Volume 12 Issue 3
Jul.  2021
Turn off MathJax
Article Contents
E. Shaji, M. Santosh, K.V. Sarath, Pranav Prakash, V. Deepchand, B.V. Divya. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula[J]. Geoscience Frontiers, 2021, 12(3): 101079. doi: 10.1016/j.gsf.2020.08.015
Citation: E. Shaji, M. Santosh, K.V. Sarath, Pranav Prakash, V. Deepchand, B.V. Divya. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula[J]. Geoscience Frontiers, 2021, 12(3): 101079. doi: 10.1016/j.gsf.2020.08.015

Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula

doi: 10.1016/j.gsf.2020.08.015
Funds:

The first author acknowledges KSCSTE, Govt. of Kerala for providing fellowship to K. V. Sarath under arsenic project (KSCSTE/5979/2017-E&E dated 09-11-2018) and NCESS (MOES), Govt. of India, Trivandrum for providing fellowship to Pranav Prakash under Mission-SGD project (MOES/P.O/NCESS/SGD-2018).

  • Received Date: 2020-04-14
  • Rev Recd Date: 2020-07-09
  • Publish Date: 2021-07-19
  • More than 2.5 billion people on the globe rely on groundwater for drinking and providing high-quality drinking water has become one of the major challenges of human society. Although groundwater is considered as safe, high concentrations of heavy metals like arsenic (As) can pose potential human health concerns and hazards. In this paper, we present an overview of the current scenario of arsenic contamination of groundwater in various countries across the globe with an emphasis on the Indian Peninsula. With several newly affected regions reported during the last decade, a significant increase has been observed in the global scenario of arsenic contamination. It is estimated that nearly 108 countries are affected by arsenic contamination in groundwater (with concentration beyond maximum permissible limit of 10 ppb recommended by the World Health Organization. The highest among these are from Asia (32) and Europe (31), followed by regions like Africa (20), North America (11), South America (9) and Australia (4). More than 230 million people worldwide, which include 180 million from Asia, are at risk of arsenic poisoning. Southeast Asian countries, Bangladesh, India, Pakistan, China, Nepal, Vietnam, Burma, Thailand and Cambodia, are the most affected. In India, 20 states and 4 Union Territories have so far been affected by arsenic contamination in groundwater. An attempt to evaluate the correlation between arsenic poisoning and aquifer type shows that the groundwater extracted from unconsolidated sedimentary aquifers, particularly those which are located within the younger orogenic belts of the world, are the worst affected. More than 90% of arsenic pollution is inferred to be geogenic. We infer that alluvial sediments are the major source for arsenic contamination in groundwater and we postulate a strong relation with plate tectonic processes, mountain building, erosion and sedimentation. Prolonged consumption of arsenic-contaminated groundwater results in severe health issues like skin, lung, kidney and bladder cancer; coronary heart disease; bronchiectasis; hyperkeratosis and arsenicosis. Since the major source of arsenic in groundwater is of geogenic origin, the extend of pollution is complexly linked with aquifer geometry and aquifer properties of a region. Therefore, remedial measures are to be designed based on the source mineral, climatological and hydrogeological scenario of the affected region. The corrective measures available include removing arsenic from groundwater using filters, exploring deeper or alternative aquifers, treatment of the aquifer itself, dilution method by artificial recharge to groundwater, conjunctive use, and installation of nano-filter, among other procedures. The vast majority of people affected by arsenic contamination in the Asian countries are the poor who live in rural areas and are not aware of the arsenic poisoning and treatment protocols. Therefore, creating awareness and providing proper medical care to these people remain as a great challenge. Very few policy actions have been taken at international level over the past decade to reduce arsenic contamination in drinking water, with the goal of preventing toxic impacts on human health. We recommend that that United Nations Environment Programme (UNEP) and WHO should take stock of the global arsenic poisoning situation and launch a global drive to create awareness among people/medical professionals/health workers/administrators on this global concern.
  • loading
  • [1]
    Acharyya, S.K., Shah, B.A., Ashyiya, I.D., Pandey, Y., 2005. Arsenic contamination in groundwater from parts of Ambagarh-Chowki block, Chhattisgarh, India:source and release mechanism. Environ. Geol. 49 (1), 148.
    [2]
    Agusa, T., 2002. Arsenic pollution in Cambodia. Biomed. Res. Trace Elem. 13, 254-255.
    [3]
    Ahmed, K.M., Bhattacharya, P., Hasan, M.A., Akhter, S.H., Alam, S.M., Bhuyian, M.H., Imam, M.B., Khan, A.A., Sracek, O., 2004. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh:an overview. Appl. Geochem. 19 (2), 181-200.
    [4]
    Alam, M.O., Shaikh, W.A., Chakraborty, S., Avishek, K., Bhattacharya, T., 2016. Groundwater arsenic contamination and potential health risk assessment of Gangetic Plains of Jharkhand, India. Expos. Health 8 (1), 125-142.
    [5]
    Alarcón-Herrera, M.T., Martin-Alarcon, D.A., Gutiérrez, M., Reynoso-Cuevas, L., MartínDomínguez, A., Olmos-Márquez, M.A., Bundschuh, J., 2020. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico:geographical data visualization. Sci. Total Environ. 698, 134168.
    [6]
    Alcaine, A.A., Schulz, C., Bundschuh, J., Jacks, G., Thunvik, R., Gustafsson, J.P., Mörth, C.M., Sracek, O., Ahmad, A., Bhattacharya, P., 2020. Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. Sci. Total Environ. 715, 136671.
    [7]
    Ali, W., Mushtaq, N., Javed, T., Zhang, H., Ali, K., Rasool, A., Farooqi, A., 2019a. Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district Larkana Sindh, Pakistan. Environ. Pollut. 245, 77-88.
    [8]
    Ali, W., Rasool, A., Junaid, M., Zhang, H., 2019b. A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater:a global perspective with prominence of Pakistan scenario. Environ. Geochem. Health 41 (2), 737-760.
    [9]
    Appleyard, S.J., Angeloni, J., Watkins, R., 2006. Arsenic-rich groundwater in an urban area experiencing drought and increasing population density, Perth, Australia. Appl. Geochem. 21 (1), 83-97.
    [10]
    Armienta, M.A., Segovia, N., 2008. Arsenic and fluoride in the groundwater of Mexico. Environ. Geochem. Health 30 (4), 345-353.
    [11]
    Auge, M., 2014. Arsenic in the groundwater of the Buenos Aires province, Argentina. One Century of the Discovery of Arsenicosis in Latin America (1914-2014), pp. 125-128.
    [12]
    Barats, A., Féraud, G., Potot, C., Philippini, V., Travi, Y., Durrieu, G., Dubar, M., Simler, R., 2014. Naturally dissolved arsenic concentrations in the Alpine/Mediterranean Var River watershed (France). Sci. Total Environ. 473, 422-436.
    [13]
    Barbier, E., 2019. The Water Paradox:Overcoming the Global Crisis in Water Management. Yale University Press, London.
    [14]
    Berg, M., Tran, H.C., Nguyen, T.C., Pham, H.V., Schertenleib, R., Giger, W., 2001. Arsenic contamination of groundwater and drinking water in Vietnam:a human health threat. Environ. Sci. Technol. 35 (13), 2621-2626.
    [15]
    Berg, M., Stengel, C., Trang, P.T.K., Viet, P.H., Sampson, M.L., Leng, M., Samreth, S., Fredericks, D., 2007. Magnitude of arsenic pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. Sci. Total Environ. 372 (2-3), 413-425.
    [16]
    Bhattacharya, A.K., 2017. Arsenic contamination in Indian groundwater. J. Inst. Public Health Eng. India 45 (2), 18-36.
