Volume 11 Issue 4
Sep.  2020
Turn off MathJax
Article Contents
Wengang Zhang, Runhong Zhang, Chongzhi Wu, Anthony Teck Chee Goh, Suzanne Lacasse, Zhongqiang Liu, Hanlong Liu. State-of-the-art review of soft computing applications inunderground excavations[J]. Geoscience Frontiers, 2020, (4): 1095-1106. doi: 10.1016/j.gsf.2019.12.003
Citation: Wengang Zhang, Runhong Zhang, Chongzhi Wu, Anthony Teck Chee Goh, Suzanne Lacasse, Zhongqiang Liu, Hanlong Liu. State-of-the-art review of soft computing applications in underground excavations[J]. Geoscience Frontiers, 2020, (4): 1095-1106. doi: 10.1016/j.gsf.2019.12.003

State-of-the-art review of soft computing applications in underground excavations

doi: 10.1016/j.gsf.2019.12.003
Funds:

The authors acknowledge the invitation for this review article from Geoscience Frontiers. They are also grateful to the authors of papers referred, as well as the suggestive comments from the two reviewers. This work was supported by High-end Foreign Expert Introduction program (No. G20190022002) and Chongqing Construction Science and Technology Plan Project (2019–0045). The financial support is gratefully acknowledged.

  • Received Date: 2019-09-25
  • Rev Recd Date: 2019-11-19
  • Publish Date: 2020-09-07
  • Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity, compared to the traditional methods. This paper presents an overview of some soft computing techniques as well as their applications in underground excavations. A case study is adopted to compare the predictive performances of soft computing techniques including eXtreme Gradient Boosting (XGBoost), Multivariate Adaptive Regression Splines (MARS), Artificial Neural Networks (ANN), and Support Vector Machine (SVM) in estimating the maximum lateral wall deflection induced by braced excavation. This study also discusses the merits and the limitations of some soft computing techniques, compared with the conventional approaches available.
  • loading
  • [1]
    Adoko, A.C., Jiao, Y.Y., Wu, L., Wang, H., Wang, Z.H., 2013. Predicting tunnel convergence using Multivariate Adaptive Regression Spline and Artificial Neural Network. Tunn. Undergr. Space Technol. 38, 368–376. https://doi.org/10.1016/ j.tust.2013.07.023.
    [2]
    Ahangari, K., Moeinossadat, S.R., Behnia, D., 2015. Estimation of tunnelling-induced settlement by modern intelligent methods. Soils Found. 55 (4), 737–748. https:// doi.org/10.1016/j.sandf.2015.06.006.
    [3]
    Alimoradi, A., Moradzadeh, A., Naderi, R., Salehi, M.Z., Etemadi, A., 2008. Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks. Tunn. Undergr. Space Technol. 23, 711–717.
    [4]
    Amiri, M., Amnieh, H.B., Hasanipanah, M., Khanli, L.M., 2016. A new combination of artificial neural network and K-nearest neighbours models to predict blast-induced ground vibration and air-overpressure. Eng. Comput. 32 (4), 631–644. https:// doi.org/10.1007/s00366-016-0442-5.
    [5]
    Armaghani, D.J., Momeni, E., Abad, S., Khandelwal, M., 2015. Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environ. Earth Sci. 74 (4), 2845–2860. https://doi.org/10.1007/s12665-015-4305-y.
    [6]
    Armaghani, D.J., Mohamad, E.T., Narayanasamy, M.S., Narita, N., 2017. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn. Undergr. Space Technol. 63, 29–43.
    [7]
    Armstrong, J.S., Collopy, F., 1992. Error measures for generalizing about forecasting methods: empirical comparisons. Int. J. Forecast. 8, 69–80. https://doi.org/10.1016/ 0169-2070(92)90008-W.
    [8]
    Atashpaz-Gargari, E., Lucas, C., 2007. Imperialist Competitive Algorithm: an Algorithm for Optimization Inspired by Imperialistic Competition. IEEE, Piscataway.
    [9]
    Ayoubloo, M.K., Azamathulla, H.M.m Jabbari E., Zanganeh, M., 2011. Predictive modelbased for the critical submergence of horizontal intakes in open channel flows with different clearance bottoms using CART ANN and liear regression approaches. Expert Syst. Appl. 38, 10114–10123.
