Volume 11 Issue 2
Aug.  2020
Turn off MathJax
Article Contents
Jia Lin, Erich Bauer, WeiWu. A combined method to model grain crushing with DEM[J]. Geoscience Frontiers, 2020, (2): 451-459. doi: 10.1016/j.gsf.2019.02.011
Citation: Jia Lin, Erich Bauer, WeiWu. A combined method to model grain crushing with DEM[J]. Geoscience Frontiers, 2020, (2): 451-459. doi: 10.1016/j.gsf.2019.02.011

A combined method to model grain crushing with DEM

doi: 10.1016/j.gsf.2019.02.011
Funds:

The authors would like to express their thanks to Dr. Imre Laufer for sharing his PFC programs of agglomerate method.

  • Received Date: 2018-03-12
  • Rev Recd Date: 2018-10-22
  • Publish Date: 2020-08-26
  • This paper presents a combined method to model grain crushing effects with discrete element method. This method combines the two most commonly used concepts to model grain crushing in DEM, i.e. the replacement method and the agglomerate method, so that it is both accurate and efficient. The method can be easily implemented. The performance is shown by several DEM simulations of biaxial tests. Particles with different crush-abilities are modeled. DEM simulation results with and without grain crushing are compared and discussed. The change of grain size distribution due to grain crushing is also investigated.
  • loading
  • [1]
    Alikarami, R., E, Gkiousas-Kapnisis, M., Torabi, A., Viggiani, G., 2014. Strain localisation and grain breakage in sand under shearing at high mean stress: insights from in situ X-ray tomography. Acta Geotechnica 10 (1), 15e30.
    [2]
    Bandini, V., Coop, M., 2011. The influence of particle breakage on the location of the critical state line of sands. Soils and Foundations 51 (4), 591e600.
    [3]
    Bauer, E., 1996. Calibration of a comprehensive hypoplastic model for granular materials. Soils and Foundations 36 (1), 13e26.
    [4]
    Bolton, M., Nakata, Y., Cheng, Y., 2008. Micro- and macro-mechanical behaviour of dem crushable materials. Géotechnique 58 (6), 471e480.
    [5]
    Chen, Q., Indraratna, B., Carter, J., Nimbalkar, S., 2016. Isotropickinematic hardening model for coarse granular soils capturing particle breakage and cyclic loading under triaxial stress space. Canadian Geotechnical Journal 53 (4), 646e658.
    [6]
    Cheng, Y., Bolton, M., Nakata, Y., 2004. Crushing and plastic deformation of soils simulated using dem. Géotechnique 54 (2), 131e141.
    [7]
    Cheng, Y., Nakata, Y., Bolton, M., 2003. Discrete element simulation of crushable soil. Géotechnique 53 (7), 633e641.
    [8]
    Ciantia, M., Arroyo, M., Calvetti, F., Gens, A., 2015. An approach to enhance efficiency of dem modelling of soils with crushable grains. Géotechnique 65 (2), 91e110.
    [9]
    Cundall, P., Strack, O., 1979. A discrete numerical model for granular assemblies. Géotechnique 29 (1), 47e65.
    [10]
    Das, A., Bajpai, P., 2017. A hypo-plastic approach for evaluating railway ballast degradation. Acta Geotechnica 13 (5), 1085e1102.
    [11]
    De Bono, J., McDowell, G., 2014. Dem of triaxial tests on crushable sand. Granular Matter 16 (4), 551e562.
    [12]
    Einav, I., 2007. Breakage mechanics-part i: Theory. Journal of the Mechanics and Physics of Solids 55 (6), 1274e1297.
    [13]
    Feia, S., Sulem, J., Canou, J., Ghabezloo, S., Clain, X., 2016. Changes in permeability of sand during triaxial loading: effect of fine particles production. Acta Geotechnica 11 (1), 1e19.
    [14]
    Ghafghazi, M., Shuttle, D., DeJong, J., 2014. Particle breakage and the critical state of sand. Soils and Foundations 54 (3), 451e461.