    [17]
    Bhowmick, S., Pramanik, S., Singh, P., Mondal, P., Chatterjee, D., Nriagu, J., 2018. Arsenic in groundwater of West Bengal, India:a review of human health risks and assessment of possible intervention options. Sci. Total Environ. 612, 148-169.
    [18]
    Bhunia, G.S., Shit, P.K., Maiti, R., 2016. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). J. Saudi Soc. Agric. Sci. 17 (2), 114-126. https://doi.org/10.1016/j.jssas.2016.02.001.
    [19]
    Bibi, S., Farooqi, A., Hussain, K., Haider, N., 2015. Evaluation of industrial based adsorbents for simultaneous removal of arsenic and fluoride from drinking water. J. Clean. Prod. 87, 882-896.
    [20]
    Bidone, E., Castilhos, Z., Cesar, R., Santos, M.C., Sierpe, R., Ferreira, M., 2016. Hydrogeochemistry of arsenic pollution in watersheds influenced by gold mining activities in Paracatu (Minas Gerais State, Brazil). Environ. Sci. Pollut. Res. 23 (9), 8546-8555.
    [21]
    Bindal, S., Singh, C.K., 2019. Predicting groundwater arsenic contamination:regions at risk in highest populated state of India. Water Res. 159, 65-76.
    [22]
    Bondu, R., Cloutier, V., Rosa, E., Benzaazoua, M., 2017. Mobility and speciation of geogenic arsenic in bedrock groundwater from the Canadian Shield in western Quebec, Canada. Sci. Total Environ. 574, 509-519.
    [23]
    Bonelli, M.G., Ferrini, M., Manni, A., 2017. Artificial neural networks to evaluate organic and inorganic contamination in agricultural soils. Chemosphere 186, 124-131.
    [24]
    Borgono, J.M., Greiber, R., 1971. Epidemiologic study of arsenic poisoning in the city of Antofagasta. Rev. Med. Chil. 99 (9), 702-707 (in Spanish).
    [25]
    Bowell, R.J., 1994. Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl. Geochem. 9 (3), 279-286.
    [26]
    Boyle, D.R., Turner, R.J.W., Hall, G.E.M., 1998. Anomalous arsenic concentrations in groundwaters of an island community, Bowen Island, British Columbia. Environ. Geochem. Health 20 (4), 199-212.
    [27]
    Bozack, A.K., Hall, M.N., Liu, X., Ilievski, V., Lomax-Luu, A.M., Parvez, F., Siddique, A.B., Shahriar, H., Uddin, M.N., Islam, T., Graziano, J.H., 2019. Folic acid supplementation enhances arsenic methylation:results from a folic acid and creatine supplementation randomized controlled trial in Bangladesh. Am. J. Clin. Nutr. 109 (2), 380-391.
    [28]
    Brahman, K.D., Kazi, T.G., Afridi, H.I., Naseem, S., Arain, S.S., Ullah, N., 2013. Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan:a multivariate study. Water Res. 47 (3), 1005-1020.
    [29]
    Bretzler, A., Lalanne, F., Nikiema, J., Podgorski, J., Pfenninger, N., Berg, M., Schirmer, M., 2017. Groundwater arsenic contamination in Burkina Faso, West Africa:predicting and verifying regions at risk. Sci. Total Environ. 584, 958-970.
    [30]
    Brikowski, T.H., Neku, A., Shrestha, S.D., Smith, L.S., 2014. Hydrologic control of temporal variability in groundwater arsenic on the Ganges floodplain of Nepal. J. Hydrol. 518, 342-353.
    [31]
    Buamah, R., Petrusevski, B., Schippers, J.C., 2008. Presence of arsenic, iron and manganese in groundwater within the gold-belt zone of Ghana. J. Water Supply Res. Technol. AQUA 57 (7), 519-529.
    [32]
    Bundschuh, J., Armienta, M.A., Birkle, P., Bhattacharya, P., Matschullat, J., Mukherjee, A.B., 1997. Natural Arsenic in Groundwaters of Latin America. CRC Press.
    [33]
    Bundschuh, J., Litter, M.I., Parvez, F., Román-Ross, G., Nicolli, H.B., Jean, J.S., Liu, C.W., López, D., Armienta, M.A., Guilherme, L.R., Cuevas, A.G., 2012. One century of arsenic exposure in Latin America:a review of history and occurrence from 14 countries. Sci. Total Environ. 429, 2-35.
    [34]
    CGWB, 2017. Dynamic Ground Water Resources of India. CGWB, Faridabad, pp. 1-39.
    [35]
    CGWB, 2018. Groundwater Quality in Shallow Aquifers of India. CGWB, Faridabad, pp. 18-21.
    [36]
    Cha, Y., Kim, Y.M., Choi, J.W., Sthiannopkao, S., Cho, K.H., 2016. Bayesian modeling approach for characterizing groundwater arsenic contamination in the Mekong River basin. Chemosphere 143, 50-56.
    [37]
    Chakraborti, D., Mukherjee, S.C., Pati, S., Sengupta, M.K., Rahman, M.M., Chowdhury, U.K., Lodh, D., Chanda, C.R., Chakraborti, A.K., Basu, G.K., 2003. Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India:a future danger? Environ. Health Perspect. 111 (9), 1194-1201.
    [38]
    Chakraborti, D., Ahamed, S., Rahman, M.M., Sengupta, M.K., Lodh, D., Das, B., Hossain, M.A., Mukherjee, S.C., Pati, S.ch., Das, N.K., 2004. Risk of arsenic contamination in groundwater:response from Chakraborti et al. Environ. Health Perspect. 112 (1), A20-A21.
    [39]
    Chakraborti, D., Das, B., Rahman, M.M., Chowdhury, U.K., Biswas, B., Goswami, A.B., Nayak, B., Pal, A., Sengupta, M.K., Ahamed, S., Hossain, A., 2009. Status of groundwater arsenic contamination in the state of West Bengal, India:a 20-year study report. Mol. Nutr. Food Res. 53 (5), 542-551.
    [40]
    Chakraborti, D., Rahman, M.M., Murrill, M., Das, R., Patil, S.G., Sarkar, A., Dadapeer, H.J., Yendigeri, S., Ahmed, R., Das, K.K., 2013. Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. J. Hazard. Mater. 262, 1048-1055.
    [41]
    Chakraborti, D., Rahman, M.M., Ahamed, S., Dutta, R.N., Pati, S., Mukherjee, S.C., 2016. Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India. Chemosphere 152, 520-529.
    [42]
    Chakraborti, D., Singh, S.K., Rahman, M.M., Dutta, R.N., Mukherjee, S.C., Pati, S., Kar, P.B., 2018. Groundwater arsenic contamination in the Ganga River Basin:a future health danger. Int. J. Environ. Res. Public Health 15 (2), 180.
    [43]
    Chandrajith, R., Diyabalanage, S., Dissanayake, C.B., 2020. Geogenic fluoride and arsenic in groundwater of Sri Lanka and its implications to community health. Groundw. Sustain. Dev. 10, 100359.
    [44]
    Chapelle, F.H., Lovley, D.R., 1992. Competitive exclusion of sulfate reduction by Fe (lll)-reducing bacteria:a mechanism for producing discrete zones of high-iron ground water. Groundwater 30 (1), 29-36.
    [45]
    Chen, C.J., Hsueh, Y.M., Lai, M.S., Shyu, M.P., Chen, S.Y., Wu, M.M., Kuo, T.L., Tai, T.Y., 1995. Increased prevalence of hypertension and long-term arsenic exposure. Hypertension 25 (1), 53-60.
    [46]
    Chen, Y., Han, Y.H., Cao, Y., Zhu, Y.G., Rathinasabapathi, B., Ma, L.Q., 2017. Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front. Plant Sci. 8, 268.
    [47]
    Cho, K.H., Sthiannopkao, S., Pachepsky, Y.A., Kim, K.W., Kim, J.H., 2011. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network. Water Res. 45 (17), 5535-5544.
