Volume 12 Issue 1
Dec.  2020
Turn off MathJax
Article Contents
Juan Pedro Rodríguez-López, Eduardo Barrón, Daniel Peyrot, Gary B. Hughes. Deadly oasis: Recurrent annihilation of Cretaceous desert bryophyte colonies; the role of solar, climate and lithospheric forcing[J]. Geoscience Frontiers, 2021, 12(1): 1-12. doi: 10.1016/j.gsf.2020.06.008
Citation: Juan Pedro Rodríguez-López, Eduardo Barrón, Daniel Peyrot, Gary B. Hughes. Deadly oasis: Recurrent annihilation of Cretaceous desert bryophyte colonies; the role of solar, climate and lithospheric forcing[J]. Geoscience Frontiers, 2021, 12(1): 1-12. doi: 10.1016/j.gsf.2020.06.008

Deadly oasis: Recurrent annihilation of Cretaceous desert bryophyte colonies; the role of solar, climate and lithospheric forcing

doi: 10.1016/j.gsf.2020.06.008
Funds:

Funded by the CGL2005-07445-C03-03 and CGL2011- 23717 projects of the Ministry of Education of the Government of Spain.

  • Received Date: 2019-05-10
  • Rev Recd Date: 2020-06-11
  • Many oases (wet interdunes) are sedimentary systems characterized by high-frequency water-level oscillations, marked changes in salinity and intense biological activity at their margins. They are considered to be one of the most challenging environments on Earth for ecosystem development. These dynamic, depositional settings are usually unfavourable for fossilization and subsequent preservation of vegetal remains. This paper describes bryophyte (liverwort) assemblages occurring in three successive horizons interpreted to represent (i) recurrent early successional phases of biological soil crust colonization of wet interdune margins or (ii) exceptional preservation of floating or riparian liverworts in oasis pond waters associated with a progressive fall of the interdune water level. The record of in situ colonization surfaces characterized by delicate (e.g. lignin-free) three-dimensional structures represents an exceptional type of preservation herein associated with a rapid variation in phreatic interdune water level and the subsequent establishment of anoxic and reducing conditions. The occurrence of exceptionally preserved liverwort colonies coincides with the sedimentary record of, at least, three seismite levels in the oasis. Data gathered from the site suggests that the water table of the oasis was controlled by a combination of (i) a positive creation of accommodation space due to subsidence associated with movement on syn-sedimentary extensional faults, and (ii) the rise and fall of the oasis water table controlled by the oscillations of the groundwater system due to orbital changes which appear to drive the variability of the climate system. Rising groundwater levels flooded the oasis soil crusts and lead to the exceptional recurrent preservation of liverwort colonies at the oasis margins. Alternatively, considering the hypothesis of floating or riparian liverworts in the oasis pond waters, the fall in the level of the oasis water table placed the floating liverworts in contact with the oasis bottom sediments. This fall in the level of the oasis water table could indicate a cessation of accommodation space by syn-sedimentary extensional faults and/or a regional lowering of the groundwater system level associated with drought periods. Preliminary results indicate that oasis lamination between liverwort colonies records decadal and sub-decadal cyclicity, related with 11-year Schwabe sunspot and sub-decadal NAO cyclicities, conferring for every sedimentary cycle between liverwort colonies a duration of approximately 200 years, that otherwise matches the expected recurrence period for the De Vries cycle of solar activity.

  • loading
  • [1]
    Allen, J.R.L., 1986. Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins. Sediment. Geol. 46, 67-75.
    [2]
    Antoni, J., 2007. Cyclic spectral analysis in practice. Mech. Syst. Signal Process. 21, 597-630.
    [3]
    Appenzeller, C., Stocker, T.F., Anklin, M., 1998. North Atlantic Oscillation dynamics recorded in Greenland ice cores. Science 282, 446-449.