    [10]
    Bouayad, D., Emeriault, F., 2017. Modeling the relationship between ground surface settlements induced by shield tunneling and the operational and geological parameters based on the hybrid PCA/ANFIS method. Tunn. Undergr. Space Technol. 68, 142–152.
    [11]
    Boubou, R., Emeriault, F., Kastner, R., 2010. Artificial neural network application for the prediction of ground surface movements induced by shield tunnelling. Can. Geotech. J. 47, 1214–1233.
    [12]
    Breiman, L., 1996. Bagging predictors. Mach. Learn. 24 (2), 123–140. https://doi.org/ 10.1007/bf00058655.
    [13]
    Breiman, L., 2001a. Random forests. Mach. Learn. 45 (1), 5–32. https://doi.org/10.1023/ a:1010933404324.
    [14]
    Breiman, L., 2001b. Using iterated bagging to debias regressions. Mach. Learn. 45 (3), 261–277. https://doi.org/10.1023/a:1017934522171.
    [15]
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification and Regression Trees. Wadsworth, Belmont, CA.
    [16]
    Cabalar, A.F., Cevik, A., Gokceoglu, C., 2012. Some applications of adaptive neuro-fuzzy inference system (ANFIS) in geotechnical engineering. Comput. Geotech. 40, 14–33.
    [17]
    Chen, T., Guestrin, C., 2016. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. ACM, pp. 785–794.
    [18]
    Chen, Y., Azzam, R., Fernandez, T.M., Li, L., 2009. Studies on construction pre-control of a connection aisle between two neighbouring tunnels in Shanghai by means of 3D FEM, neural networks and fuzzy logic. Geotech. Geol. Eng. 27, 155–167.
    [19]
    Chen, R.P., Zhang, P., Kang, X., Zhong, Z.Q., Liu, Y., Wu, H.-N., 2019. Prediction of maximum surface settlement caused by earth pressure balance (EPB) shield tunneling with ANN methods. Soils Found. 59 (2), 284–295. https://doi.org/10.1016/ j.sandf.2018.11.005.
    [20]
    Chern, S., Tsai, J.H., Chien, L.K., Huang, C.Y., 2009. Predicting lateral wall deflection in top–down excavation by neural network. Int. J. Offshore Polar Eng. 19 (2), 151–157.
    [21]
    Choi, M., Lee, G., 2010. Decision tree for selecting retaining wall systems based on logistic regression analysis. Autom. ConStruct. 19 (7), 917–928. https://doi.org/10.1016/ j.autcon.2010.06.005.
    [22]
    Chua, C.G., Goh, A.T.C., 2005. Estimating wall deflections in deep excavations using Bayesian neural networks. Tunn. Undergr. Space Technol. 20 (4), 400–409.
    [23]
    Darabi, A., Ahangari, K., Noorzad, A., Arab, A., 2012. Subsidence estimation utilizing various approaches – a case study: tehran No. 3 subway line. Tunn. Undergr. Space Technol. 31, 117–127.
    [24]
    Dong, L.J., Li, X.B., Peng, K., 2013. Prediction of rockburst classification using Random Forest. Trans. Nonferrous Metals Soc. China 23 (2), 472–477. https://doi.org/ 10.1016/s1003-6326(13)62487-5.
    [25]
    Feng, X.D., Jimenez, R., 2015. Predicting tunnel squeezing with incomplete data using Bayesian networks. Eng. Geol. 195, 214–224. https://doi.org/10.1016/ j.enggeo.2015.06.017.
    [26]
    Friedman, J.H., 1991. Multivariate adaptive regression splines. Ann. Stat. 19, 1–67.
    [27]
    Ghasemi, E., Gholizadeh, H., 2019a. Development of two empirical correlations for tunnel squeezing prediction using binary logistic regression and linear discriminant analysis. Geotech. Geol. Eng. 37 (4), 3435–3446. https://doi.org/10.1007/s10706-018- 00758-0.
    [28]
    Ghasemi, E., Gholizadeh, H., 2019b. Prediction of squeezing potential in tunneling projects using data mining-based techniques. Geotech. Geol. Eng. 37 (3), 1523–1532. https://doi.org/10.1007/s10706-018-0705-6.
    [29]
    Goh, A.T.C., Hefney, A.M., 2010. Reliability assessment of EPB tunnel-related settlement. Geomech. Eng. 2 (1), 57–69. https://doi.org/10.12989/gae.2010.2.1.057.
