Volume 10 Issue 4
Jan.  2021
Turn off MathJax
Article Contents
Bulusu Sreenivas, Sukanta Dey, Y. J. Bhaskar Rao, T. Vijaya Kumar, E. V. S. S. K. Babu, Ian S. Williams. A new cache of Eoarchaean detrital zircons from the Singhbhum craton, eastern India and constraints on early Earth geodynamics[J]. Geoscience Frontiers, 2019, 10(4): 1359-1370. doi: 10.1016/j.gsf.2019.02.001
Citation: Bulusu Sreenivas, Sukanta Dey, Y. J. Bhaskar Rao, T. Vijaya Kumar, E. V. S. S. K. Babu, Ian S. Williams. A new cache of Eoarchaean detrital zircons from the Singhbhum craton, eastern India and constraints on early Earth geodynamics[J]. Geoscience Frontiers, 2019, 10(4): 1359-1370. doi: 10.1016/j.gsf.2019.02.001

A new cache of Eoarchaean detrital zircons from the Singhbhum craton, eastern India and constraints on early Earth geodynamics

doi: 10.1016/j.gsf.2019.02.001

This work forms part of the CSIR-NGRI projects INDEX (PSC0204) and GEOMET.

  • Received Date: 2018-11-29
  • Rev Recd Date: 2019-01-24
  • The dominant geodynamic processes that underpin the formation and evolution of Earth's early crust remain enigmatic calling for new information from less studied ancient cratonic nuclei. Here, we present U-Pb ages and Hf isotopic compositions of detrital zircon grains from~2.9 Ga old quartzites and magmatic zircon from a 3.505 Ga old dacite from the Iron Ore Group of the Singhbhum craton, eastern India. The detrital zircon grains range in age between 3.95 Ga and 2.91 Ga. Together with the recently reported Hadean, Eoarchean xenocrystic (up to 4.24 Ga) and modern detritus zircon grains from the Singhbhum craton, our results suggest that the Eoarchean detrital zircons represent crust generated by recycling of Hadean felsic crust formed at~4.3-4.2 Ga and~3.95 Ga. We observe a prominent shift in Hf isotope compositions at~3.6-3.5 Ga towards super-chondritic values, which signify an increased role for depleted mantle and the relevance of plate tectonics. The Paleo-, Mesoarchean zircon Hf isotopic record in the craton indicates crust generation involving the role of both depleted and enriched mantle sources. We infer a short-lived suprasubduction setting around~3.6-3.5 Ga followed by mantle plume activity during the Paleo-, Mesoarchean crust formation in the Singhbhum craton. The Singhbhum craton provides an additional repository for Earth's oldest materials.
  • loading
  • [1]
    Acharyya, S.K., Gupta, A., Orihashi, Y., 2010. New U-Pb zircon ages from PaleoMesoarchean TTG gneisses of the Singhbhum craton, eastern India. Geochemical Journal 44, 81-88.
    Amelin, Y., Lee, D.-C., Halliday, A.N., 2000. Early-middle Achaean crustal evolution deduced from LueHf and UePb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta 64, 4205-4225.
    Andersen, T., 2002. Correction of common Pb in UePb analyses that do not report 204Pb. Chemical Geology 192, 59-79.
    Babu, E.V.S.S.K., Bhaskar Rao, Y.J., Vijaya Kumar, T., 2009. In:Aggarwal, S.K., et al.(Eds.), In-situ U-Pb and Hf-Isotopic Characterization of GJ-1 Zircon by Laser Ablation ICP-MS and MC-ICP-MS. ISMAS TRICON 2009, pp. 511-514.
    Basu, A.R., Bandyopadhyay, P.K., Chakraborti, R., Zou, H., 2008. Large 3.4 Ga algoma type BIF in the eastern Indian craton. Geochimica et Cosmochimica Acta 72, A59.
    Beall, A.P., Moresi, L., Cooper, C.M., 2018. Formation of cratonic lithosphere during the initiation of plate tectonics. Geology 46, 486-490.
    Bell, E.A., Harrison, T.M., Issaku, E.K., Young, E.D., 2014. Eoarchean crustal evolution of the Jack Hills zircon source and loss of Hadean crust. Geochimica et Cosmochimica Acta 146, 27-42.
    Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O'Reilly, S.Y., Pearson, N.J., 2010. The growth of the continental crust:constraints from zircon Hf-isotope data. Lithos 119, 457-466.
    Blichert-Toft, J., Albarède, F., 1997. The LueHf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters 148, 243-258.