    [4]
    Arocha-Garza, H.F., Canales-Del Castillo, R., Eguiarte, L.E., Souza, V., De la Torre-Zavala, S., 2017. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis. PeerJ 5, e3247. https://doi.org/10.7717/peerj.3247.
    [5]
    Arribas, M.A., Rodríguez-López, J.P., Meléndez, N., Soria, A.R., de Boer, P.L., 2012. Giant calcite concretions in aeolian dune sandstones; sedimentological and architectural controls on diagenetic heterogeneity, mid-Cretaceous Iberian Desert System, Spain. Sediment. Geol. 243, 130-147.
    [6]
    Barron, E., Peyrot, D., Rodríguez-López, J.P., Meléndez, N., Lopez Del Valle, R., Najarro, M., Rosales, I., Comas-Rengifo, M.J., 2015. Palynology of Aptian and upper Albian (Lower Cretaceous) amberbearing outcrops of the southern margin of the Basque-Cantabrian Basin (northern Spain). Cretac.Res. 52, 292-312.
    [7]
    Beer, J., 2000. Polar ice as an archive for solar cycles and the terrestrial climate. The solar cycle and terrestrial climate, solar and space weather euroconference. In:Wilson, A. (Ed.), Proceedings of the 1st Solar and Space Weather Euroconference, 463. ESA Publications Division, Noordwijk, Netherlands, p. 671.
    [8]
    Belnap, J., 2003. The World at your feet:desert biological soil crusts. Front. Ecol. Environ. 1, 181-189.
    [9]
    Belnap, J., 2006. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process. 20, 3159-3178.
    [10]
    Belnap, J., Lange, O.L., 2001. Biological Soil Crusts:Structure Function, and Management. SpringlerVerlag, Berlin, p. 496.
    [11]
    Berkeley, A., Thomas, A.D., Dougill, A.J., 2005. Cyanobacterial soil crusts and woody shrub canopies in Kalahari rangelands. Afr. J. Ecol. 43, 137-145.
    [12]
    Brown, R.C., Lemmon, B.E., Shimamura, M., Villarreal, J.C., Renzaglia, K.S., 2015. Spores of relictual bryophytes:diverse adaptations to life on land. Rev. Palaeobot. Palynol. 216, 1-17.
    [13]
    Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K.I., Salisch, M., Reisser, W., Weber, B., 2009. Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb. Ecol. 57, 229-247.
    [14]
    Chan, M.A., Kocurek, G., 1988. Complexities in eolian and marine interactions:processes and eustatic controls on erg development. Sediment. Geol. 56, 283-300.
    [15]
    Colesie, C., Felde, V.J.M., Büdel, B., 2016. Composition and macrostructure of biological soil crusts. In:Weber, B., Büdel, B., Belnap, J. (Eds.), Biological Soil Crusts:an Organizing Principle in Drylands, Ecological Studies, Analysis and Synthesis, 226. Springer, Switzerland, pp. 159-172.
    [16]
    Cooper, E.E., Henwood, M.J., Brown, E.A., 2012. Are the liverworts really that old? Cretaceous origins and Cenozoic diversifications in Lepidoziaceae reflect a recurrent theme in liverwort evolution. Biol. J.Linn. Soc. 107, 425-441.
    [17]
    Cornelissen, J.H.C., Lang, S.I., Soudzilovskaia, N.A., During, H.J., 2007. Comparative cryptogam ecology:a review of bryophyte and lichen traits that drive biogeochemistry. Ann. Bot. 99, 987-1001.
    [18]
    Cowling, R.M., Rundel, P.W., Desmet, P.G., Esler, K.J., 1998. Extraordinary high regional-scale plant diversity in southern Africa arid lands:subcontinental and global comparisons. Divers. Distrib. 4, 27-36.
    [19]
    Cremer, K.W., Mount, A.B., 1965. Early stages of plant succession following the complete felling and burning of Eucalyptus regnans forest in the Florentine Valley. Aust. J. Bot. 13, 302-322.