    [48]
    Choprapawon, C., Rodcline, A., 1997. Chronic arsenic poisoning in Ronpibool Nakhon Sri Thammarat, the southern province of Thailand. In:Abernathy, C.O., Calderon, R.L., Chappell, W.R. (Eds.), Arsenic. Springer, Dordrecht, pp. 69-77 https://doi.org/10.1007/978-94-011-5864-0_6.
    [49]
    Chowdhury, T.R., Basu, G.K., Mandal, B.K., Biswas, B.K., Samanta, G., Chowdhury, U.K., Chanda, C.R., Lodh, D., Roy, S.L., Saha, K.C., Roy, S., 1999. Arsenic poisoning in the Ganges delta. Nature 401 (6753), 545-546.
    [50]
    Ciminelli, V.S., Gasparon, M., Ng, J.C., Silva, G.C., Caldeira, C.L., 2017. Dietary arsenic exposure in Brazil:the contribution of rice and beans. Chemosphere 168, 996-1003.
    [51]
    Corradini, F., Correa, A., Moyano, M.S., Sepúlveda, P., Quiroz, C., 2018. Nitrate, arsenic, cadmium, and lead concentrations in leafy vegetables:expected average values for productive regions of Chile. Arch. Agron. Soil Sci. 64 (3), 299-317.
    [52]
    Das, T.K., 2019. Arsenic Menace in West Bengal (India) and its mitigation through toolbox intervention:An experience to share. In:Ray, S. (Ed.), Ground Water DevelopmentIssues and Sustainable Solutions. Springer, Singapore, pp. 305-314 https://doi.org/10.1007/978-981-13-1771-2_18.
    [53]
    Das, D., Samanta, G., Mandal, B.K., Chowdhury, T.R., Chanda, C.R., Chowdhury, P.P., Basu, G.K., Chakraborti, D., 1996. Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Health 18 (1), 5-15.
    [54]
    Das, N., Sarma, K.P., Patel, A.K., Deka, J.P., Das, A., Kumar, A., Shea, P.J., Kumar, M., 2017. Seasonal disparity in the co-occurrence of arsenic and fluoride in the aquifers of the Brahmaputra flood plains, Northeast India. Environ. Earth Sci. 76 (4), 183.
    [55]
    Das, N., Das, A., Sarma, K.P., Kumar, M., 2018. Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain. Chemosphere 194, 755-772.
    [56]
    Datta, D.V., Kaul, M.K., 1976. Arsenic content of drinking water in villages in Northern India. A concept of arsenicosis. J. Assoc. Physicians India 24 (9), 599-604.
    [57]
    Dhillon, A.K., 2020. Arsenic contamination of India's groundwater:A review and critical analysis. In:Fares, A., Singh, S. (Eds.), Arsenic Water Resources Contamination. Advances in Water Security. Springer, Cham, pp. 177-205 https://doi.org/10.1007/978-3-030-21258-2_8.
    [58]
    Drahota, P., Falteisek, L., Redlich, A., Rohovec, J., Matoušek, T., Čepička, I., 2013. Microbial effects on the release and attenuation of arsenic in the shallow subsurface of a natural geochemical anomaly. Environ. Pollut. 180, 84-91.
    [59]
    Drouhot, S., Raoul, F., Crini, N., Tougard, C., Prudent, A.S., Druart, C., Rieffel, D., Lambert, J.C., Tête, N., Giraudoux, P., Scheifler, R., 2014. Responses of wild small mammals to arsenic pollution at a partially remediated mining site in Southern France. Sci. Total Environ. 470, 1012-1022.
    [60]
    Dummer, T.J.B., Yu, Z.M., Nauta, L., Murimboh, J.D., Parker, L., 2015. Geostatistical modelling of arsenic in drinking water wells and related toenail arsenic concentrations across Nova Scotia, Canada. Sci. Total Environ. 505, 1248-1258.
    [61]
    Edet, A.E., Merkel, B.J., Offiong, O.E., 2004. Contamination risk assessment of fresh groundwater using the distribution and chemical speciation of some potentially toxic elements in Calabar (southern Nigeria). Environ. Geol. 45 (7), 1025-1035.
    [62]
    Edmunds, W.M., Ahmed, K.M., Whitehead, P.G., 2015. A review of arsenic and its impacts in groundwater of the Ganges-Brahmaputra-Meghna delta, Bangladesh. Environ Sci Process Impacts 17 (6), 1032-1046.
    [63]
    Even, E., Masuda, H., Shibata, T., Nojima, A., Sakamoto, Y., Murasaki, Y., Chiba, H., 2017. Geochemical distribution and fate of arsenic in water and sediments of rivers from the Hokusetsu area, Japan. J. Hydrol. Reg. Stud. 9, 34-47.
    [64]
    Farooq, M.A., Islam, F., Ali, B., Najeeb, U., Mao, B., Gill, R.A., Yan, G., Siddique, K.H., Zhou, W., 2016. Arsenic toxicity in plants:cellular and molecular mechanisms of its transport and metabolism. Environ. Exp. Bot. 132, 42-52.
    [65]
    Fatmi, Z., Azam, I., Ahmed, F., Kazi, A., Gill, A.B., Kadir, M.M., Ahmed, M., Ara, N., Janjua, N.Z., Core Group for Arsenic Mitigation in Pakistan, 2009. Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source? Environ. Res. 109 (5), 575-581.
    [66]
    Fendorf, S., Michael, H.A., van Geen, A., 2010. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328 (5982), 1123-1127.
    [67]
    Figueiredo, B.R., Borba, R.P., Angélica, R.S., 2007. Arsenic occurrence in Brazil and human exposure. Environ. Geochem. Health 29, 109-118.
    [68]
    Flanagan, S.V., Marvinney, R.G., Zheng, Y., 2015. Influences on domestic well water testing behaviour in a Central Maine area with frequent groundwater arsenic occurrence. Sci. Total Environ. 505, 1274-1281.
    [69]
    Fordyce, F.M., Williams, T.M., Paijitprapapon, A., Charoenchaisri, P., 1995. Hydrogeochemistry of arsenic in an area of chronic mining-related arsenism, Ron Phibun district, Nakhon Si Thammarat Province, Thailand:preliminary results. BGS Technical Report WC/94/79. Nottingham, UK, British Geological Survey.
    [70]
    Garat, R., Chakraborty, A.K., Dey, S.B., Saha, K.C., 1984. Chronic arsenic poisoning from tube-well water. J. Indian Med. Assoc. 82 (1), 34-35.
    [71]
    Garcia-Sanchez, A., Moyano, A., Mayorga, P., 2005. High arsenic contents in groundwater of central Spain. Environ. Geol. 47 (6), 847-854.
    [72]
    Gbadebo, A.M., 2004. Arsenic pollution in aquifers located within limestone areas of Ogun State, Nigeria. Proceedings of the Pre-Congress Workshop "Natural Arsenic in Groundwater", 32nd International Geological Congress. CRC Press, Florence, Italy, pp. 85-92.
    [73]
    Gómez, J.J., Lillo, J., Sahún, B., 2006. Naturally occurring arsenic in groundwater and identification of the geochemical sources in the Duero Cenozoic Basin, Spain. Environ. Geol. 50 (8), 1151-1170.
    [74]
    Gong, G., Mattevada, S., O'Bryant, S.E., 2014. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ. Res. 130, 59-69.
    [75]
    Grimmett, R.E.R., McIntosh, I.G., 1939. Occurrence of arsenic in soils and waters in the Waiotapu Valley, and its relation to stock health. N. Z. J. Sci. Technol. Sect. A 21, 137-145.
    [76]
    Guha Mazumder, D.N., 2003. Chronic arsenic toxicity:clinical features, epidemiology, and treatment:experience in West Bengal. J. Environ. Sci. Health A 38 (1), 141-163.