    [30]
    Goh, A.T.C., Zhang, W.G., 2012. Reliability assessment of stability of underground rock caverns. Int. J. Rock Mech. Min. Sci. 55, 157–163.
    [31]
    Goh, A.T.C., Zhang, W.G., 2014. An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines. Eng. Geol. 170, 1–10.
    [32]
    Goh, A.T.C., Wong, K.S., Broms, B.B., 1995. Estimation of lateral wall movements in braced excavations using neural networks. Can. Geotech. J. 32 (6), 1059–1064.
    [33]
    Goh, A.T.C., Zhang, F., Zhang, W.G., Otard Chew, Y.S., 2017b. Assessment of strut forces for braced excavation in clays from numerical analysis and field measurements. Comput. Geotech. 86, 141–149.
    [34]
    Goh, A.T.C., Zhang, W.G., Zhang, Y.M., Xiao, Y., Xiang, Y.Z., 2018. Determination of EPB tunnel-related maximum surface settlement: a Multivariate adaptive regression splines approach. Bull. Eng. Geol. Environ. 77, 489–500. https://doi.org/10.1007/ s10064-016-0937-8.
    [35]
    Goh, A.T.C., Zhang, F., Zhang, W.G., Zhang, Y.M., Liu, H.L., 2017a. A simple estimation model for 3D braced excavation wall deflection. Comput. Geotech. 83, 106–113.
    [36]
    Goh, A.T.C., Zhang, Y.M., Zhang, R.H., Zhang, W.G., Xiao, Y., 2017c. Evaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regression. Tunn. Undergr. Space Technol. 70, 148–154.
    [37]
    Hajihassani, M., Marto, A., Nazmi, E., Abad, S., Shahrbabaki, M., 2011. Prediction of surface settlements induced by NATM tunneling based on artificial neural networks. Electron. J. Geotech. Eng. 16, 1471–1480.
    [38]
    Hou, J., Zhang, M.X., Tu, M., 2009. Prediction of surface settlements induced by shield tunneling: an ANFIS model. In: Liu, H. (Ed.), Geotechnical Aspects of Underground Construction in Soft Ground—Ng. Taylor and Francis Group, London, pp. 551–554.
    [39]
    Huang, F.K., Wang, G.S., 2007. ANN-based Reliability Analysis for Deep Excavation. IEEE, New York.
    [40]
    Jan, J.C., Hung, S.L., Chi, S.Y., Chern, J.C., 2002. Neural network forecast model in deep excavation. J. Comput. Civ. Eng. 16 (1), 59–65.
    [41]
    Jang, J.S.R., Sun, C.T., 1995. Neuro-fuzzy modeling and control. Proc. IEEE 83 (3), 378–406.
    [42]
    Jang, H., Topal, E., 2013. Optimizing overbreak prediction based on geological parameters comparing multiple regression analysis and artificial neural network. Tunn. Undergr. Space Technol. 38, 161–169. https://doi.org/10.1016/ j.tust.2013.06.003.
    [43]
    Kim, C.Y., Bae, G.J., Hong, S.W., Park, C.H., Moon, H.K., Shin, H.S., 2001. Neural network based prediction of ground surface settlements due to tunnelling. Comput. Geotech. 28 (6–7), 517–547. https://doi.org/10.1016/s0266-352x(01)00011-8.
    [44]
    Kisi, O., Shiri, J., Tombul, M., 2013. Modeling rainfall-runoff process using soft computing techniques. Comput. Geosci. 51, 108–117. https://doi.org/10.1016/ j.cageo.2012.07.001.
    [45]
    Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 14 (2), 1137–1145.
    [46]
    Kuhn, M., Johnson, K., 2013. Applied Predictive Modeling. Springer, New York. Kung, G.T.C., Hslao, E.C.L., Schuster, M., Juang, C.H., 2007. A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays. Comput. Geotech. 34 (5), 385–396. https://doi.org/10.1016/j.compgeo.2007.05.007.
    [47]
    Lee, C., Sterling, R., 1992. Identifying probable failure modes for underground openings using a neural network. Int. J. Rock Mech. Min. Sci. 29 (1), 49–67.
    [48]
    Lai, J.X., Qiu, J.L., Feng, Z.H., Chen, J.X., Fan, H.B., 2016. Prediction of soil deformation in tunnelling using artificial neural networks. Comput. Intell. Neurosci. 16. https:// doi.org/10.1155/2016/6708183.
