drought and Flood Induced Critical Moments and Coping Strategies in Hazard Prone. Doctoral dissertation. Rajshahi University.
    [18]
    BBS, 2016. Statistical year book 2015. Bangladesh Bureau of Statistics.
    [19]
    Beasley, T.M., Zumbo, B.D., 2003. Comparison of aligned Friedman rank and parametric methods for testing interactions in split-plot designs. Computat. Stat. Data Anal. 42(4), 569-593.
    [20]
    Benito, G., Rico, M., Sánchez-Moya, Y., Sopeña, A., Thorndycraft, V.R., Barriendos, M., 2010. The impact of late Holocene climatic variability and land use change on the flood hydrology of the Guadalentín River, southeast Spain. Glob. Planet. Chang. 70 (1-4), 53-63.
    [21]
    Binh, P.T., Zhu, X., Groeneveld, R.A., van Ierland, E.C., 2020. Risk communication, women's participation and flood mitigation in Vietnam:An experimental study. Land Use Policy 95, 104436.
    [22]
    Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5-32.
    [23]
    Brinkmann, R., 2020. Wicked Problems and Disasters. Environmental Sustainability in a Time of Change. Palgrave Macmillan, Cham, pp. 55-82.
    [24]
    Bubeck, P., Thieken, A.H., 2018. What helps people recover from floods? Insights from a survey among flood-affected residents in Germany. Reg. Environ. Chang. 18 (1), 287-296.
    [25]
    Bui, D.T., Panahi, M., Shahabi, H., Singh, V.P., Shirzadi, A., Chapi, K.,... Ahmad, B.B., 2018. Novel hybrid evolutionary algorithms for spatial prediction of floods. Sci. Rep. 8 (1), 1-14.
    [26]
    Bui, D.T., Ngo, P.T.T., Pham, T.D., Jaafari, A., Minh, N.Q., Hoa, P.V., Samui, P., 2019a. A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena 179, 184-196.
    [27]
    Bui, D.T., Tsangaratos, P., Ngo, P.T.T., Pham, T.D., Pham, B.T., 2019b. Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Sci. Total Environ. 668, 1038-1054.
    [28]
    Bui, D.T., Hoang, N.D., Martínez-Álvarez, F., Ngo, P.T.T., Hoa, P.V., Pham, T.D.,... Costache, R., 2020a. A novel deep learning neural network approach for predicting flash flood susceptibility:A case study at a high frequency tropical storm area. Sci. Total Environ. 701, 134413.
    [29]
    Bui, Q.T., Nguyen, Q.H., Nguyen, X.L., Pham, V.D., Nguyen, H.D., Pham, V.M., 2020b. Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. J. Hydrol. 581, 124379.
    [30]
    Cao, Q., Mehran, A., Ralph, F.M., Lettenmaier, D.P., 2019. The role of hydrological initial conditions on Atmospheric River floods in the Russian River basin. J. Hydrometeorol. 2019.
    [31]
    Chen, W., Li, W., Hou, E., Zhao, Z., Deng, N., Bai, H., Wang, D., 2014. Landslide susceptibility mapping based on GIS and information value model for the Chencang District of Baoji, China. Arab. J. Geosci. 7 (11), 4499-4511.
    [32]
    Chen, W., Hong, H., Li, S., Shahabi, H., Wang, Y., Wang, X., Ahmad, B.B., 2019a. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with random subspace and random subspace ensembles. J. Hydrol. 575, 864-873.
    [33]
    Chen, W., Panahi, M., Tsangaratos, P., Shahabi, H., Ilia, I., Panahi, S.,... Ahmad, B.B., 2019b. Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. Catena 172, 212-231.
    [34]
    Chen, J., Li, Q., Wang, H., Deng, M., 2020a. A machine learning ensemble approach based on random forest and radial basis function neural network for risk evaluation of regional flood disaster:a case study of the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 17 (1), 49.
    [35]
    Chen, S., Gu, C., Lin, C., Zhang, K., Zhu, Y., 2020b. Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement. Eng. Comput. 1-17.
    [36]
    Chen, W., Fan, L., Li, C., Pham, B.T., 2020c. Spatial prediction of landslides using hybrid integration of artificial intelligence algorithms with frequency ratio and index of entropy in nanzheng county, china. Appl. Sci. 10 (1), 29.
    [37]
    Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., Wang, X., Bian, H., Zhang, S., Pradhan, B., Ahmad, B.B., 2020d. Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Sci. Total Environ. 701, 134979.
    [38]
    Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F., Mosavi, A., 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ. 651, 2087-2096.
    [39]
    Chu, H., Wu, W., Wang, Q.J., Nathan, R., Wei, J., 2020. An ANN-based emulation modelling framework for flood inundation modelling:Application, challenges and future directions. Environ. Model. Softw. 124, 104587.
    [40]
    Costache, R., 2019. Flash-flood Potential Index mapping using weights of evidence, decision Trees models and their novel hybrid integration. Stochastic Environmental Research and Risk Assessment 33 (7), 1375-1402. https://doi.org/10.1007/s00477-019-01689-9.