    [77]
    Guillot, S., Charlet, L., 2007. Bengal arsenic, an archive of Himalaya orogeny and paleohydrology. J. Environ. Sci. Health A 42 (12), 1785-1794.
    [78]
    Guo, H., Tang, X., Yang, S., Shen, Z., 2008. Effect of indigenous bacteria on geochemical behavior of arsenic in aquifer sediments from the Hetao Basin, Inner Mongolia:evidence from sediment incubations. Appl. Geochem. 23 (12), 3267-3277.
    [79]
    Guo, H., Wen, D., Liu, Z., Jia, Y., Guo, Q., 2014. A review of high arsenic groundwater in Mainland and Taiwan, China:distribution, characteristics and geochemical processes. Appl. Geochem. 41, 196-217.
    [80]
    Hashim, M.A., Kundu, A., Mukherjee, S., Ng, Y.S., Mukhopadhyay, S., Redzwan, G., Gupta, B.S., 2019. Arsenic removal by adsorption on activated carbon in a rotating packed bed. J. Water Process Eng. 30, 100591.
    [81]
    He, Y.T., Hering, J.G., 2009. Enhancement of arsenic (III) sequestration by manganese oxides in the presence of iron (II). Water Air Soil Pollut. 203 (1-4), 359-368.
    [82]
    Hebbar, A., Janardhan, M.R., 2016. Arsenic contamination in groundwater of the areas surrounding Ingaldhal, Chitradurga district, Karnataka state. Int. J. Geol. Agric. Environ. Sci. 6, 1-7.
    [83]
    Heinrichs, G., Udluft, P., 1999. Natural arsenic in Triassic rocks:A source of drinking-water contamination in Bavaria, Germany. Hydrogeol. J. 7 (5), 468-476.
    [84]
    Hinkle, S.R., Polette, D.J., 1999. Arsenic in Ground Water of the Willamette Basin. US. Department of the Interior, US Geological Survey 98, Oregon, p. 4205.
    [85]
    Hinwood, A.L., Jolley, D.J., Sim, M.R., 1999. Cancer incidence and high environmental arsenic concentrations in rural populations:results of an ecological study. Int. J. Environ. Health Res. 9 (2), 131-141.
    [86]
    Holmes, R.R., Hart, M.L., Kevern, J.T., 2019. Removal of arsenic from synthetic groundwater using sulfur-enhanced cement-based filter media. J. Haz. Toxic Radioact. Waste 23(3), 04019006.
    [87]
    Hopenhayn, C., 2006. Arsenic in drinking water:impact on human health. Elements 2 (2), 103-107.
    [88]
    Hoque, M.A., Khan, A.A., Shamsudduha, M., Hossain, M.S., Islam, T., Chowdhury, S.H., 2009. Near surface lithology and spatial variation of arsenic in the shallow groundwater:southeastern Bangladesh. Environ. Geol. 56 (8), 1687-1695.
    [89]
    Hossain, M.F., 2006. Arsenic contamination in Bangladesh-an overview. Agric. Ecosyst. Environ. 113 (1-4), 1-16.
    [90]
    Huq, M.E., Fahad, S., Shao, Z., Sarven, M.S., Khan, I.A., Alam, M., Saeed, M., Ullah, H., Adnan, M., Saud, S., Cheng, Q., 2020. Arsenic in a groundwater environment in Bangladesh:occurrence and mobilization. J. Environ. Manag. 262, 110318.
    [91]
    Iqbal, S.Z., 2001. Arsenic contamination in Pakistan. UNESCAP Report. Expert Group meeting on Geadly, Bangkok, Thailand.
    [92]
    Karpov, G.A., Naboko, S.I., 1990. Metal contents of recent thermal waters, mineral precipitates and hydrothermal alteration in active geothermal fields, Kamchatka. J. Geochem. Explor. 36 (1-3), 57-71.
    [93]
    Katsoyiannis, I.A., Mitrakas, M., Zouboulis, A.I., 2015. Arsenic occurrence in Europe:emphasis in Greece and description of the applied full-scale treatment plants. Desalin. Water Treat. 54 (8), 2100-2107.
    [94]
    Khan, M.Y.A., Gani, K.M., Chakrapani, G.J., 2016. Assessment of surface water quality and its spatial variation. A case study of Ramganga River, Ganga Basin, India. Arab. J. Geosci. 9 (1), 28.
    [95]
    Kim, Myoung-Jin, Nriagu, J., Haack, S., 2002. Arsenic species and chemistry in groundwater of southeast Michigan. Environ. Pollut. 120 (2), 379-390.
    [96]
    Kim, K.W., Chanpiwat, P., Hanh, H.T., Phan, K., Sthiannopkao, S., 2011. Arsenic geochemistry of groundwater in Southeast Asia. Front. Med. 5 (4), 420-433.
    [97]
    Kinniburgh, D.G., Smedley, P., 2001. Arsenic Contamination of Groundwater in Bangladesh British Geological Survey, 630pp (WC/00/019) (unpublished).
    [98]
    Kumar, M., Das, A., Das, N., Goswami, R., Singh, U.K., 2016a. Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, Northeastern India. Chemosphere 150, 227-238.
    [99]
    Kumar, M., Rahman, M.M., Ramanathan, A.L., Naidu, R., 2016b. Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India:health risk index. Sci. Total Environ. 539, 125-134.
    [100]
    Kumari, N., Rana, A., Jagadevan, S., 2019. Arsenite biotransformation by Rhodococcus sp.:Characterization, optimization using response surface methodology and mechanistic studies. Sci. Total Environ. 687, 577-589.
    [101]
    Kwong, Y.T.J., Beauchemin, S., Hossain, M.F., Gould, W.D., 2007. Transformation and mobilization of arsenic in the historic Cobalt mining camp, Ontario, Canada. J. Geochem. Explor. 92 (2-3), 133-150.
    [102]
    Lalwani, S., Dogra, T.D., Bhardwaj, D.N., Sharma, R.K., Murty, O.P., Vij, A., 2004. Study on arsenic level in ground water of Delhi using hydride generator accessory coupled with atomic absorption spectrophotometer. Indian J. Clin. Biochem. 19 (2), 135.
    [103]
    Le Luu, T., 2019. Remarks on the current quality of groundwater in Vietnam. Environ. Sci. Pollut. Res. 26 (2), 1163-1169.
    [104]
    Libbey, R.B., Williams-Jones, A.E., Melosh, B.L., Backeberg, N.R., 2015. Characterization of geothermal activity along the North American-Caribbean Plate boundary in Guatemala:The Joaquina geothermal field. Geothermics 56, 17-34.
    [105]
    Liu, C.W., Wu, M.Z., 2019. Geochemical, mineralogical and statistical characteristics of arsenic in groundwater of the Lanyang Plain, Taiwan. J. Hydrol. 577, 123975.
    [106]
    Liu, C.P., Luo, C.L., Gao, Y., Li, F.B., Lin, L.W., Wu, C.A., Li, X.D., 2010. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environ. Pollut. 158 (3), 820-826.
    [107]
    Lovley, D.R., 1997. Microbial Fe (III) reduction in subsurface environments. FEMS Microbiol. Rev. 20 (3-4), 305-313.
    [108]
    Luo, X., Wang, C., Luo, S., Dong, R., Tu, X., Zeng, G., 2012. Adsorption of As (III) and As(V) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nanocomposites. Chem. Eng. J. 187, 45-52.
    [109]
    MacDonald, A.M., Bonsor, H.C., Ahmed, K.M., Burgess, W.G., Basharat, M., Calow, R.C., Dixit, A., Foster, S.S.D., Gopal, K., Lapworth, D.J., Lark, R.M., 2016. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nat. Geosci. 9 (10), 762-766.
    [110]
    Maeda, S., 1994. Safety and Environmental Effects. In:Patai, S. (Ed.), The Chemistry of Organic Arsenic, Antimony and Bismuth Compounds. John Wiley & Sons, New York, pp. 725-759.