    Brown, M., 2008. Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout Earth history:when did Earth first adopt a plate tectonics mode of behavior?. In:Condie, K.C., Pease, V. (Eds.), When Did Plate Tectonics Begin on Planet Earth? Geological Society of America Special Paper, vol. 440, pp. 97-128.
    Cavosie, A.J., Wilde, S.A., Liu, D.Y., Weiblen, P.W., John, W.V., 2004. International zoning and UeThePb chemistry of Jack Hills detrital zircons:a mineral record of Early Archean to Mesoproterozoic (4348-1576 Ma) magmatism. Precambrian Research 135, 251-279.
    Chattopadhyay, S., Upadhyay, D., Nanda, J.K., Mezger, K., Pruseth, K.L., Berndt, J., 2015. Proto-India was a part of rodinia:evidence from grenville-age suturing of the eastern Ghats province with the paleoarchean Singhbhum craton. Precambrian Research 266, 506-529.
    Chaudhuri, T., Wan, Y., Mazumder, R., Ma, M., Dunyi Liu, D., 2018. Evidence of enriched, hadean mantle reservoir from 4.2-4.0 Ga zircon xenocrysts from paleoarchean TTGs of the Singhbhum craton, eastern India. Scientific Reports 8, 7069. https://doi.org/10.1038/s41598-018-25494-6.
    Claoué-Long, J., Compston, W., Roberts, J., Fanning, C.M., 1995. Two Carboniferous ages:a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In:Berggren, W.A., Kent, D.V., Aubry, M.-P., Hardenbol, J.(Eds.), Geochronology, Time Scales, and Global Stratigraphic Correlation. Special Publications of SEPM, pp. 3-21.
    Clements, B., Sevastjanova, I., Hall, R., Belousova, E.A., Griffin, W.L., Pearson, N., 2012.Detrital zircon UePb age and Hf-isotope perspective on sediment provenance and tectonic models in SE Asia. In:Rasbury, E.T., Hemming, S.R., Riggs, N.R.(Eds.), Mineralogical and Geochemical Approaches to Provenance, vol. 487.Geological Society of America Special Paper, pp. 37-61.
    Collins, W.J., Belousova, E.A., Kemp, A.I., Murphy, J.B., 2011. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nature Geoscience 4, 333-337.
    Condie, K.C., Aster, R.C., 2010. Episodic zircon age spectra of orogenic granitoids:the supercontinent connection and continental growth. Precambrian Research 180, 227-236.
    Cumming, G.L., Richards, J.R., 1975. Ore lead isotopes in a continuously changing Earth. Earth and Planetary Science Letters 28, 155-171.
    Dey, S., Topno, A., Liu, Y., Zong, K., 2017. Generation and evolution of Paleoarchean continental crust in the central part of the Singhbhum craton, eastern India.Precambrian Research 298, 268-291.
    Dhuime, B., Hawkesworth, C.J., Cawood, P.A., Storey, C.D., 2012. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334-1336.
    Fisher, C.M., Vervoort, J.D., 2018. Using the magmatic record to constrain the growth of continental crustdThe Eoarchean zircon Hf record of Greenland. Earth and Planetary Sciences 488, 79-91.
    Frost, C.D., McLaughlin, J.F., Frost, B.R., Fanning, C.M., Swapp, S.M., Kruckenberg, S.C., Gonzalez, J., 2017. Hadean origins of Paleoarchean continental crust in the central Wyoming Province. The Geological Society of America Bulletin 129, 259-280.
    Gerya, T.V., Stern, R.J., Baes, M., Sobolev, S.V., Whattam, S.A., 2015. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221-225.
    Ghosh, S., De, S., Mukhopadhyay, J., 2016. Provenance of >2.8 Ga Keonjhar quartzite, Singhbhum craton, eastern India:implications for the nature of mesoarchean upper crust and geodynamics. The Journal of Geology 124, 331-351.
    Greber, N.D., Dauphas, N., Bekker, A., Ptáček, M.P., Bindeman, I.N., Hoffman, A., 2017.Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science 357, 1271-1274.
    Griffin, W.L., Belousova, E.A., O'Neill, C., O'Reilly, S.Y., Malkovets, V., Person, N.J., 2014. The world turns over:HadeaneArchean crustemantle evolution. Lithos 189, 2-15.
    Griffin, W.L., Belousova, E.A., Shee, S.R., Pearson, N.J., O'Reilly, S.Y., 2004. Archean crustal evolution in the northern Yilgarn Craton:UePb and Hf-isotope evidence from detrital zircons. Precambrian Research 131, 231-282.