    [41]
    Costache, R., Bui, D.T., 2020. Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles. Sci. Total Environ. 136492.
    [42]
    Costache, R., Hong, H., Pham, Q.B., 2020. Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Science of The Total Environment 711, 134514. https://doi.org/10.1016/j.scitotenv.2019.134514.
    [43]
    Criminisi, A., Shotton, J. (Eds.), 2013. Decision forests for computer vision and medical image analysis. Springer Science & Business Media.
    [44]
    Dano, U.L., Balogun, A.L., Matori, A.N., Wan Yusouf, K., Abubakar, I.R., Said Mohamed, M.A., Aina, Y.A., Pradhan, B., 2019. Flood susceptibility mapping using GIS-based analytic network process:A case study of Perlis, Malaysia. Water 11 (3), 615.
    [45]
    Deng, S., Liu, S., Mo, X., 2020. Assessment of Three Common Methods for Estimating Terrestrial Water Storage Change with Three Reanalysis Datasets. J. Clim. 33 (2), 511-525.
    [46]
    Derrac, J., García, S., Molina, D., Herrera, F., 2011. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut. Comput. 1 (1), 3-18.
    [47]
    Dodangeh, E., Choubin, B., Eigdir, A.N., Nabipour, N., Panahi, M., Shamshirband, S., Mosavi, A., 2020. Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. Sci. Total Environ. 705, 135983.
    [48]
    Douglas, E.M., Vogel, R.M., Kroll, C.N., 2000. Trends in floods and low flows in the United States:impact of spatial correlation. J. Hydrol. 240 (1-2), 90-105.
    [49]
    Duque, E.L., Aquino, P.T., 2020. Anthropometric Analysis in Automotive Manual Transmission Gearshift Quality Perception. CTI SYMPOSIUM 2018. Springer Vieweg, Berlin, Heidelberg, pp. 97-109.
    [50]
    Falah, F., Rahmati, O., Rostami, M., Ahmadisharaf, E., Daliakopoulos, I.N., Pourghasemi, H.R., 2019. Artificial neural networks for flood susceptibility mapping in data-scarce urban areas. Spatial modeling in GIS and R for Earth and Environmental Sciences. Elsevier, pp. 323-336 139.
    [51]
    Fang, Z., Wang, Y., Peng, L., Hong, H., 2020. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Comput. Geosci., 104470
    [52]
    Fao, I., Unicef, W., 2017. The state of food security and nutrition in the world. Food and Agriculture Organization of the United Nations, Italy.
    [53]
    Flügel, W.A., 1995. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrol. Process. 9 (3-4), 423-436.
    [54]
    Frappart, F., Papa, F., Güntner, A., Tomasella, J., Pfeffer, J., Ramillien, G.,... Moreira, D.M., 2019. The spatio-temporal variability of groundwater storage in the Amazon River Basin. Adv. Water Resour. 124, 41-52.
    [55]
    Friedman, M., 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32 (200), 675-701.
    [56]
    García-Ruiz, J.M., Regüés, D., Alvera, B., Lana-Renault, N., Serrano-Muela, P., NadalRomero, E.,... Arnáez, J., 2008. Flood generation and sediment transport in experimental catchments affected by land use changes in the central Pyrenees. J. Hydrol. 356 (1-2), 245-260.
    [57]
    Getahun, Y.S., Gebre, S.L., 2015. Flood hazard assessment and mapping of flood inundation area of the Awash River Basin in Ethiopia using GIS and HEC-GeoRAS/HEC-RAS model. J. Civil Environ. Eng. 5 (4), 1.
    [58]
    Ghasemain, B., Asl, D.T., Pham, B.T., Avand, M., Nguyen, H.D., Janizadeh, S., 2020. Shallow landslide susceptibility mapping:A comparison between classification and regression tree and reduced error pruning tree algorithms. Vietnam J. Earth Sci.
    [59]
    Gigović, L., Pourghasemi, H.R., Drobnjak, S., Bai, S., 2019. Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia's Tara National Park. Forests 10 (5), 408.
    [60]
    Gupta, A., 2020. An Introduction to Large Rivers. John Wiley & Sons.
    [61]
    Hampf, A.C., Stella, T., Berg-Mohnicke, M., Kawohl, T., Kilian, M., Nendel, C., 2020. Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development. Agric. Syst. 177, 102707.
    [62]
    Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M., 2019. Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209.
    [63]
    Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S.,... Kanae, S., 2013. Global flood risk under climate change. Nat. Clim. Chang. 3 (9), 816-821.
    [64]
    Ho, T.K., 1998. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20 (8), 832-844.
    [65]
    Hong, H., 2018. Landslide Susceptibility Mapping in the Youfang area (China) using Dagging-Random Forest model. AGUFM, 2018 NH21C-0848.