    [111]
    Maliva, R.G., 2020. Anthropogenic Aquifer Recharge and Water Quality. In:Maliva, R.G.(Ed.), Anthropogenic Aquifer Recharge. Springer Hydrogeology. Springer, Cham, pp. 133-164 https://doi.org/10.1007/978-3-030-11084-0_6.
    [112]
    Matisoff, G., Khourey, C.J., Hall, J.F., Varnes, A.W., Strain, W.H., 1982. The nature and source of arsenic in Northeastern Ohio ground water. Groundwater 20 (4), 446-456.
    [113]
    Matschullat, J., 2000. Arsenic in the geosphere-a review. Sci. Total Environ. 249 (1-3), 297-312.
    [114]
    Mbotake, T.I., 2006. A preliminary study of sources of arsenic contamination in southwest Cameroon. J. Environ. Hydrol. 14 (25), 1-11.
    [115]
    McArthur, J.M., 2019. Arsenic in groundwater. In:Sikdar, P.K. (Ed.), Groundwater Development and Management. Springer, Cham, pp. 279-308.
    [116]
    McArthur, J.M., Ravenscroft, P., Safiulla, S., Thirlwall, M.F., 2001. Arsenic in groundwater:testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour. Res. 37 (1), 109-117.
    [117]
    Medunić, G., Fiket, Ž., Ivanić, M., 2020. Arsenic contamination status in Europe, Australia, and other parts of the world. In:Srivastava, S. (Ed.), Arsenic in Drinking Water and Food. Springer, Singapore, pp. 183-233.
    [118]
    Mendoza-Chávez, C.E., Carabin, A., Dirany, A., Drogui, P., Buelna, G., Meza-Montenegro, M.M., Ulloa-Mercado, R.G., Diaz-Tenorio, L.M., Leyva-Soto, L.A., Gortáres-Moroyoqui, P., 2020. Statistical optimization of arsenic removal from synthetic water by electrocoagulation system and its application with real arsenic-polluted groundwater. Environ. Technol. 1-12.
    [119]
    Middleton, D.R.S., Watts, M.J., Hamilton, E.M., Ander, E.L., Close, R.M., Exley, K.S., Crabbe, H., Leonardi, G.S., Fletcher, T., Polya, D.A., 2016. Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK. Sci. Rep. 6, 25656.
    [120]
    Millward, G.E., Kitts, H.J., Ebdon, L., Allen, J.I., Morris, A.W., 1997. Arsenic in the Thames plume, UK. Mar. Environ. Res. 44 (1), 51-67.
    [121]
    Mitsunobu, S., Hamanura, N., Kataoka, T., Shiraishi, F., 2013. Arsenic attenuation in geothermal streamwater coupled with biogenic arsenic (III) oxidation. Appl. Geochem. 35, 154-160.
    [122]
    Morales-Simfors, N., Bundschuh, J., Herath, I., Inguaggiato, C., Caselli, A.T., Tapia, J., Choquehuayta, F.E.A., Armienta, M.A., Ormachea, M., Joseph, E., López, D.L., 2020. Arsenic in Latin America:a critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. Sci. Total Environ. 716, 135564.
    [123]
    Mozumder, M.R.H., 2019. Impacts of Pumping on the Distribution of Arsenic in Bangladesh Groundwater. Ph.D. thesis. Columbia University, p. 199.
    [124]
    Mukherjee, A., Sengupta, M.K., Hossain, M.A., Ahamed, S., Das, B., Nayak, B., Lodh, D., Rahman, M.M., Chakraborti, D., 2006. Arsenic contamination in groundwater:a global perspective with emphasis on the Asian scenario. J. Health Popul. Nutr. 142-163.
    [125]
    Mukherjee, P., Chatterjee, D., Jana, J., Maity, P.B., Goswami, A., Saha, H., Sen, M., Nath, B., Shome, D., Sarkar, M.J., Bagchi, D., 2007. Household water treatment option:removal of arsenic in presence of natural Fe-containing groundwater by solar oxidation. Trace Metals and other Contaminants in the Environment 9, pp. 603-622.
    [126]
    Mukherjee, A., Bhattacharya, P., Shi, F., Fryar, A.E., Mukherjee, A.B., Xie, Z.M., Jacks, G., Bundschuh, J., 2009. Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India). Appl. Geochem. 24 (10), 1835-1851.
    [127]
    Murphy, T., Phan, K., Yumvihoze, E., Irvine, K., Wilson, K., Lean, D., Ty, B., Poulain, A., Laird, B., Chan, L.H.M., 2018. Groundwater irrigation and arsenic speciation in rice in Cambodia. J. Health Pollut. 8 (19), 180911.
    [128]
    Natasha, M.S., Imran, M., Khalid, S., Murtaza, B., Niazi, N.K., Zhang, Y., Hussain, I., 2019. Arsenic environmental contamination status in South Asia. In:Srivastava, S. (Ed.), Arsenic in Drinking Water and Food. Springer, Singapore https://doi.org/10.1007/978-981-13-8587-2_2.
    [129]
    Neku, A., Tandukar, N., 2003, May. An overview of arsenic contamination in groundwater of Nepal and its removal at household level. J. de Phys. IV Proc. 107, 941-943.
    [130]
    Nguyen, K.P., Itoi, R., 2009. Source and release mechanism of arsenic in aquifers of the Mekong Delta, Vietnam. J. Contam. Hydrol. 103 (1-2), 58-69.
    [131]
    Nguyen, T., Thi, P., Yacouba, S., Pare, S., Bui, H.M., 2020a. Removal of arsenic from groundwater using Lamdong laterite as a natural adsorbent. Pol. J. Environ. Stud. 29 (2), 1305-1314.
    [132]
    Nguyen, T.H., Tran, H.N., Vu, H.A., Trinh, M.V., Nguyen, T.V., Loganathan, P., Vigneswaran, S., Nguyen, T.M., Vu, D.L., Nguyen, T.H.H., 2020b. Laterite as a low-cost adsorbent in a sustainable decentralized filtration system to remove arsenic from groundwater in Vietnam. Sci. Total Environ. 699, 134267.
    [133]
    Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, P., Rahman, M., 1998. Arsenic poisoning of Bangladesh groundwater. Nature 395, 338.
    [134]
    Nickson, R.T., McArthur, J.M., Ravenscroft, P., Burgess, W.G., Ahmed, K.M., 2000. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 15 (4), 403-413.
    [135]
    Nickson, R.T., McArthur, J.M., Shrestha, B., Kyaw-Myint, T.O., Lowry, D., 2005. Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Appl. Geochem. 20 (1), 55-68.
    [136]
    Nickson, R., Sengupta, C., Mitra, P., Dave, S.N., Banerjee, A.K., Bhattacharya, A., Basu, S., Kakoti, N., Moorthy, N.S., Wasuja, M., Kumar, M., 2007. Current knowledge on the distribution of arsenic in groundwater in five states of India. J. Environ. Sci. Health A 42(12), 1707-1718.
    [137]
    Nicolli, H.B., Suriano, J.M., Peral, M.A.G., Ferpozzi, L.H., Baleani, O.A., 1989. Groundwater contamination with arsenic and other trace elements in an area of the Pampa, Province of Córdoba, Argentina. Environ. Geol. Water Sci. 14 (1), 3-16.
    [138]
    Nicolli, H.B., Bundschuh, J., Blanco, M.D.C., Tujchneider, O.C., Panarello, H.O., Dapena, C., Rusansky, J.E., 2012. Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina:results from 100 years of research. Sci. Total Environ. 429, 36-56.
    [139]
    Oke, I.A., Olarinoye, N.O., Adewusi, S.R.A., 2008. Adsorption kinetics for arsenic removal from aqueous solutions by untreated powdered eggshell. Adsorption 14 (1), 73-83.