    [49]
    Lee, S., Kim, K., Oh, H.J., Park, N.W., Ieee, 2006. Ground subsidence hazard analysis in an abandoned underground coal mine area using probabisltic and logistic regression models 2006. Ieee Int. Geosci. Remote Sens. Symp. 1–8, 1549–1552.
    [50]
    Leu, S.S., Chen, C.N., Chang, S.L., 2001. Data mining for tunnel support stability: neural network approach. Autom. ConStruct. 10 (4), 429–441.
    [51]
    Li, N., Jimenez, R., 2018. A logistic regression classifier for long-term probabilistic prediction of rock burst hazard. Nat. Hazards 90 (1), 197–215. https://doi.org/ 10.1007/s11069-017-3044-7.
    [52]
    Li, Y.Z., Yao, Q.F., Qin, L.K., 2008. The Application of Neural Network to Deep Foundation Pit Retaining Structure Displacement Prediction. World Acad Union- World Acad Press, Liverpool.
    [53]
    Liao, K.W., Fan, J.C., Huang, C.L., 2011. An artificial neural network for groutability prediction of permeation grouting with microfine cement grouts. Comput. Geotech. 38 (8), 978–986.
    [54]
    Liu, B., Wang, R., Guan, Z., Li, J., Xu, Z., Guo, X., Wang, Y., 2019. Improved support vector regression models for predicting rock mass parameters using tunnel boring machine driving data. Tunn. Undergr. Space Technol. 91. https://doi.org/10.1016/ j.tust.2019.04.014.
    [55]
    Loh, W.Y., 2011. Classification and regression trees. Wiley Interdiscipl. Rev.: Data Min. Knowl. Discov. 1 (1), 14–23.
    [56]
    Mahdevari, S., Torabi, S.R., 2012. Prediction of tunnel convergence using artificial neural networks. Tunn. Undergr. Space Technol. 28, 218–228. https://doi.org/10.1016/ j.tust.2011.11.002.
    [57]
    Mahdevari, S., Haghighat, H.S., Torabi, S.R., 2013. A dynamically approach based on SVM algorithm for prediction of tunnel convergence during excavation. Tunn. Undergr. Space Technol. 38, 59–68. https://doi.org/10.1016/j.tust.2013.05.002.
    [58]
    Mahdevari, S., Shahriar, K., Yagiz, S., Akbarpour Shirazi, M., 2014. A support vector regression model for predicting tunnel boring machine penetration rates. Int. J. Rock Mech. Min. Sci. 72, 214–229. https://doi.org/10.1016/j.ijrmms.2014.09.012.
    [59]
    Mawdesley, C., 2004. Using logistic regression to investigate and improve an empirical design method. Int. J. Rock Mech. Min. Sci. 41 (3), 507–508.
    [60]
    Moeinossadat, S.R., Ahangari, K., Shahriar, K., 2016. Calculation of maximum surface settlement induced by EPB shield tunnelling and introducing most effective parameter. J. Cent. South Univ. 23 (12), 3273–3283. https://doi.org/10.1007/ s11771-016-3393-5.
    [61]
    Moeinossadat, S.R., Ahangari, K., Shahriar, K., 2017. Modeling maximum surface settlement due to EPBM tunneling by various soft computing techniques. Innov. Infrastruct. Solut. 3 (1) https://doi.org/10.1007/s41062-017-0114-3.
    [62]
    Moeinossadat, S.R., Ahangari, K., Shahriar, K., 2018. Control of ground settlements caused by EPBS tunneling using an intelligent predictive model. Indian Geotech. J. 48 (3), 420–429. https://doi.org/10.1007/s40098-017-0253-7.
    [63]
    Moghaddasi, M.R., Noorian-Bidgoli, M., 2018. ICA-ANN, ANN and multiple regression models for prediction of surface settlement caused by tunneling. Tunn. Undergr. Space Technol. 79, 197–209. https://doi.org/10.1016/j.tust.2018.04.016.
    [64]
    Mottahedi, A., Sereshki, F., Ataei, M., 2017. Development of overbreak prediction models in drill and blast tunneling using soft computing methods. Eng. Comput. 34 (1), 45–58. https://doi.org/10.1007/s00366-017-0520-3.