    [20]
    Czymzik, M., Muscheler, R., Brauer, A., 2016. Solar modulation of flood frequency in central Europe during spring and summer on interannual to multi-centennial timescales. Clim. Past 12, 799-805.
    [21]
    Diéguez, C., Rodríguez-López, J.P., Meléndez, N., 2007. Marchantiopsid colonization mats from the upper Aptian-lower Albian of the Escucha Formation (Oliete sub basin, Iberian ranges, eastern Spain).Comptes Rendus Palevol 6, 413-422.
    [22]
    Diéguez, C., Peyrot, D., Barrón, E., 2010. Floristic and vegetational changes in the Iberian Peninsula during Jurassic and Cretaceous. Rev. Palaeobot. Palynol. 162, 325-340.
    [23]
    Donaghy, F., 1915. The morphology of Riccia fluitans L. Proc. Indiana Acad. Sci. 25, 131-133.
    [24]
    Eldridge, D.J., Greene, R.S.B., 1994. Microbiotic soil crusts:a review of their roles in soil and ecological processes in the rangelands of Australia. Aust. J. Soil Res. 32, 389-415.
    [25]
    Eldridge, D.J., Tolzer, M.E., 1996. Distribution and floristics bryophytes in soil crusts in semi-arid and arid Eastern Australia. Aust. J. Bot. 44, 223-247.
    [26]
    Eldridge, D.J., Tozer, M.E., 1997. Environmental factors relating to the distribution of terricolous bryophytes and lichens in semi-arid Eastern Australia. Bryol. 100, 28-39.
    [27]
    Encinas, I., Díez, J.B., Sender, L.M., 2018. Diversidad de marchantiopsidos (hepáticas) en depositosálbienses de la formacion Escucha en la provincia de Teruel. In:Vaz, N., Sá, A.A. (Eds.), Yacimientos paleontologicos excepcionales en la península Ibérica. Cuadernos del Museo Geominero, 27. Instituto Geologico y Minero de España, Madrid, p. 335 (in Spanish).
    [28]
    Frederickson, J.A., Davis, B.M., 2017. First reported actinopterygian from the Navajo Sandstone (Lower Jurassic, Glen Canyon Group) of southern Utah, USA. J. Paleontol. 91, 548-553.
    [29]
    Fröhlich, C., Lean, J., 2004. Solar radiative output and its variability:evidence and mechanisms. Astron. AstroPhys. Rev. 12, 273-320.
    [30]
    Fryberger, S.G., Al-Sari, A.M., Clisham, T.J., 1983. Eolian dune, interdune, sand sheet, and siliciclastic sabkha sediments of an offshore prograding sand sea, Dhahran Area, Saudi Arabia. Am. Assoc. Petrol.Geol. Bull. 67, 280-312.
    [31]
    Gibson, A.C., 1996. Structure-Function Relations of Warm Desert Plants. Springer-Verlag, Berlin, p. 215.
    [32]
    Glime, J.M., 2017. Marchantiophyta. In:Glime, J.M. (Ed.), Bryophyte Ecology, vol. 1. Physiological Ecology. Michigan Technological University.
    [33]
    Gutterman, Y., 1993. Seed Germination in Desert Plants. Springer-Verlag, Berlin, p. 252.
    [34]
    Hoffman, G.L., Stockey, R.A., 1997. Morphology and paleoecology of Ricciopsis speirsae sp. nov.(Ricciaceae), a fossil liverwort from the Paleocene Joffre bridge locality, Alberta, Canada. Can. J. Bot. 75, 1375-1381.
    [35]
    Hoyt, D.V., Schatten, K.H., 1998. Group sunspot numbers:a new solar activity reconstruction. Sol. Phys. 179, 189-219.
    [36]
    Hu, F.S., Kaufman, D., Yoneji, S., Nelson, D., Shemesh, A., Huang, Y., Tian, J., Bond, G., Clegg, B., Brown, T., 2003. Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic.Science 301, 1890-1893.