    [15]
    Hambly, E., 1972. Plane strain behaviour of remoulded normally consolidated kaolin. Géotechnique 22 (2), 301e317.
    [16]
    Jin, Y.-F., Wu, Z.-X., Yin, Z.-Y., Shen, J., 2017. Estimation of critical state-related formula in advanced constitutive modeling of granular material. Acta Geotechnica 12 (6), 1329e1351.
    [17]
    Karimpour, H., Lade, P., 2010. Time effects relate to crushing in sand. Journal of Geotechnical and Geoenvironmental Engineering 136 (9), 1209e1219.
    [18]
    Lade, P., Yamamuro, J., Bopp, P., 1996. Significance of particle crushing in granular materials. Journal of Geotechnical Engineering 122 (4), 309e316.
    [19]
    Laufer, I., 2015. Grain crushing and high-pressure oedometer tests simulated with the discrete element method. Granular Matter 17 (3), 389e412.
    [20]
    Liu, H., Zou, D., 2013. Associated generalized plasticity framework for modeling gravelly soils considering particle breakage. Journal of Engineering Mechanics 139 (5), 606e615.
    [21]
    Liu, J., Liu, H., Zou, D., Kong, X., 2015. Particle breakage and the critical state of sand: by Ghafghazi, M.; Shuttle, D.A.; Dejong, J.T., 2014. Soils and Foundations 54 (3), 451e461. Soils and Foundations, 55(1):220e222.
    [22]
    Lobo-Guerrero, S., Vallejo, L., 2006. Discrete element method analysis of railtrack ballast degradation during cyclic loading. Granular Matter 8 (3e4), 195e204.
    [23]
    Lobo-Guerrero, S., Vallejo, L., Vesga, L., 2006. Visualization of crushing evolution in granular materials under compression using dem. International Journal of Geomechanics 6 (3), 195e200.
    [24]
    Lorincz, J., Imre, E., Glos, M., Trang, Q., Rajkai, K., Fityus, S., Telekes, G., 2005. Grading entropy variation due to soil crushing. International Journal of Geomechanics 5 (4), 311e319.
    [25]
    Ma, G., Regueiro, R., Zhou, W., Wang, Q., Liu, J., 2018. Role of particle crushing on particle kinematics and shear banding in granular materials. Acta Geotechnica 13 (3), 601e318.
    [26]
    Ma, G., Zhou, W., Chang, X.-L., 2014. Modeling the particle breakage of rockfill materials with the cohesive crack model. Computers and Geotechnics 61, 1320e1143.
    [27]
    Marketos, G., Bolton, M., 2009. Compaction bands simulated in discrete element models. Journal of Structural Geology 31 (5), 479e490.
    [28]
    McDowell, G., Bolton, M., 1998. On the micromechanics of crushable aggregates. Géotechnique 48 (5), 667e679.
    [29]
    McDowell, G., Daniell, C., 2001. Fractal compression of soil. Géotechnique 51 (2), 173e176.
    [30]
    McDowell, G., de Bono, J., 2013. On the micro mechanics of one-dimensional normal compression. Géotechnique 63 (11), 895e908.
    [31]
    McDowell, G., Harireche, O., 2002a. Discrete element modelling of soil particle fracture. Géotechnique 52 (2), 131e135.
    [32]
    McDowell, G., Harireche, O., 2002b. Discrete element modelling of yielding and normal compression of sand. Géotechnique 52 (4), 299e304.
    [33]
    Nguyen, D.-H., Azéma, E., Sornay, P., Radjai, F., 2015. Bonded-cell model for particle fracture. Physical Review E - Statistical, Nonlinear and Soft Matter Physics 91 (2).
    [34]
    Oda, M., Takemura, T., Takahashi, M., 2004. Microstructure in shear band observed by microfocus X-ray computed tomography. Géotechnique 54 (8), 539e542.
    [35]
    Oquendo, W., Muñoz, J., Lizcano, A., 2009. Oedometric test, bauer’s law and the micro-macro connection for a dry sand. Computer Physics Communications 180 (4), 616e620.