    [65]
    Mottahedi, A., Sereshki, F., Ataei, M., 2018. Overbreak prediction in underground excavations using hybrid ANFIS-PSO model. Tunn. Undergr. Space Technol. 80, 1–9. https://doi.org/10.1016/j.tust.2018.05.023.
    [66]
    Nagelkerke, N.J.D., 1991. A note on a general definition of the coefficient of determination. Biometrika 78 (3), 691–692.
    [67]
    Neaupane, K.M., Adhikari, N.R., 2006. Prediction of surface settlements induced by NATM tunneling with the multi-layer perceptron. Tunn. Undergr. Space Technol. 21, 151–159.
    [68]
    Ocak, I., Seker, S.E., 2013. Calculation of surface settlements caused by EPBM tunneling using artificial neural network, SVM, and Gaussian processes. Environ. Earth Sci. 70 (3), 1263–1276. https://doi.org/10.1007/s12665-012-2214-x.
    [69]
    Pal, M., Deswal, S., 2008. Modeling pile capacity using support vector machines and generalized regression neural network. J. Geotech. Geoenviron. Eng. 134 (7), 1021–1024.
    [70]
    Pourtaghi, A., Lotfollahi-Yaghin, M.A., 2012. Wavenet ability assessment in comparison to ANN for predicting the maximum surface settlement caused by tunneling. Tunn. Undergr. Space Technol. 28, 257–271.
    [71]
    Prasomphan, S., Mase, S., 2013. Generating prediction map for geostatistical data based on an adaptive neural network using only nearest neighbors. Int. J. Mach. Learn. Comput. 3 (1), 98–102. https://doi.org/10.7763/IJMLC.2013.V3.280.
    [72]
    Protopapadakis, E., Schauer, M., Pierri, E., Doulamis, A.D., Stavroulakis, G.E., Bohrnsen, J.U., Langer, S., 2016. A genetically optimized neural classifier applied to numerical pile integrity tests considering concrete piles. Comput. Struct. 162, 68–79.
    [73]
    Rodriguezgaliano, V., Mendes, M.P., Garciasoldado, M.J., Chicaolmo, M., Ribeiro, L., 2014. Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (southern Spain). Sci. Total Environ. 476–477 (4), 189–206. https://doi.org/10.1016/j.scitotenv.2014.01.001.
    [74]
    Santos Jr., O.J., Celestino, T.B., 2008. Artificial neural networks analysis of Sao Paulo subway tunnel settlement data. Tunn. Undergr. Space Technol. 23 (5), 481–491.
    [75]
    Seker, S.E., Ocak, I., 2019. Performance prediction of roadheaders using ensemble machine learning techniques. Neural Comput. Appl. 31 (4), 1103–1116. https:// doi.org/10.1007/s00521-017-3141-2.
    [76]
    Sen, S.L., Chuang, H.L., 2004. Neural-network-based regression model of ground surface settlement induced by deep excavation. Autom. ConStruct. 13 (3), 279–289. https:// doi.org/10.1016/s0926-5805(03)00018-9.
    [77]
    Shi, J., Ortigao, J.A.R., Bai, J., 1998. Modular neural networks for predicting settlements during tunneling. J. Geotech. Geoenviron. Eng. 124, 389–395.
    [78]
    Shi, S.S., Zhao, R.J., Li, S.C., Xie, X.K., Li, L.P., Zhou, Z., Liu, H.L., 2019. Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application. Tunn. Undergr. Space Technol. 90, 1–11. https://doi.org/ 10.1016/j.tust.2019.04.013.
    [79]
    Sitharam, T.G., Pijush, Samui, Anbazhagan, P., 2008. Spatial variability of rock depth in Bangalore using geostatistical, neural network and support vector machine models. Geotech. Geol. Eng. 26, 503–517.
    [80]
    Smola, A., Sch€olkopf, B., 1998. A Tutorial on Support Vector Regression. NeuroCOLT Tech. Rep.NC-TR-98-030. Royal Holloway Coll., Univ., London, UK.
    [81]
    Su, G.S., Zhang, Y., Chen, G.Q., 2010. Identify rockburst grades for jinping hydropower station using Gaussian II process for binary classification. In: Proceedings of 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE 2010), vol. 2, pp. 364–367. Changchun, China (in Chinese).
    [82]
    Suwansawat, S., Einstein, H.H., 2006. Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling. Tunn. Undergr. Space Technol. 21, 133–150.