    [66]
    Hong, H., Panahi, M., Shirzadi, A., Ma, T., Liu, J., Zhu, A.X., Chen, W., Kougias, I., Kazakis, N., 2018a. Flood susceptibility assessment in Hengfeng area coupling adaptive neurofuzzy inference system with genetic algorithm and differential evolution. Sci. Total Environ. 621, 1124-1141.
    [67]
    Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A.X., Chen, W., 2018b. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Sci. Total Environ. 625, 575-588.
    [68]
    Hong, H., Miao, Y., Liu, J., Zhu, A.X., 2019a. Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. Catena 176, 45-64.
    [69]
    Hong, H., Shahabi, H., Shirzadi, A., Chen, W., Chapi, K., Ahmad, B.B.,... Bui, D.T., 2019b. Landslide susceptibility assessment at the Wuning area, China:A comparison between multi-criteria decision making, bivariate statistical and machine learning methods. Nat. Hazards 96 (1), 173-212.
    [70]
    Hosni, M., Abnane, I., Idri, A., de Gea, J. M. C., & Alemán, J. L. F. (2019). Reviewing Ensemble Classification Methods in Breast Cancer. Comput. Methods Prog. Biomed.
    [71]
    Hou, G., Shao, Q., Zou, B., Dai, L., Zhang, Z., Mu, Z., Zhai, J., 2020. A Novel Underwater Simultaneous Localization and Mapping Online Algorithm Based on Neural Network. ISPRS Int. J. Geo Inf. 9 (1), 5.
    [72]
    Huang, K., Li, X., Liu, X., Seto, K.C., 2019. Projecting global urban land expansion and heat island intensification through 2050. Environ. Res. Lett. 14 (11), 114037.
    [73]
    Icyimpaye, G., 2018. Implementation of Hydrological and Hydraulic Models to Forecast River Flood Risks and Proposition of Management Measures. Case Study of Nyabugogo River Basin in Rwanda Master's thesis.
    [74]
    Ipe, D., 1987, February. Performing the Friedman test and the associated multiple comparison test using PROC GLM. Proceedings of the twelfth annual SAS users group international conference. 12. SAS Institute Cary, NY, pp. 1146-1148.
    [75]
    Islam, M.S., Islam, A.R.M.T., Rahman, F., Ahmed, F., Haque, M.N., 2014. Geomorphology and land use mapping of northern part of Rangpur District, Bangladesh. J. Geosci. Geomatics 2 (4), 145-150.
    [76]
    Jahandideh-Tehrani, M., Zhang, H., Helfer, F., Yu, Y., 2019. Review of climate change impacts on predicted river streamflow in tropical rivers. Environ. Monit. Assess. 191(12), 752.
    [77]
    Janizadeh, S., Avand, M., Jaafari, A., Phong, T.V., Bayat, M., Ahmadisharaf, E.,... Lee, S., 2019. Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed, Iran. Sustainability 11 (19), 5426.
    [78]
    Javidan, N., Kavian, A., Pourghasemi, H.R., Conoscenti, C., Jafarian, Z., 2020. Data Mining Technique (Maximum Entropy Model) for Mapping Gully Erosion Susceptibility in the Gorganrood Watershed, Iran. Gully Erosion Studies from India and Surrounding Regions. Springer, Cham, pp. 427-448.
    [79]
    Kalantar, B., Ueda, N., Saeidi, V., Ahmadi, K., Halin, A.A., Shabani, F., 2020. Landslide Susceptibility Mapping:Machine and Ensemble Learning Based on Remote Sensing Big Data. Remote Sens. 12 (11), 1737.
    [80]
    Khosravi, K., Melesse, A.M., Shahabi, H., Shirzadi, A., Chapi, K., Hong, H., 2019a. Flood susceptibility mapping at Ningdu catchment, China using bivariate and data mining techniques. Extreme Hydrology and Climate Variability. Elsevier, pp. 419-434.
    [81]
    Khosravi, K., Shahabi, H., Pham, B.T., Adamowski, J., Shirzadi, A., Pradhan, B., Dou, J., Ly, H.B., Gróf, G., Ho, H.L., Hong, H., 2019b. A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. J. Hydrol. 573, 311-323.
    [82]
    Knighton, A.D., 1999. Downstream variation in stream power. Geomorphology 29 (3-4), 293-306.
    [83]
    Kourgialas, N.N., Karatzas, G.P., 2011. Flood management and a GIS modelling method to assess flood-hazard areas-a case study. Hydrol. Sci. J. 56 (2), 212-225.
    [84]
    Kumar, R., Nayak, P.C., Patra, J.P., Mani, P., 2019. Chapter-10-Impact of climate change on floods. National Institute of Hydrology.
    [85]
    Kuncheva, L.I., Rodríguez, J.J., Plumpton, C.O., Linden, D.E., Johnston, S.J., 2010. Random subspace ensembles for fMRI classification. IEEE Trans. Med. Imaging 29 (2), 531-542.