    [36]
    Quiñones, J., Arzúa, J., Alejano, L., García-Bastante, F., Mas Ivars, D., Walton, G., 2017. Analysis of size effects on the geomechanical parameters of intact granite samples under unconfined conditions. Acta Geotechnica 12 (6), 1229e1242.
    [37]
    Refahi, A., Aghazadeh Mohandesi, J., Rezai, B., 2010. Discrete element modeling for predicting breakage behavior and fracture energy of a single particle in a jaw crusher. International Journal of Mineral Processing 94 (1e2), 83e91.
    [38]
    Russell, A., Muir Wood, D., Kikumoto, M., 2009. Crushing of particles in idealised granular assemblies. Journal of the Mechanics and Physics of Solids 57 (8), 1293e1313.
    [39]
    Silvani, C., Bonelli, S., Dsoyer, T., 2007. Fracture of rigid solids: a discrete approach based on damaging interface modelling. Comptes Rendus Mecanique 335 (8), 455e460.
    [40]
    Thornton, C., Ciomocos, M., Adams, M., 1999. Numerical simulations of agglomerate impact breakage. Powder Technology 105 (1e3), 74e82.
    [41]
    Wang, J., Yan, H., 2013. On the role of particle breakage in the shear failure behavior of granular soils by dem. International Journal for Numerical and Analytical Methods in Geomechanics 37 (8), 832e854.
    [42]
    Wang, P., Arson, C., 2016. Breakage Mechanics Modeling of the Brittle-Ductile Transition in Granular Materials, vol. 1. Georgia Institute of Technology, pp. 222e227.
    [43]
    Wang, P., Arson, C., 2018. Energy distribution during the confined comminution of granular materials. Acta Geotechnica 13 (5), 1075e1083.
    [44]
    Wang, W., Coop, M., 2016. An investigation of breakage behaviour of single sand particles using a high-speed microscope camera. Géotechnique 66 (12), 984e998.
    [45]
    Whittles, D., Kingman, S., Lowndes, I., Jackson, K., 2006. Laboratory and numerical investigation into the characteristics of rock fragmentation. Minerals Engineering 19 (14), 1418e1429.
    [46]
    Wood, D., Maeda, K., 2008. Changing grading of soil: effect on critical states. Acta Geotechnica 3 (1), 3e14.
    [47]
    Xiao, Y., Liu, H., Chen, Q., Ma, Q., Xiang, Y., Zheng, Y., 2017. Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotechnica 12 (5), 1177e1184.
    [48]
    Xiao, Y., Liu, H., Chen, Y., Chu, J., 2014. Influence of intermediate principal stress on the strength and dilatancy behavior of rockfill material. Journal of Geotechnical and Geoenvironmental Engineering 140 (11).
    [49]
    Xiao, Y., Liu, H., Desai, C., Sun, Y., Liu, H., 2016a. Effect of intermediate principalstress ratio on particle breakage of rockfill material. Journal of Geotechnical and Geoenvironmental Engineering 142 (4).
    [50]
    Xiao, Y., Liu, H., Ding, X., Chen, Y., Jiang, J., Zhang, W., 2016b. Influence of particle breakage on critical state line of rockfill material. International Journal of Geomechanics 16 (1), 04015031.
    [51]
    Yang, J., Luo, X., 2018. The critical state friction angle of granular materials: does it depend on grading? Acta Geotechnica 13 (3), 535e547.
    [52]
    Zhang, B.-Y., Jie, Y.-X., Kong, D.-Z., 2013. Particle size distribution and relative breakage for a cement ellipsoid aggregate. Computers and Geotechnics 53, 31e39.
    [53]
    Zhao, B., Wang, J., Coop, M., Viggiani, G., Jiang, M., 2015. An investigation of single sand particle fracture using X-ray micro-tomography. Géotechnique 65 (8), 625e641.
    [54]
    Zhou, W., Yang, L., Ma, G., Xu, K., Lai, Z., Chang, X., 2017. Dem modeling of shear bands in crushable and irregularly shaped granular materials. Granular Matter 19 (2).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10287) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return