    [83]
    Timofeev, R., 2004. Classification and Regression Trees (CART) Theory and Applications. M.S. thesis, Humboldt University, Berlin.
    [84]
    Tsekouras, G.J., 2004. Application of Artificial Neural Networks’ Method in Tunneling Problems. Diploma Thesis. School of Civil Engineering, National Technical University of Athens.
    [85]
    Tsekouras, G.J., Koukoulis, J., Mastorakis, N.E., 2010. An optimized neural network for predicting settlements during tunneling excavation. WSEAS Trans. Syst. 9, 1153–1167.
    [86]
    Tso, G.K.F., Yau, K.K.W., 2007. Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks. Energy 32 (9), 1761–1768.
    [87]
    Vapnik, V.N., 1995. Introduction: Four Periods in the Research of the Learning Problem. The Nature of Statistical Learning Theory. Springer.
    [88]
    Wang, F., Gou, B., Qin, Y., 2013. Modeling tunneling-induced ground surface settlement development using a wavelet smooth relevance vector machine. Comput. Geotech. 54, 125–132.
    [89]
    Wang, Q., Lin, J., Ji, J., Fang, H., 2014. Reliability Analysis of Geotechnical Engineering Problems Based on an RBF Metamodeling Technique. Crc Press-Taylor and Francis Group, Boca Raton.
    [90]
    Wong, T.T., 2015. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 48 (9), 2839–2846.
    [91]
    Wu, Q.D., Yan, B., Zhang, C., Wang, L., Ning, G., Yu, B., 2014. Displacement prediction of tunnel surrounding rock: a comparison of support vector machine and artificial neural network. Math. Probl. Eng. 351496, 6.
    [92]
    Xiang, Y., Goh, A.T.C., Zhang, W., Zhang, R., 2018. A multivariate adaptive regression splines model for estimation of maximum wall deflections induced by braced excavation. Geomech. Eng. 14 (4), 315–324. https://doi.org/10.12989/ gae.2018.14.4.315.
    [93]
    Xie, Q., Peng, K., 2019. Space-time distribution laws of tunnel excavation damaged zones (EDZs) in deep mines and EDZ prediction modeling by random forest regression. Adv. Civ. Eng. 1–13. https://doi.org/10.1155/2019/6505984.
    [94]
    Xu, M., Watanachaturaporn, P., Varshney, P.K., Arora, M.K., 2005. Decision tree regression for soft classification of remote sensing data. Remote Sens. Environ. 97 (3), 322–336.
    [95]
    Yao, B.Z., Yang, C.Y., Yu, B., Jia, F.F., Yu, B., 2010. Applying support vector machines to predict tunnel surrounding rock displacement. Appl. Mech. Mater. 29–32, 1717–1721.
    [96]
    Yap, B.W., Ong, S.H., Husain, N.H.M., 2011. Using data mining to improve assessment of credit worthiness via credit scoring models. Expert Syst. Appl. 38, 13274–13283.
    [97]
    Yoo, C., Kim, J.-M., 2007. Tunneling Performance Prediction Using an Integrated GIS and Neural Network. Computers and Geotechnics 34 (1), 19–30.
    [98]
    Yu, J., Chen, H.M., Yu, J., Chen, H.M., 2009. Artificial neural network’s application in intelligent prediction of surface settlement induced by foundation pit excavation. IEEE Comput. Soc., Los Alamitos 1, 303–305.
    [99]
    Yun, Y.F., Fan, Y.H., Sun, Y., 2011. Back-analysis of mechanical parameters of tunnel surrounding rock by BP neural network method. J. Shenyang Jianzhu Univ. (Nat. Sci.) vol. 2 (27), 292–296.
    [100]
    Zhang, P., Chen, R.P., Wu, H.N., 2019b. Real-time analysis and regulation of EPB shield steering using Random Forest. Autom. ConStruct. 106. https://doi.org/10.1016/ j.autcon.2019.102860.
    [101]
    Zhang, W.G., Goh, A.T.C., 2013. Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Comput. Geotech. 48, 82–95.
    [102]
    Zhang, W.G., Goh, A.T.C., 2014. Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns. Geomech. Eng. 7 (4), 431–458.
    [103]
    Zhang, W.G., Goh, A.T.C., 2016a. Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geosci. Front. 7, 45–52.
    [104]
    Zhang, W.G., Goh, A.T.C., 2016b. Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression. Geomech. Eng. 10 (3), 269–284. https://doi.org/10.12989/gae.2016.10.3.269.