    [86]
    Kuriqi, A., Ardiçlioǧlu, M., 2018. Investigation of hydraulic regime at middle part of the Loire River in context of floods and low flow events. Pollack Periodica 13 (1), 145-156.
    [87]
    Kuriqi, A., Ardiçlioglu, M., Muceku, Y., 2016. Investigation of seepage effect on river dike's stability under steady state and transient conditions. Pollack Periodica 11 (2), 87-104.
    [88]
    Kuriqi, A., Koçileri, G., Ardiçlioğlu, M., 2019. Potential of Meyer-Peter and Müller approach for estimation of bed-load sediment transport under different hydraulic regimes. Model. Earth Syst. Environ. 1-9.
    [89]
    Lei, X., Chen, W., Avand, M., Janizadeh, S., Kariminejad, N., Shahabi, H., Costache, R., Shahabi, H., Shirzadi, A., Mosavi, A., 2020. GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran. Remote Sensing 12 (15), 2478. https://doi.org/10.3390/rs12152478.
    [90]
    Li, X., Cummings, A.R., Alruzuq, A., Matyas, C.J., Amanambu, A.C., 2019. Combining Water Fraction and DEM-Based Methods to Create a Coastal Flood Map:A Case Study of Hurricane Harvey. ISPRS Int. J. Geo Inf. 8 (5), 231.
    [91]
    Lu, Y., Bookman, R., Waldmann, N., Marco, S., 2020. A 45 kyr laminae record from the Dead Sea:Implications for basin erosion and floods recurrence. Quat. Sci. Rev. 229, 106143.
    [92]
    Luino, F., De Graff, J., Roccati, A., Biddoccu, M., Cirio, C.G., Faccini, F., Turconi, L., 2020. Eighty Years of Data Collected for the Determination of Rainfall Threshold Triggering Shallow Landslides and Mud-Debris Flows in the Alps. Water 12 (1), 133.
    [93]
    Luo, X., Lin, F., Chen, Y., Zhu, S., Xu, Z., Huo, Z.,... Peng, J., 2019. Coupling logistic model tree and random subspace to predict the landslide susceptibility areas with considering the uncertainty of environmental features. Sci. Rep. 9 (1), 1-13.
    [94]
    Ma, J., Ding, Y., Cheng, J.C., Jiang, F., Tan, Y., Gan, V.J., Wan, Z., 2020. Identification of high impact factors of air quality on a national scale using big data and machine learning techniques. J. Clean. Prod. 244, 118955.
    [95]
    Masks, D.L.G., Starr, N.B., Brady, M.A., Gaylord, N.M., Driessnack, M., Duderstadt, K., 2019. Burns' Pediatric Primary Care (7th Edition). Elsevier.
    [96]
    Mahmood, S., Rahman, A.U., 2019. Flash flood susceptibility modeling using geomorphometric and hydrological approaches in Panjkora Basin, Eastern Hindu Kush, Pakistan. Environ. Earth Sci. 78 (1), 43.
    [97]
    Martínez-Álvarez, F., Reyes, J., Morales-Esteban, A., Rubio-Escudero, C., 2013. Determining the best set of seismicity indicators to predict earthquakes. Two case studies:Chile and the Iberian Peninsula. Knowl.-Based Syst. 50, 198-210.
    [98]
    Meles, M.B., Younger, S.E., Jackson, C.R., Du, E., Drover, D., 2020. Wetness index based on landscape position and topography (WILT):Modifying TWI to reflect landscape position. J. Environ. Manag. 255, 109863.
    [99]
    Mishra, K., Sinha, R., 2020. Flood risk assessment in the Kosi megafan using multi-criteria decision analysis:A hydro-geomorphic approach. Geomorphology 350, 106861.
    [100]
    Moghaddam, D.D., Pourghasemi, H.R., Rahmati, O., 2019. Assessment of the Contribution of Geo-environmental Factors to Flood Inundation in a Semi-arid Region of SW Iran:Comparison of Different Advanced Modeling Approaches. Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques. Springer, Cham, pp. 59-78.
    [101]
    Munir, B.A., Ahmad, S.R., Hafeez, S., 2020. Integrated Hazard Modeling for Simulating Torrential Stream Response to Flash Flood Events. ISPRS Int. J. Geo Inf. 9, 1), 1.
    [102]
    Nachappa, T.G., Piralilou, S.T., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., Blaschke, T., 2020. Flood Susceptibility Mapping with Machine Learning, Multi-Criteria Decision Analysis and Ensemble Using Dempster Shafer Theory. J. Hydrol. 590, 125275.
    [103]
    Nguyen, V.T., Tran, T.H., Ha, N.A., Ngo, V.L., Nadhir, A.A., Tran, V.P., Ho, L.S., 2019. GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility:A Case Study at Da Lat City, Vietnam. Sustainability 11 (24), 7118.