    [140]
    Pallier, V., Feuillade-Cathalifaud, G., Serpaud, B., Bollinger, J.C., 2010. Effect of organic matter on arsenic removal during coagulation/flocculation treatment. J. Colloid Interface Sci. 342 (1), 26-32.
    [141]
    Panigatti, M.C., Boglione, R.M., Griffa, C.A., Schierano, M.C., 2014. Groundwater arsenic in the central-west of the Santa Fe Province, Argentine. Once century of the discovery of Arsenicosis in Latin America (1914-2014) As2014. In:Bundschuh, J., Bhattacharya, P.(Eds.), Interdisciplinary Book Series:Arsenic in the Environment-Proceedings. CRC Press/Taylor and Francis, pp. 159-161.
    [142]
    Parvez, F., Wasserman, G.A., Factor-Litvak, P., Liu, X., Slavkovich, V., Siddique, A.B., Sultana, R., Sultana, R., Islam, T., Levy, D., Mey, J.L., 2011. Arsenic exposure and motor function among children in Bangladesh. Environ. Health Perspect. 119 (11), 1665-1670.
    [143]
    Patel, A.K., Das, N., Goswami, R., Kumar, M., 2019. Arsenic mobility and potential coleaching of fluoride from the sediments of three tributaries of the Uer Brahmaputra floodplain, Lakhimpur, Assam, India. J. Geochem. Explor. 203, 45-58.
    [144]
    Pierce, M.L., Moore, C.B., 1982. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 16 (7), 1247-1253.
    [145]
    Pokhrel, D., Bhandari, B.S., Viraraghavan, T., 2009. Arsenic contamination of groundwater in the Terai region of Nepal:an overview of health concerns and treatment options. Environ. Int. 35 (1), 157-161.
    [146]
    Polya, D.A., Polizzotto, M.L., Fendorf, S., Lado, L.R., Hegan, A., Lawson, M., Rowland, H.A., Giri, A.K., Mondal, D., Sovann, C., Al Lawati, W.M.M., 2010. Arsenic in groundwaters of Cambodia. Water Resourc. Develop. S. Asia 31-56.
    [147]
    Polya, D.A., Sparrenborn, C., Datta, S., Guo, H., 2019. Groundwater arsenic biogeochemistry-Key questions and use of tracers to understand arsenic-prone groundwater systems. Geosci. Front. 10, 1635-1641.
    [148]
    Postma, D., Pham, T.K.T., Sø, H.U., Vi, M.L., Nguyen, T.T., Larsen, F., Pham, H.V., Jakobsen, R., 2016. A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam. Geochim. Cosmochim. Acta 195, 277-292.
    [149]
    Rabbani, U., Mahar, G., Siddique, A., Fatmi, Z., 2017. Risk assessment for arseniccontaminated groundwater along River Indus in Pakistan. Environ. Geochem. Health 39 (1), 179-190.
    [150]
    Rahman, M.M., Ng, J.C., Naidu, R., 2009. Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ. Geochem. Health 31 (1), 189-200.
    [151]
    Rahman, M.A., Rahman, A., Khan, M.Z.K., Renzaho, A.M.N., 2018a. Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh:a scoping review. Ecotoxicol. Environ. Saf. 150, 335-343.
    [152]
    Rahman, M.L., Kile, M.L., Rodrigues, E.G., Valeri, L., Raj, A., Mazumdar, M., Mostofa, G., Quamruzzaman, Q., Rahman, M., Hauser, R., 2018b. Prenatal arsenic exposure, child marriage, and pregnancy weight gain:associations with preterm birth in Bangladesh. Environ. Int. 112, 23-32.
    [153]
    Ranjan, A., 2019. Spatial Analysis of Arsenic Contamination of Groundwater around the World and India Corpus ID:203645.
    [154]
    Rasheed, H., Kay, P., Slack, R., Gong, Y.Y., Carter, A., 2017. Human exposure assessment of different arsenic species in household water sources in a high risk arsenic area. Sci. Total Environ. 584, 631-641.
    [155]
    Ravenscroft, P., Brammer, H., Richards, K.S., 2009. Arsenic Pollution:A Global Synthesis. Wiley-Blackwell, London.
    [156]
    Rehman, Z.U., Khan, S., Qin, K., Brusseau, M.L., Shah, M.T., Din, I., 2016. Quantification of inorganic arsenic exposure and cancer risk via consumption of vegetables in southern selected districts of Pakistan. Sci. Total Environ. 550, 321-329.
    [157]
    Richards, L.A., Casanueva-Marenco, M.J., Magnone, D., Sovann, C., van Dongen, B.E., Polya, D.A., 2019. Contrasting sorption behaviours affecting groundwater arsenic concentration in Kandal Province, Cambodia. Geosci. Front. 10 (5), 1701-1713.
    [158]
    Robles, A.D., Polizzi, P., Romero, M.B., Boudet, L.N.C., Medici, S., Costas, A., Gerpe, M., 2016. Geochemical mobility of arsenic in the surficial waters from Argentina. Environ. Earth Sci. 75 (23), 1479.
    [159]
    Rodell, M., Velicogna, I., Famiglietti, J.S., 2009. Satellite-based estimates of groundwater depletion in India. Nature 460 (7258), 999-1002.
    [160]
    Rodrıguez, R., Ramos, J.A., Armienta, A., 2004. Groundwater arsenic variations:the role of local geology and rainfall. Appl. Geochem. 19 (2), 245-250.
    [161]
    Rodríguez-Lado, L., Sun, G., Berg, M., Zhang, Q., Xue, H., Zheng, Q., Johnson, C.A., 2013. Groundwater arsenic contamination throughout China. Science 341 (6148), 866-868.
    [162]
    Rosenboom, J.W., 2004. Not Just Red or Green:An analysis of arsenic data from 15 Upazilas in Bangladesh. Government of the People's Republic of Bangladesh, Ministry of Local Government, Rural Development, and Co-operatives, Department of Public Health & Engineering, Arsenic Policy Support Unit.
    [163]
    Rowland, H.A., Omoregie, E.O., Millot, R., Jimenez, C., Mertens, J., Baciu, C., Hug, S.J., Berg, M., 2011. Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania). Appl. Geochem. 26 (1), 1-17.
    [164]
    Saha, K.C., 2003. Review of arsenicosis in west Bengal, India-a clinical perspective. Crit. Rev. Environ. Sci. Technol. 33 (2), 127-163.
    [165]
    Saha, D., Ray, R.K., 2019. Groundwater resources of India:potential, challenges and management. In:Sikdar, P.K. (Ed.), Groundwater Development and Management. Springer, Cham, pp. 19-42.
    [166]
    Sanz, E., Munoz-Olivas, R., Camara, C., Sengupta, M.K., Ahamed, S., 2007. Arsenic speciation in rice, straw, soil, hair and nails samples from the arsenic-affected areas of Middle and Lower Ganga plain. J. Environ. Sci. Health A 42 (12), 1695-1705.
    [167]
    Saoudi, A., Zeghnoun, A., Bidondo, M.L., Garnier, R., Cirimele, V., Persoons, R., Fréry, N., 2012. Urinary arsenic levels in the French adult population:the French National Nutrition and Health Study. Sci. Total Environ. 433, 206-215.
    [168]
    Schwartz, M.O., 1995. Arsenic in porphyry coer deposits:economic geology of a polluting element. Int. Geol. Rev. 37 (1), 9-25.
    [169]
    Schwenzer, S.P., Tommaseo, C.E., Kersten, M., Kirnbauer, T., 2001. Speciation and oxidation kinetics of arsenic in the thermal springs of Wiesbaden spa Germany Fresenius. J. Anal. Chem. 371, 927-933.