    [105]
    Zhang, W.G., Goh, A.T.C., Xuan, F., 2015. A simple prediction model for wall deflection caused by braced excavation in clays. Comput. Geotech. 63, 67–72.
    [106]
    Zhang, W.G., Zhang, R.H., Wang, W., Zhang, F., Goh, A.T.C., 2019c. A Multivariate Adaptive Regression Splines model for determining horizontal wall deflection envelope for braced excavations in clays. Tunn. Undergr. Space Technol. 84, 461–471.
    [107]
    Zhang, L., Zhou, W., Jiao, L., 2004. Wavelet support vector machine. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34, 34–39.
    [108]
    Zhang, W.G., Zhang, Y.M., Goh, A.T.C., 2017b. Multivariate adaptive regression splines for inverse analysis of soil and wall properties in braced excavation. Tunn. Undergr. Space Technol. 64, 24–33.
    [109]
    Zhang, W.G., Wu, C.Z., Li, Y.Q., Wang, L., Samui, P., 2019d. Assessment of pile drivability using random forest regression and multivariate adaptive regression splines. Georisk. https://doi.org/10.1080/17499518.2019.1674340.
    [110]
    Zhang, W.G., Zhang, R.H., Goh, A.T.C., 2017c. Multivariate adaptive regression splines approach to estimate lateral wall deflection profiles caused by braced excavations in clays. Geotech. Geol. Eng. 36 (2), 1349–1363.
    [111]
    Zhang, W.G., Zhang, R.H., Goh, A.T.C., 2018. MARS inverse analysis of soil and wall properties for braced excavations in clays. Geomech. Eng. 16 (6), 577–588. https:// doi.org/10.12989/gae.2018.16.6.577.
    [112]
    Zhang, C., Li, J.Z., He, Y., 2019a. Application of optimized grey discrete Verhulst-BP neural network model in settlement prediction of foundation pit. Environ. Earth Sci. 78 (15), 15. https://doi.org/10.1007/s12665-019-8458-y.
    [113]
    Zhang, L., Wu, X., Ji, W., AbouRizk, S.M., 2017a. Intelligent approach to estimation of tunnel-induced ground settlement using wavelet packet and support vector machines. J. Comput. Civ. Eng. 31 (2). https://doi.org/10.1061/(asce)cp.1943-5487.0000621.
    [114]
    Zheng, G., Yang, P., Zhou, H., Zeng, C., Yang, X., He, X., Yu, X., 2019. Evaluation of the earthquake induced uplift displacement of tunnels using multivariate adaptive regression splines. Comput. Geotech. 113 https://doi.org/10.1016/ j.compgeo.2019.103099.
    [115]
    Zhou, J., Li, X., Shi, X., 2012. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Saf. Sci. 50 (4), 629–644. https://doi.org/10.1016/j.ssci.2011.08.065.
    [116]
    Zhou, J., Shi, X.Z., Du, K., Qiu, X.Y., Li, X.B., Mitri, H.S., 2017. Feasibility of randomforest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel. Int. J. Geomech. 17 (6). https://doi.org/10.1061/(asce) gm.1943-5622.0000817.
    [117]
    Zhou, J., Li, X., Mitri, H.S., 2016a. Classification of rockburst in underground projects: comparison of ten supervised learning methods. J. Comput. Civ. Eng. 30 (5). https:// doi.org/10.1061/(asce)cp.1943-5487.0000553.
    [118]
    Zhou, J., Li, X., Mitri, H.S., 2018. Evaluation method of rockburst: state-of-the-art literature review. Tunn. Undergr. Space Technol. 81, 632–659. https://doi.org/ 10.1016/j.tust.2018.08.029.
    [119]
    Zhou, Y., Li, S., Zhou, C., Luo, H., 2019. Intelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stations. J. Comput. Civ. Eng. 33 (1) https://doi.org/10.1061/(asce)cp.1943-5487.0000796.
    [120]
    Zhou, J., Shi, X., Li, X., 2016b. Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining. J. Vib. Control 22 (19), 3986–3997. https://doi.org/10.1177/1077546314568172.
    [121]
    Zhu, Y.Q., Jing, S.T., Zhang, Q., 1996. Application of time series analysis method to measured displacement in tunneling. Chin. J. Rock Mech. Eng. 15, 353–359 (in Chinese with English abstract).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (409) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return