    [104]
    Nguyen, P.T., Ha, D.H., Avand, M., Jaafari, A., Nguyen, H.D., Al-Ansari, N., Phong, T.V., Sharma, R., Kumar, R., Le, H.V., Ho, L.S., 2020. Soft Computing Ensemble Models Based on Logistic Regression for Groundwater Potential Mapping. Appl. Sci. 10 (7), 2469.
    [105]
    Nhu, V.H., Mohammadi, A., Shahabi, H., Ahmad, B.B., Al-Ansari, N., Shirzadi, A., Clague, J.J., Jaafari, A., Chen, W., Nguyen, H., 2020. Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment. Int. J. Environ. Res. Public Health 17 (14), 4933.
    [106]
    Nikolaos, S., Kleomenis, K., Elias, D., Panagiotis, S., Panagiota, L., Vagelis, P., Christos, C., 2019. A Robust Remote Sensing-Spatial Modeling-Remote Sensing (RMR) Approach for Flood Hazard Assessment. Spatial Modeling in GIS and R for Earth and Environmental Sciences. Elsevier, pp. 391-410.
    [107]
    Oeurng, C., Sauvage, S., Sánchez-Pérez, J.M., 2011. Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. J. Hydrol. 401 (3-4), 145-153.
    [108]
    Okaka, W.T., 2020. Climate Change-Induced Flood Disaster Policy Communication Issues for Local Community Adaptation Resilience Management in Uganda:Climate Information Services for Effective National Flood Risk Assessment Decision Communication. Decision Support Methods for Assessing Flood Risk and Vulnerability. IGI Global, pp. 230-249.
    [109]
    Paul, G.C., Saha, S., Hembram, T.K., 2019. Application of the GIS-Based Probabilistic Models for Mapping the Flood Susceptibility in Bansloi Sub-basin of Ganga-Bhagirathi River and Their Comparison. Remote Sensing Earth Syst. Sci. 2 (2-3), 120-146.
    [110]
    Peptenatu, D., Grecu, A., Simion, A.G., Gruia, K.A., Andronache, I., Draghici, C.C., Diaconu, D.C., 2020. Deforestation and Frequency of Floods in Romania. Water Resources Management in Romania. Springer, Cham, pp. 279-306.
    [111]
    Pham, B.T., Bui, D.T., Prakash, I., Dholakia, M.B., 2016. Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Nat. Hazards 83 (1), 97-127.
    [112]
    Pham, B.T., Bui, D.T., Prakash, I., Dholakia, M.B., 2017a. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena 149, 52-63.
    [113]
    Pham, B.T., Bui, D.T., Prakash, I., Dholakia, M.B., 2017b. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena 149, 52-63.
    [114]
    Pham, B.T., Avand, M., Janizadeh, S., Phong, T.V., Al-Ansari, N., Ho, L.S., Das, S., Le, H.V., Amini, A., Bozchaloei, S.K., Jafari, F., 2020a. GIS based hybrid computational approaches for flash flood susceptibility assessment. Water 12 (3), 683.
    [115]
    Pham, B.T., Phong, T.V., Nguyen, H.D., Qi, C., Al-Ansari, N., Amini, A., Ho, L.S., Tuyen, T.T., Yen, H.P.H., Ly, H.B., Prakash, I., 2020b. A Comparative Study of Kernel Logistic Regression, Radial Basis Function Classifier, Multinomial Naïve Bayes, and Logistic Model Tree for Flash Flood Susceptibility Mapping. Water 12 (1), 239.
    [116]
    Pham, B.T., Phong, T.V., Nguyen-Thoi, T., Parial, K., Singh, K., Ly, H.B., Nguyen, K.T., Ho, L.S., Le, H.V., Prakash, I., 2020c. Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers. Geocarto Int. 1-23.
    [117]
    Phillips, T.H., Baker, M.E., Lautar, K., Yesilonis, I., Pavao-Zuckerman, M.A., 2019. The capacity of urban forest patches to infiltrate stormwater is influenced by soil physical properties and soil moisture. J. Environ. Manag. 246, 11-18.
    [118]
    Pijanowski, B.C., Brown, D.G., Shellito, B.A., Manik, G.A., 2002. Using neural networks and GIS to forecast land use changes:a land transformation model. Comput. Environ. Urban. Syst. 26 (6), 553-575.
    [119]
    Pourghasemi, H.R., Termeh, S.V.R., Kariminejad, N., Hong, H., Chen, W., 2020a. An assessment of metaheuristic approaches for flood assessment. J. Hydrol. 124536.
    [120]
    Pourghasemi, H.R., Kariminejad, N., Amiri, M., Edalat, M., Zarafshar, M., Blaschke, T., Cerda, A., 2020b. Assessing and mapping multi-hazard risk susceptibility using a machine learning technique. Sci. Rep. 10 (1), 1-11.
    [121]
    Pradhan, B., 2010. Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J. Spat. Hydrol. 9, 2.
    [122]
    Prăvălie, R., Costache, R., 2013. The vulnerability of the territorial-administrative units to the hydrological phenomena of risk (flash-floods). Case study:the subcarpathian sector of Buzău catchment. Analele Universității din Oradea-Seria Geografie 23 (1), 91-98.