    [170]
    Sen, R., Sarkar, S., 2019. Arsenic Contamination of Groundwater in West Bengal:A Report. In:Ghosh, S.K. (Ed.), Waste Management and Resource Efficiency. Springer, Singapore, pp. 249-259.
    [171]
    Shah, B.A., 2015. Status of groundwater arsenic contamination in the states of North-east India:a review. Ind. Groundwater 5, 32-37.
    [172]
    Shah, A.Q., Kazi, T.G., Baig, J.A., Arain, M.B., Afridi, H.I., Kandhro, G.A., Wadhwa, S.K., Kolachi, N.F., 2010. Determination of inorganic arsenic species (As3+ and As5+) in muscle tissues of fish species by electrothermal atomic absorption spectrometry(ETAAS). Food Chem. 119 (2), 840-844.
    [173]
    Shakya, A.K., Ghosh, P.K., 2019. Simultaneous biological removal of arsenic, iron, and nitrate from groundwater by a terminal electron accepting process. Wastewater Reuse and Watershed Management:Engineering Implications for Agriculture, Industry, and the Environment, p. 247.
    [174]
    Shukla, D.P., Dubey, C.S., Singh, N.P., Tajbakhsh, M., Chaudhry, M., 2010. Sources and controls of Arsenic contamination in groundwater of Rajnandgaon and Kanker District, Chattisgarh Central India. J. Hydrol. 395 (1-2), 49-66.
    [175]
    Siddiqui, S.I., Chaudhry, S.A., 2017. Iron oxide and its modified forms as an adsorbent for arsenic removal:a comprehensive recent advancement. Process Saf. Environ. Prot. 111, 592-626.
    [176]
    Siddiqui, S.I., Naushad, M., Chaudhry, S.A., 2019. Promising prospects of nanomaterials for arsenic water remediation:a comprehensive review. Process Saf. Environ. Prot. 126, 60-97.
    [177]
    Singh, A.K., 2006. Chemistry of arsenic in groundwater of Ganges-Brahmaputra river basin. Curr. Sci. 599-606.
    [178]
    Smedley, P.L., 2008. Sources and distribution of arsenic in groundwater and aquifers. In:Appelo, T. (Ed.), Arsenic in Groundwater:A World Problem. Utrecht, the Netherlands, IAH Publication, 5, pp. 4-32.
    [179]
    Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17 (5), 517-568.
    [180]
    Smedley, P.L., Kinniburgh, D.G., 2013. Arsenic in groundwater and the environment. In:Selinus, O. (Ed.), Essentials of Medical Geology. Springer, Dordrecht https://doi.org/10.1007/978-94-007-4375-5_12.
    [181]
    Smedley, P.L., Edmunds, W.M., Pelig-Ba, K.B., 1996. Mobility of arsenic in groundwater in the Obuasi gold-mining area of Ghana:some implications for human health. Geol. Soc. Lond., Spec. Publ. 113 (1), 163-181.
    [182]
    Smith, A.H., Smith, M.M.H., 2004. Arsenic drinking water regulations in developing countries with extensive exposure. Toxicology 198 (1-3), 39-44.
    [183]
    Smith, A.H., Lingas, E.O., Rahman, M., 2000. Contamination of drinking-water by arsenic in Bangladesh:a public health emergency. Bull. World Health Organ. 78, 1093-1103.
    [184]
    Song, J., Jia, S.Y., Ren, H.T., Wu, S.H., Han, X., 2015. Application of a high-surface-area schwertmannite in the removal of arsenate and arsenite. Int. J. Environ. Sci. Technol. 12 (5), 1559-1568.
    [185]
    Sorg, T.J., Chen, A.S., Wang, L., 2014. Arsenic species in drinking water wells in the USA with high arsenic concentrations. Water Res. 48, 156-169.
    [186]
    Southwick, J.W., Western, A.E., Beck, M.M., Whitley, T., Isaacs, R., Petajan, J., Hansen, C.D., 1983. An epidemiological study of arsenic in drinking water in Millard County Utah.
    [187]
    In:Lederer, W.H., Fensterheim, R.J. (Eds.), Arsenic:Industrial. Biomedical Environmental Perspectives. Van Nostrand Reinhold Company, New York, Toronto, London, Melbourne, pp. 210-225.
    [188]
    Sovann, C., Polya, D.A., 2014. Improved groundwater geogenic arsenic hazard map for Cambodia. Environ. Chem. 11 (5), 595-607.
    [189]
    Sridharan, M., Nathan, D.S., 2018. Chemometric tool to study the mechanism of arsenic contamination in groundwater of Puducherry region, South East coast of India. Chemosphere 208, 303-315.
    [190]
    Stanger, G., 2005. A palaeo-hydrogeological model for arsenic contamination in southern and south-east Asia. Environ. Geochem. Health 27 (4), 359-368.
    [191]
    Stauffer, R.E., Thompson, J.M., 1984. Arsenic and antimony in geothermal waters of Yellowstone National Park, Wyoming, USA. Geochim. Cosmochim. Acta 48 (12), 2547-2561.
    [192]
    Steinmaus, C., Smith, A.H., Ferreccio, C., 2016. Arsenic toxicity:Who is most susceptible? Arsenic Research and Global Sustainability:Proceedings of the Sixth International Congress on Arsenic in the Environment (As2016), June 19-23, 2016. Sweden, CRC Press, Stockholm, p. 373
    [193]
    Stone, A., Lanzoni, M., Smedley, P., 2019. Groundwater Resources:Past, Present, and Future. In:Dadson, S.J., Garrick, D.E., Penning-Rowsell, E.C., Hall, J.W., Hope, R., Hughes, J. (Eds.), Water Science, Policy, and Management:A Global Challenge. John Wiley & Sons Ltd., pp. 29-54.
    [194]
    Stopelli, E., Duyen, V.T., Mai, T.T., Trang, P.T., Viet, P.H., Lightfoot, A., Kipfer, R., Schneider, M., Eiche, E., Kontny, A., Neumann, T., 2020. Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam:Interplay of mobilisation and retardation processes. Sci. Total Environ. 717, 137-143.
    [195]
    Suhag, R., 2019. Overview of ground water in India. PRS Legisl. Res. 1-11.
    [196]
    Sun, G., 2004. Arsenic contamination and arsenicosis in China. Toxicol. Appl. Pharmacol. 198 (3), 268-271.
    [197]
    Sun, G., Yu, G., Zhao, L., Li, X., Xu, Y., Li, B., Sun, D., 2019. Endemic arsenic poisoning. In:Sun, D. (Ed.), Endemic Disease in China. Public Health in China, Vol 2. Springer, Singapore https://doi.org/10.1007/978-981-13-2529-8_4.
    [198]
    Tamasi, G., Cini, R., 2004. Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. Sci. Total Environ. 327 (1-3), 41-51.
    [199]
    Tandon, S.K., Sinha, R., 2018. The Ganga River:A summary view of a large river system of the Indian sub-continent. In:Singh, D. (Ed.), The Indian Rivers. Springer Hydrogeology. Springer, Singapore https://doi.org/10.1007/978-981-10-2984-4_5.
    [200]
    Tesoriero, A.J., Gronberg, J.A., Juckem, P.F., Miller, M.P., Austin, B.P., 2017. Predicting redoxsensitive contaminant concentrations in groundwater using random forest classification. Water Resour. Res. 53 (8), 7316-7331.
    [201]
    Thakur, B.K., Gupta, V., 2019. Valuing health damages due to groundwater arsenic contamination in Bihar, India. Econ. Hum. Biol. 35, 123-132.
    [202]
    Thakur, J.K., Thakur, R.K., Ramanathan, A.L., Kumar, M., Singh, S.K., 2011. Arsenic contamination of groundwater in Nepal-an overview. Water 3 (1), 1-20.