    [37]
    Hughes, G.B., 2017. Frequency-Domain Analysis with DFTs. SPIE Press, Inc., Bellingham, WA, 978-1510616097. https://spie.org/Publications/Book/2300713?&origin_id=x31902.
    [38]
    Hughes, G.B., Giegengack, R., Kritikos, H.N., 2003. Modern spectral climate patterns in rhythmically deposited argillites of the Gowganda Formation (Early Proterozoic), southern Ontario, Canada. Earth Planet Sci. Lett. 207, 13-22.
    [39]
    Hughes, G.B., Adams, J., Cockburn, J.M.H., 2019. Solar activity expressed in a modern varve-thickness sequence. Can. J. Earth Sci. 56, 32-46.
    [40]
    Jürgens, N., 1997. Floristic biodiversity and history of African arid regions. Biodivers. Conserv. 6, 495-514.
    [41]
    Kocurek, G., 1981. Significance of interdune deposits and bounding surfaces in aeolian dune sands.Sedimentology 28, 753-780.
    [42]
    Kocurek, G., Havholm, K.G.c, 1993. Eolian sequence stratigraphy-a conceptual framework. In:Weimer, P., Posamentier, H. (Eds.), Siliciclastic Sequence Stratigraphy. AAPG Mem 58, 393-409.
    [43]
    Koutsodendris, A., Brauer, A., Pälike, H., Müller, U.C., Dulski, P., Lotter, A.F., Pross, J., 2011. Sub-decadalto decadal-scale climate cyclicity during the Holsteinian interglacial (MIS 11) evidenced in annually laminated sediments. Clim. Past 7, 987-999.
    [44]
    Kürschner, H., 2004. Life strategies and adaptations in bryophytes from the near and Middle East. Turk. J.Bot. 28, 73-84.
    [45]
    Kürschner, H., Alatalo, J.M., Al-Mesaifri, M.A.S.L., Alsafran, M.H.S.A., 2018. Closing a gap-first records of bryophytes from the Qatar Peninsula. Cryptogam. Bryol. 39, 77-82.
    [46]
    Larse, H., 1980. Ecology of hypersaline environments. In:Nissenbaum, A. (Ed.), Hypersaline Brines and Evaporitic Environments. Developments in Sedimentology, vol. 28. Elsevier, Amsterdam, pp. 23-39.
    [47]
    Liesa, C.L., Rodríguez-López, J.P., Ezquerro, L., Alfaro, P., Rodríguez-Pascua, M.A., Lafuente, P., Arlegui, L., Simon, J.L., 2016. Facies control on seismites in an alluvial-aeolian system:the Pliocene dune field of the Teruel half-graben basin (eastern Spain). Sediment. Geol. 344, 237-252.
    [48]
    Lundblad, B., 1954. Contributions to the geological history of the Hepaticae:fossil marchantiales from the rhatic-liassic coal mines of Skromberga (Prov. of Scania) Sweden. Sven. Bot. Tidskr. 48, 381-417.
    [49]
    Ma, Y., Zhao, J., Shao, T., Jia, Z., Zhao, Z., Guan, Z., 2019. Hydrological cycle and lake water source Indicated by microrelief-evaporite-vegetation-runoff assemblage of Badain Jaran Desert. Water 11, 1350.
    [50]
    Magdefrau, K., 1982. Life-forms of bryophytes. In:Smith, A.J.E. (Ed.), Bryophyte Ecology. Chapman and Hall, London, pp. 45-58.
    [51]
    Malam Issa, O., Trichet, J., Défarge, C., Couté, A., Valentin, C., 1999. Morphology and microstructure of microbiotic soil crusts on a tiger bush sequence (Niger, Sahel). Catena 37, 175-196.
    [52]
    Martín-Closas, C., Gomez, B., Daviero-Gomez, V., 2016. Plants and their landscapes. In:Poyato-Ariza, F.J., Buscalioni, A.D. (Eds.), Las Hoyas:A Cretaceous Wetland. Verlag Dr. Friedrich Pfeil, München, pp. 43-56.