    [123]
    Rahman, A., 2019. Study on monsoon flood hazard and vulnerability assessment of oldBrahmaputra river floodplain under climate change scenario.
    [124]
    Rahman, A., Haddad, K., Zaman, M., Kuczera, G., Weinmann, P.E., 2011. Design flood estimation in ungauged catchments:a comparison between the probabilistic rational method and quantile regression technique for NSW. Australasian J. Water Resour. 14 (2), 127-139.
    [125]
    Rahman, R., Dhruba, S.R., Ghosh, S., Pal, R., 2019. Functional random forest with applications in dose-response predictions. Sci. Rep. 9 (1), 1-14.
    [126]
    Rau, P., Bourrel, L., Labat, D., Ruelland, D., Frappart, F., Lavado, W., Felipe, O., 2019. Assessing multidecadal runoff (1970-2010) using regional hydrological modelling under data and water scarcity conditions in Peruvian Pacific catchments. Hydrol. Process. 33 (1), 20-35.
    [127]
    Rumelhart, D.E., Hinton, G.E., McClelland, J.L., 1986. A general framework for parallel distributed processing. Parallel distributed processing:Explorations in the microstructure of cognition. 1, p. 26 45-76.
    [128]
    Sahana, M., Patel, P.P., 2019. A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India. Environ. Earth Sci. 78 (10), 289.
    [129]
    Sahana, M., Rehman, S., Sajjad, H., Hong, H., 2020. Exploring effectiveness of frequency ratio and support vector machine models in storm surge flood susceptibility assessment:A study of Sundarban Biosphere Reserve, India. Catena 189, 104450.
    [130]
    Sajedi-Hosseini, F., Malekian, A., Choubin, B., Rahmati, O., Cipullo, S., Coulon, F., Pradhan, B., 2018. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci. Total Environ. 644, 954-962.
    [131]
    Sameen, M.I., Sarkar, R., Pradhan, B., Drukpa, D., Alamri, A.M., Park, H.J., 2020. Landslide spatial modelling using unsupervised factor optimisation and regularised greedy forests. Comput. Geosci. 134, 104336.
    [132]
    Sarkar, D., Mondal, P., 2020. Flood vulnerability mapping using frequency ratio (FR) model:a case study on Kulik river basin, Indo-Bangladesh Barind region. Appl Water Sci 10 (1), 17.
    [133]
    Sawant, M.M., Bhurchandi, K.M., 2019. Age invariant face recognition:a survey on facial aging databases, techniques and effect of aging. Artif. Intell. Rev. 52 (2), 981-1008.
    [134]
    Schumann, G., Binder, E.B., Holte, A., de Kloet, E.R., Oedegaard, K.J., Robbins, T.W.,... Ciccocioppo, R., 2014. Stratified medicine for mental disorders. Eur. Neuropsychopharmacol. 24 (1), 5-50.
    [135]
    Serraj, R., Pingali, P., 2019. Agriculture & Food Systems to 2050. World Scientific.
    [136]
    Shafapour Tehrany, M., Kumar, L., Neamah Jebur, M., Shabani, F., 2019. Evaluating the application of the statistical index method in flood susceptibility mapping and its comparison with frequency ratio and logistic regression methods. Geomat. Nat. Haz. Risk 10 (1), 79-101.
    [137]
    Shafizadeh-Moghadam, H., Valavi, R., Shahabi, H., Chapi, K., Shirzadi, A., 2018. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J. Environ. Manag. 217, 1-11.
    [138]
    Shahabi, H., Shirzadi, A., Ghaderi, K., Omidvar, E., Al-Ansari, N., Clague, J.J., Geertsema, M., Khosravi, K., Amini, A., Bahrami, S., Rahmati, O., 2020. Flood detection and susceptibility mapping using sentinel-1 remote sensing data and a machine learning approach:Hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier. Remote Sens. 12 (2), 266.
    [139]
    Shit, P.K., Bhunia, G.S., Pourghasemi, H.R., 2020. Gully Erosion Susceptibility Mapping Based on Bayesian Weight of Evidence. Gully Erosion Studies from India and Surrounding Regions. Springer, Cham, pp. 133-146.
    [140]
    Shukla, S., Gedam, S., 2019. Evaluating hydrological responses to urbanization in a tropical river basin:A water resources management perspective. Nat. Resour. Res. 28 (2), 327-347.
    [141]
    Siahkamari, S., Haghizadeh, A., Zeinivand, H., Tahmasebipour, N., Rahmati, O., 2018. Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto Int. 33 (9), 927-941.
    [142]
    Siegel, F.R., 2020. Coastal City Flooding. Adaptations of Coastal Cities to Global Warming, Sea Level Rise Climate Change and Endemic Hazards. Springer, Cham, pp. 27-34.