    [203]
    Thi, Nguyen, Mai, Phuong, Phuong, Thi, Nguyen, Thao, Bui, ThiHieu, Nguyen, Thi Hue, 2019. Concentration of arsenic in groundwater, vegetables, human hair and nails in mining site in the Northern Thai Nguyen province, Vietnam:human exposure and risks assessment. Hum. Ecol. Risk Assess. Int. J. 25, 602-613.
    [204]
    Thomas, D.J., Bradham, K., 2016. Role of complex organic arsenicals in food in aggregate exposure to arsenic. J. Environ. Sci. 49, 86-96.
    [205]
    Tiankao, W., Chotpantarat, S., 2018. Risk assessment of arsenic from contaminated soils to shallow groundwater in Ong Phra Sub-District, SuphanBuri Province, Thailand. J. Hydrol. Reg. Stud. 19, 80-96.
    [206]
    Tirkey, P., Bhattacharya, T., Chakraborty, S., 2016. Arsenic and other metals in the groundwater samples of Ranchi city, Jharkhand, India. Curr. Sci. 76-80.
    [207]
    Trafford, J.M., Lawrence, A.R., Macdonald, D.M.J., Nguyen, V.D., Tran, D.N., Nguyen, T.H., 1996. The effect of urbanisation on the groundwater quality beneath the city of Hanoi, Vietnam. BGS technical report WC/96/22. British Geological Survey, Keyworth, UK.
    [208]
    Tsuda, T., Babazono, A., Yamamoto, E., Kurumatani, N., Mino, Y., Ogawa, T., Kishi, Y., Aoyama, H., 1995. Ingested arsenic and internal cancer:a historical cohort study followed for 33 years. Am. J. Epidemiol. 141 (3), 198-209.
    [209]
    Ul Haque, I., 2015. Sustained applications of pesticides and fertilizers in sugarcane, cotton and wheat cultivated areas causes ground water arsenic contamination-District Rahim Yar Khan. Pakistan Int. J. Environ. Monit. Anal. 3, 20-30.
    [210]
    United Nations Children's Fund (UNICEF), 2016. Strategy for Water, Sanitation and Hygiene 2016-2030. UNICEF, Brussels.
    [211]
    United States Department of Health and Human Services, 2000. Toxicological profile for arsenic.
    [212]
    Van Geen, A., Ahmed, E.B., Pitcher, L., Mey, J.L., Ahsan, H., Graziano, J.H., Ahmed, K.M., 2014. Comparison of two blanket surveys of arsenic in tubewells conducted 12 years apart in a 25 km2 area of Bangladesh. Sci. Total Environ. 488, 484-492.
    [213]
    Verma, S., Mukherjee, A., Choudhury, R., Mahanta, C., 2015. Brahmaputra river basin groundwater:solute distribution, chemical evolution and arsenic occurrences in different geomorphic settings. J. Hydrol. Reg. Stud. 4, 131-153.
    [214]
    Verma, P.K., Verma, S., Pande, V., Mallick, S., Deo Tripathi, R., Dhankher, O.P., Chakrabarty, D., 2016. Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2.1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana. Front. Plant Sci. 7, 740.
    [215]
    Vivona, R., Preziosi, E., Madé, B., Giuliano, G., 2007. Occurrence of minor toxic elements in volcanic-sedimentary aquifers:a case study in central Italy. Hydrogeol. J. 15 (6), 1183-1196.
    [216]
    Vuki, M., Limtiaco, J., Aube, T., Emmanuel, J., Denton, G., Wood, R., 2007. Arsenic speciation study in some spring waters of Guam, Western Pacific Ocean. Sci. Total Environ. 379(2-3), 176-179.
    [217]
    Wasserman, G.A., Liu, X., Parvez, F., Ahsan, H., Factor-Litvak, P., van Geen, A., Slavkovich, V., Lolacono, N.J., Cheng, Z., Hussain, I., Momotaj, H., 2004. Water arsenic exposure and children's intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 112 (13), 1329-1333.
    [218]
    Webster, J.G., Nordstrom, D.K., 2003. Geothermal arsenic. Arsenic in Ground Water. Springer, Boston, MA, pp. 101-125.
    [219]
    Wegelin, M., Gechter, D., Hug, S., Mahmud, A., Motaleb, A., 2000. SORAS-a simple arsenic removal process. Water sanitation and hygiene:challenges of the Millennium, 26th WEDC conference. Dhaka, Bangladesh, pp. 255-258.
    [220]
    Welch, A.H., Westjohn, D.B., Helsel, D.R., Wanty, R.B., 2000. Arsenic in ground water of the United States:occurrence and geochemistry. Groundwater 38 (4), 589-604.
    [221]
    Whaley-Martin, K., Mailloux, B., van Geen, A., Bostick, B., Ahmed, K., Choudhury, I., Slater, G., 2017. Human and livestock waste as a reduced carbon source contributing to the release of arsenic to shallow Bangladesh groundwater. Sci. Total Environ. 595, 63-71.
    [222]
    WHO, 1999. Arsenic in Drinking Water. World Health Organization, Geneva, p. 210.
    [223]
    WHO, 2004. Guideline for Drinking-Water Quality, 3rd edition (Recommendations). World Health Organization, Geneva.
    [224]
    WHO, 2011. Arsenic in Drinking-water. Background Document for Preparation of WHO Guidelines for Drinking-water Quality. World Health Organization, Geneva.
    [225]
    Williams, M., Fordyce, F., Paijitprapapon, A., Charoenchaisri, P., 1996. Arsenic contamination in surface drainage and groundwater in part of the southeast Asian tin belt, Nakhon Si Thammarat Province, southern Thailand. Environ. Geol. 27 (1), 16-33.
    [226]
    Winkel, L., Berg, M., Amini, M., Hug, S.J., Johnson, C.A., 2008. Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nat. Geosci. 1 (8), 536-542.
    [227]
    Winkel, L.H., Trang, P.T.K., Lan, V.M., Stengel, C., Amini, M., Ha, N.T., Viet, P.H., Berg, M., 2011. Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc. Natl. Acad. Sci. 108 (4), 1246-1251.
    [228]
    World Bank, 2005. Towards a More Effective Operational Response:Arsenic Contamination of Groundwater in South and East Asian Countries, Volume 1, Policy Report. World Bank.
    [229]
    Wyllie, J., 1937. An investigation of the source of arsenic in a well water. Can. Public Health J. 28 (3), 128-135.
    [230]
    Yang, M.H., Zang, Y.S., Huang, H., Chen, K., Li, B., Sun, G.Y., Zhao, X.W., 2014. Arsenic trioxide exerts anti-lung cancer activity by inhibiting angiogenesis. Curr. Cancer Drug Targets 14 (6), 557-566.
    [231]
    Zhang, A., Feng, H., Yang, G., Pan, X., Jiang, X., Huang, X., Dong, X., Yang, D., Xie, Y., Peng, L., Jun, L., 2007. Unventilated indoor coal-fired stoves in Guizhou province, China:cellular and genetic damage in villagers exposed to arsenic in food and air. Environ. Health Perspect. 115 (4), 653-658.
    [232]
    Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., Inyang, M., 2013. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour. Technol. 130, 457-462.
    [233]
    Zhang, Z., Guo, H., Liu, S., Weng, H., Han, S., Gao, Z., 2020. Mechanisms of groundwater arsenic variations induced by extraction in the western Hetao Basin, Inner Mongolia, China. J. Hydrol. 583, 124599.
    [234]
    Zubair, M., Martyniuk, C.J., Shaheen, A., 2018. Rising level of arsenic in water and fodder:a growing threat to livestock and human populations in Pakistan. Toxin Rev. 37 (3), 171-181.
    [235]
    Zuzolo, D., Cicchella, D., Demetriades, A., Birke, M., Albanese, S., Dinelli, E., Lima, A., Valera, P., De Vivo, B., 2020. Arsenic:geochemical distribution and age-related health risk in Italy. Environ. Res. 182, 109076.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (311) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return