    [53]
    Martínez, I., Escudero, A., Maestre, F.T., de la Cruz, A., Guerrero, C., Rubio, A., 2006. Small-scale patterns of abundance of mosses and lichens forming biological soil crusts in two semi-arid gypsum environments. Aust. J. Bot. 54, 339-348.
    [54]
    Meehl, G.A., Arblaster, J.M., Matthes, K., Sassi, F., van Loon, H., 2009. Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 325, 1114-1118.
    [55]
    Mehra, P.N., 1958. Fossil evidence on the condensation theory of the origin of marchantiaceous thallus.J. Palynol. Soc. India 3, 30-34.
    [56]
    Moisan, P., Voigt, S., Schneider, J.W., Kerp, H., 2012. New fossil bryophytes from the Triassic madygen lagerstätte (SW Kyrgyzstan). Rev. Palaeobot. Palynol. 187, 29-37.
    [57]
    Mountney, N.P., Jagger, A., 2004. Stratigraphic evolution of an aeolian erg margin system:the Permian Cedar Mesa Sandstone, SE Utah, USA. Sedimentology 51, 713-743.
    [58]
    Newell, A.J., Kirby, G.A., Sorensena, J.P.R., Milodowski, A.E., 2015. The Cretaceous Continental Intercalaire in central Algeria:subsurface evidence for a fluvial to aeolian transition and implications for the onset of aridity on the Saharan Platform. Palaeogeogr. Paleoclimatol. Paleoecol. 438, 146-159.
    [59]
    Ochev, V.G., 1993. Types of thanatocoenoses and burial patterns of terrestrial organisms. Paleontol. J. 27, 127-136.
    [60]
    Parris, J.T., Falcon-Lang, H.J., 2007. Coniferous trees associated with interdune deposits in the Jurassic Navajo Sandstone Formation. Paleontology 50, 829-843.
    [61]
    Peñalver, E., Delclòs, X., 2010. Spanish amber. In:Penney, D. (Ed.), Biodiversity of Fossils in Amber from the Major World Deposits. Siri Scientific Press, Manchester, UK, pp. 236-270.
    [62]
    Pérez-Rodríguez, M., Gilfedder, B.-S., Hermanns, Y.-M., Biester, H., 2016. Solar output controls periodicity in lake productivity and wetness at southernmost South America. Sci. Rep. 6, 37521.
    [63]
    Peyrot, D., Rodríguez-López, J.P., Barrón, E., Meléndez, N., 2007a. Palynology and biostratigraphy of the Escucha Formation in the early Cretaceous Oliete sub-basin, Teruel, Spain. Rev. Espanola Micropaleontol. 39 (1-2), 135-154.
    [64]
    Péyrot, D., Rodríguez-López, J.P., Lassaletta, L., Meléndez, N., Barron, E., 2007b. Contributions to the palaeoenvironmental knowledge of the Escucha Formation in the lower Cretaceous Oliete sub-basin, Teruel, Spain. Comptes Rendus Palevol 6, 469-481.
    [65]
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 2007. Numerical Recipes:the Art of Scientific Computing, third ed. Cambridge University Press, New York, p. 1256.
    [66]
    Puglisi, M., Minissale, P., Sciandrello, S., Privitera, M., 2016. Life syndrome of the bryophyte communities as an adaptative pattern in the Mediterranean temporary ponds of Italy. Plant Biosyst. Int. J. Dealing Aspects Plant Biol. 150 (6), 1417-1425.
    [67]
    Raspopov, O.M., Dergachev, V.A., Esper, J., Kozyreva, O.V., Frank, D., Ogurtsov, M., Shao, X., 2008. The influence of the de Vries (~200-year) solar cycle on climate variations:results from the Central Asian Mountains and their global link. Palaeogeogr. Palaeoclimatol. Palaeoecol. 259, 6-16.