    [143]
    Souissi, D., Zouhri, L., Hammami, S., Msaddek, M.H., Zghibi, A., Dlala, M., 2019. GIS-based MCDM-AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int. 1-27.
    [144]
    Stevaux, J.C., de Azevedo Macedo, H., Assine, M.L., Silva, A., 2020. Changing fluvial styles and backwater flooding along the Upper Paraguay River plains in the Brazilian Pantanal wetland. Geomorphology 350, 106906.
    [145]
    Sturzenegger, M., Holm, K., Lau, C.A., Jakob, M., 2019, June. Semi-automated regional scale debris-flow and debris-flood susceptibility mapping based on digital elevation model metrics and Flow-R software. In Association of Environmental and Engineering Geologists; special publication 28. Colorado School of Mines. Arthur Lakes Library.
    [146]
    Su, J., Lü, H., Zhu, Y., Cui, Y., Wang, X., 2019. Evaluating the hydrological utility of latest IMERG products over the Upper Huaihe River Basin, China. Atmos. Res. 225, 17-29.
    [147]
    Talha, S., Maanan, M., Atika, H., Rhinane, H., 2019. Prediction of Flash Flood Susceptibility Using Fuzzy Analytical Hierarchy Process (Fahp) Algorithms and Gis:A Study Case of Guelmim Region In Southwestern of Morocco. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 42 (4/W19).
    [148]
    Tang, X., Li, J., Liu, M., Liu, W., Hong, H., 2020. Flood susceptibility assessment based on a novel random Naïve Bayes method:A comparison between different factor discretization methods. Catena 190, 104536.
    [149]
    Tehrany, M.S., Jones, S., 2017. Evaluating the variations in the flood susceptibility maps accuracies due to the alterations in the type and extent of the flood inventory. Kuala Lumpur:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 42, p. 4, October.
    [150]
    Tehrany, M.S., Pradhan, B., Mansor, S., Ahmad, N., 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena 125, 91-101.
    [151]
    Tehrany, M.S., Kumar, L., Shabani, F., 2019. A novel GIS-based ensemble technique for flood susceptibility mapping using evidential belief function and support vector machine:Brisbane, Australia. PeerJ 7, e7653.
    [152]
    Termeh, S.V.R., Kornejady, A., Pourghasemi, H.R., Keesstra, S., 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci. Total Environ. 615, 438-451.
    [153]
    Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., 2012. Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes Models. Math. Probl. Eng. 2012, 974638.
    [154]
    Tien Bui, D., Khosravi, K., Li, S., Shahabi, H., Panahi, M., Singh, V.P., Chapi, K., Shirzadi, A., Panahi, S., Chen, W., Bin Ahmad, B., 2018. New hybrids of anfis with several optimization algorithms for flood susceptibility modeling. Water 10 (9), 1210.
    [155]
    Tien Bui, D., Khosravi, K., Shahabi, H., Daggupati, P., Adamowski, J.F., Melesse, A.M., Thai Pham, B., Pourghasemi, H.R, Bahrami, S., Mahmoudi, M., Pradhan, B., Shirzadi, A., Chapi, K., Lee, S., 2019a. Flood spatial modeling in northern Iran using remote sensing and gis:A comparison between evidential belief functions and its ensemble with a multivariate logistic regression model. Remote Sens. 11 (13), 1589.
    [156]
    Tien Bui, D., Shirzadi, A., Shahabi, H., Chapi, K., Omidavr, E., Pham, B.T., Talebpour Asl, D., Khaledian, H., Pradhan, B., Panahi, M., Bin Ahmad, B., 2019b. A novel ensemble artificial intelligence approach for gully erosion mapping in a semi-arid watershed (Iran). Sensors 19 (11), 2444.
    [157]
    Ting, K.M., Witten, I.H., 1997. Stacking bagged and dagged models.
    [158]
    Torcivia, C.E.G., López, N.N.R., 2020. Preliminary Morphometric Analysis:Río Talacasto Basin, Central Precordillera of San Juan, Argentina. Advances in Geomorphology and Quaternary Studies in Argentina. Springer, Cham, pp. 158-168.
    [159]
    Uthayakumar, J., Metawa, N., Shankar, K., Lakshmanaprabu, S.K., 2020. Financial crisis prediction model using ant colony optimization. Int. J. Inf. Manag. 50, 538-556.
    [160]
    Vafakhah, M., Loor, S.M.H., Pourghasemi, H., Katebikord, A., 2020. Comparing performance of random forest and adaptive neuro-fuzzy inference system data mining models for flood susceptibility mapping. Arab. J. Geosci. 13, 417.
    [161]
    Vapnik, V., 2013. The nature of statistical learning theory. Springer science & business media.
    [162]
    Wahlstrom, M., Guha-Sapir, D., 2015. The human cost of weather-related disasters 1995-2015. UNISDR, Geneva, Switzerland.
    [163]
    Walia, S., Kumar, K., 2019. Digital image forgery detection:a systematic scrutiny. Australian Journal of Forensic Sciences 51 (5), 488-526.