    [68]
    Reuter, M., Auer, G., Brandano, M., Harzhauser, M., Corda, L., Pillera, W.E., 2017. Post-rift sequence architecture and stratigraphy in the Oligo-Miocene Sardinia Rift (Western Mediterranean Sea). Mar.Petrol. Geol. 79, 44-63.
    [69]
    Ripepe, M., Roberts, L.T., Fischer, A.G., 1991. ENSO and sunspot cycles in varved Eocene oil shales from image analysis. J. Sediment. Petrol. 61, 1155-1163.
    [70]
    Rodríguez-López, J.P., 2008. Sedimentología y evolución del sistema desértico arenoso (erg) desarrollado en el márgen Occidental del Tethys durante el Cretácico Medio. Cordillera Ibé rica. Provincias de Teruel y Zaragoza. PhD Thesis. Universidad Complutense de Madrid-Consejo Superior de Investigaciones Científicas, p. 500 (in Spanish).
    [71]
    Rodríguez-López, J.P., Wu, Ch, 2020. Recurrent deformations of aeolian desert dunes in the Cretaceous of the South China Block:trigger mechanisms variability and implications for aeolian reservoirs. Mar.Petrol. Geol. 119, 104483.
    [72]
    Rodríguez-López, J.P., Liesa, C.L., Meléndez, N., Soria, A.R., 2007a. Normal fault development in a sedimentary succession with multiple detachment levels:the Lower Cretaceous Oliete sub-basin, Eastern Spain. Basin Res. 19, 409-435.
    [73]
    Rodríguez-López, J.P., Meléndez, N., de Boer, P.L., Soria, A.R., 2008. Aeolian sand sea development along the mid-Cretaceous Western Tethyan Margin (Spain):erg sedimentology and palaeoclimate implications. Sedimentology 55, 1253-1292.
    [74]
    Rodríguez-López, J.P., Meléndez, N., Soria, A.R., de Boer, P.L., 2009. Reinterpretación estratigr efica y sedimentologica de las formaciones Escucha y Utrillas de la Cordillera Ibérica. Rev. Soc. Geol. Espana 22, 163-219 (in Spanish).
    [75]
    Rodríguez-López, J.P., Meléndez, N., de Boer, P.L., Soria, A.R., 2010. The action of wind and water in a back erg margin system close to the Variscan Iberian Massif. Sedimentology 57, 1315-1356.
    [76]
    Rodríguez-López, J.P., Meléndez, N., de Boer, P.L., Soria, A.R., 2012. Controls on marine-erg margin cycle variability:aeolian-marine interaction in the mid-Cretaceous Iberian Desert System, Spain.Sedimentology 59, 466-501.
    [77]
    Rodríguez-López, J.P., Meléndez, N., de Boer, P.L., Soria, A.R., Liesa, C.L., 2013. Spatial variability of multi-controlled aeolian supersurfaces in central-erg and marine-erg-margin systems. Aeolian Res. 11, 141-154.
    [78]
    Rodríguez-López, J.P., Meléndez, N., Soria, A.R., Liesa, C.L., Van Loon, A.J., 2007b. Lateral variability of ancient seismites related to differences in sedimentary facies (the synrift Escucha Formation, midCretaceous, eastern Spain). Sediment. Geol. 201, 461-484.
    [79]
    Rodríguez-López, J.P., Peyrot, D., Barrón, E., 2020. Complex sedimentology and palaeohabitats of Holocene coastal deserts, their topographic controls, and analogues for the mid-Cretaceous of northern Iberia. Earth Sci. Rev. 201, 103075. https://doi.org/10.1016/j.earscirev.2019.103075.
    [80]
    Rodríguez-Pascua, M.A., Calvo, J.P., de Vicente, G., Gómez-Gras, D., 2000. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sediment. Geol. 135, 117-135.
    [81]
    Sánchez-García, A., Penalver, E., Pérez de la Fuente, R., Delclos, X., 2015. A rich and diverse tanaidomorphan (Crustacea:tanaidacea) assemblage associated with Early Cretaceous resinproducing forests in North Iberia:palaeobiological implications. J. Syst. Palaeontol. 13 (8), 645-676.
    [82]
    Schuster, R.M., 1992. The Hepaticae and Anthocerotae of North America East of the Hundredth Meridian, vol. 6. Field Museum of Natural History, Chicago Ill.
    [83]
    Scott, G.A.M., 1982. Desert bryophytes. In:Smith, A.J.E. (Ed.), Bryophyte Ecology. Chapman & Hall, London, pp. 105-122.
    [84]
    Smith, R.M.H., Mason, T.R., 1998. Sedimentary environments and trace fossils of Tertiary oasis deposits in the Central Namib Desert, Namibia. Palaios 13, 547-559.
    [85]
    Söderström, L., Hagborg, A., von Konrat, M., Bartholomew-Began, S., Bell, D., Briscoe, L., Brown, E., Cargill, D.C., Costa, D.P., Crandall-Stotler, B.J., 2016. World checklist of hornworts and liverworts.PhytoKeys 59, 1-828.
    [86]
    Svalgaard, L., Schatten, K.H., 2016. Reconstruction of the sunspot group number:the backbone method.Sol. Phys. 291, 2653-2684.
    [87]
    Svendsen, J., Stollhofen, H., Krapf, C.B.E., Stanistreet, I.G., 2003. Mass and hyperconcentrated flow deposits record dune damming and catastrophic breackthrough of ephemeral rivers, Skelton Coast Erg, Namibia. Sediment. Geol. 160, 7-31.
    [88]
    Vaughan, S., 2005. A simple test for periodic signals in red noise. Astron. Astrophys. 431, 391-403.
    [89]
    Veiga, G., Spalletti, L., 2007. The Upper Jurassic (Kimmeridgian) fluvial/aeolian systems of the southern Neuquén Basin, Argentina. Gondwana Res. 11, 286-302.
    [90]
    Veste, M., Littmann, T., Breckle, S.-W., Yair, A., 2001. The role of biological soil crusts on desert sand dunes of the north-western Negev (Israel). In:Breckle, S.-W., Veste, M., Wucherer, W. (Eds.), Sustainable Land-Use in Deserts. Springer, Heidelberg, pp. 357-367.
    [91]
    Villarreal, J.C., Crandall-Stotler, B.J., Hart, M.L., Long, D.G., Forrest, L.L., 2016. Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate. New Phytol. 209, 1734-1746.
    [92]
    Vitt, D.H., Crandall-Stotler, B., Wood, A.J., 2014. Bryophytes, survival in a dry world through tolerance and avoidance. In:Rajakaruna, N., Boyd, R.S., Harris, T.B. (Eds.), Plant Ecology and Evolution in Harsh Environments. Nova Science, New York, USA, pp. 267-295.
    [93]
    Wagner, G., Beer, J., Masarik, J., Muscheler, R., 2001. Presence of the Solar de Vries cycle (205 years)during the last Ice Age. Geophys. Res. Lett. 28, 303-306.
    [94]
    West, N.E., 1990. Structure and function of mycrophytic soil crusts in wildland ecosystems of arid to semiarid regions. Adv. Ecol. Res. 20, 179-223.
    [95]
    Yang, X., 2000. Landscape evolution and precipitation changes in the Badain Jaran Desert during the last 30000 years. Chin. Sci. Bull. 45, 1043-1047.
    [96]
    Yu, Z.C., Ito, E., 1999. Possible solar forcing of century-scale drought frequency in the northern Great Plains. Geology 27, 263-266.
    [97]
    Yu, Z., Campbell, I.D., Campbell, C., Vitt, D.H., Bond, G.C., Apps, M.J., 2003. Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales.Holocene 13, 801-808.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (263) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return