    [164]
    Wang, Y., Hong, H., Chen, W., Li, S., Pamučar, D., Gigović, L., Duan, H., 2019a. A hybrid GIS multi-criteria decision-making method for flood susceptibility mapping at Shangyou, China. Remote Sens. 11 (1), 62.
    [165]
    Wang, Y., Hong, H., Chen, W., Li, S., Pamučar, D., Gigović, L., Drobnjak, S., Tien Bui, D., Duan, H., 2019b. A hybrid GIS multi-criteria decision-making method for flood susceptibility mapping at Shangyou, China. Remote Sens. 11 (1), 62.
    [166]
    Wang, Y., Hong, H., Chen, W., Li, S., Panahi, M., Khosravi, K., Shirzadi, A., Shahabi, H., Panahi, S., Costache, R., 2019c. Flood susceptibility mapping in Dingnan County(China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. J. Environ. Manag. 247, 712-729.
    [167]
    Wang, Y., Fang, Z., Hong, H., Peng, L., 2020. Flood susceptibility mapping using convolutional neural network frameworks. J. Hydrol. 582, 124482.
    [168]
    Wu, L., He, Y., Ma, X., 2020a. Can soil conservation practices reshape the relationship between sediment yield and slope gradient? Ecol. Eng. 142, 105630.
    [169]
    Wu, Y., Ke, Y., Chen, Z., Liang, S., Zhao, H., Hong, H., 2020b. Application of alternating decision tree with AdaBoost and random subspace ensembles for landslide susceptibility mapping. Catena 187, 104396.
    [170]
    Xie, H., Dong, J., Shen, Z., Chen, L., Lai, X., Qiu, J.,... Chen, X., 2019. Intra- and inter-event characteristics and controlling factors of agricultural nonpoint source pollution under different types of rainfall-runoff events. Catena 182, 104105.
    [171]
    Xu, C., 2013. Assessment of earthquake-triggered landslide susceptibility based on expert knowledge and information value methods:a case study of the 20 April 2013 Lushan, China Mw6.6 earthquake. Disaster Advances 6 (13), 119-130.
    [172]
    Xu, M., Li, C., 2020. Influencing Factors Analysis of Water Footprint Based on the Extended STIRPAT Model. Application of the Water Footprint:Water Stress Analysis and Allocation. Springer, Singapore, pp. 105-126.
    [173]
    Xu, L., Wang, X., Liu, J., He, Y., Tang, J., Nguyen, M., Cui, S., 2019. Identifying the trade-offs between climate change mitigation and adaptation in urban land use planning:An empirical study in a coastal city. Environ. Int. 133, 105162.
    [174]
    Yang, L., Cervone, G., 2019. Analysis of remote sensing imagery for disaster assessment using deep learning:a case study of flooding event. Soft. Comput. 1-16.
    [175]
    Yang, Y.E., Ray, P.A., Brown, C.M., Khalil, A.F., Winston, H.Y., 2015. Estimation of flood damage functions for river basin planning:a case study in Bangladesh. Nat. Hazards 75 (3), 2773-2791.
    [176]
    Yariyan, P., Janizadeh, S., Van Phong, T., Nguyen, H.D., Costache, R., Van Le, H., Pham, B.T., Pradhan, B., Tiefenbacher, J.P., 2020. Improvement of Best First Decision Trees Using Random subspace and Dagging Ensembles for Flood Probability Mapping. Water Resour. Manag. 1-17.
    [177]
    Youssef, A.M., Pradhan, B., Hassan, A.M., 2011. Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ. Earth Sci. 62 (3), 611-623.
    [178]
    Zaharia, L., Ioana-Toroimac, G., Perju, E.R., 2020. Hydrological Impacts of Climate Changes in Romania. Water Resources Management in Romania. Springer, Cham, pp. 309-351.
    [179]
    Zhang, J., Liu, M., Zhang, M., Yang, J., Cao, R., Malhi, S.S., 2019. Changes of vegetation carbon sequestration in the tableland of Loess Plateau and its influencing factors. Environ. Sci. Pollut. Res. 1-13.
    [180]
    Zhang, G., Chen, W., Li, G., Yang, W., Yi, S., Luo, W., 2020. Lake water and glacier mass gains in the northwestern Tibetan Plateau observed from multi-sensor remote sensing data:Implication of an enhanced hydrological cycle. Remote Sens. Environ. 237, 111554.
    [181]
    Zhao, C., Zhang, X., Zhang, B., Dang, Q., Lian, J., 2013. Driver's fatigue expressions recognition by combined features from pyramid histogram of oriented gradient and contourlet transform with random subspace ensembles. IET Intell. Transp. Syst. 7(1), 36-45.
    [182]
    Zhao, J., Fan, W., Zhai, X., 2020. Identification of land-use characteristics using bicycle sharing data:A deep learning approach. J. Transp. Geogr. 82, 102562.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (120) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return