    Griffin, W.L., Belousova, E.A., Walters, S.G., O'Reilly, S.Y., 2006. Archean and proterozoic crustal evolution in the eastern succession of the Mt Isa district, Australia:UePb and Hf-isotope studies of detrital zircons. Australian Journal of Earth Sciences 53, 125-150.
    Griffin, W.L., Pearson, N.J., Belousova, E.A., Jackson, S.R., van Achterbergh, E., O'Reilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133-147.
    Griffin, W.L., Pearson, N.J., Belousova, E.A., Saeed, A., 2007. Reply to "comment to short-communication ‘comment:Hf-isotope heterogeneity in zircon 91500’ by W. L. Griffin, N. J. Pearson, E. A. Belousova & A. Saeed (Chem. Geol. 233, (2006) 358-363)" by Corfu, F. Chemical Geology 244, 354-356.
    Harrison, T.M., Bell, E.A., Boehnke, P., 2017. Hadean zircon petrochronology. Reviews in Mineralogy and Geochemistry 83 (1), 329-363.
    Harrison, T.M., Schmitt, A.K., McCulloch, M.T., Lovera, O.M., 2008. Early (≥ 4.5 Ga)formation of terrestrial crust:LueHf, δ18O, and Ti thermometry results for Hadean zircons. Earth and Planetary Science Letters 268, 476-486.
    Hawkesworth, C.J., Cawood, P.A., Dhuime, B., Kemp, A.I.S., 2017. Earth's continental lithosphere through time. Annual Reviews of Earth and Planetary Sciences 45, 169-198.
    Hiess, J., Bennett, V.C., Nutman, A.P., Williams, I.S., 2009. In situ UePb, O and Hf isotopic compositions of zircon and olivine from Eoarchean rocks, West Greenland:new insights into making old crust. Geochimica et Cosmochimica Acta 73, 4489-4516.
    Iizuka, T., Komiya, T., Johnson, S.P., Kon, Y., Maruyama, S., Hirata, T., 2009.Reworking of Hadean crust in the Acasta gneisses, north western Canada:evidence from in situ LueHf isotope analysis of zircon. Chemical Geology 259, 230-239.
    Iizuka, T., Yamaguchi, T., Itano, K., Hibiya, R., Suzuki, K., 2017. What Hf isotopes in zircon tell us about crustemantle evolution. Lithos 274-275, 304-327.
    Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ UePb zircon geochronology. Chemical Geology 211, 47-69.
    Johnson, T.E., Brown, M., Gardiner, N.J., Kirkland, C.L., Smithies, R.H., 2017.Earth's first stable continents did not form by subduction. Nature 543, 239-242.
    Kaur, P., Zeh, A., Chaudhri, N., 2014. Characterisation and UePbeHf isotope record of the 3.55 felsic crust from the Bundelkhand Craton, northern India. Precambrian Research 255, 236-244.
    Kemp, A.I.S., Hickman, A.H., Kirkland, C.L., Vervoort, J.D., 2015. Hf isotopes in detrital and inherited zircons of the Pilbara Craton provide no evidence for Hadean continents. Precambrian Research 261, 112-126.
    Kemp, A.I.S., Wilde, S.A., Hawkesworth, C.J., Coath, C.D., Nemchin, A., Pidgeon, R.T., Vervoort, J.D., DuFrane, S.A., 2010. Hadean crustal evolution revisited:new constraints from PbeHf isotope systematics of the Jack Hills zircons. Earth and Planetary Science Letters 296, 45-56.
    Korenaga, J., 2013. Initiation and evolution of plate tectonics on Earth:Theories and observations. Annual Review of Earth and Planetary Sciences 41, 117-151.
    Ludwig, K.R., 2003. Mathematical-statistical treatment of data and errors for 230Th/U geochronology, Uranium-series geochemistry. Reviews in Mineralogy and Geochemistry 52, 631-656.
    Martin, H., Moyen, J.-F., Guitreau, M., Blichert-Toft, J., Pennec, J.-L., 2014. Why Archaean TTG cannot be generated by MORB melting in subduction zones.Lithos 198-199, 1-13.
    Miller, S.R., Mueller, P.A., Meert, J.G., Kamenov, G.D., Pivarunas, A.F., Sinha, A.K., Pandit, M.K., 2018. Detrital zircons reveal evidence of hadean crust in the Singhbhum craton, India. The Journal of Geology 126, 541-552.
    Misra, S., Deomurari, M.P., Wiedenbeck, M., Goswami, J.N., Ray, S., Saha, A.K., 1999.207Pb/206Pb zircon ages and the evolution of the Singhbhum craton, eastern India:an ion microprobe study. Precambrian Research 93, 139-151.
    Mondal, S.K., Frei, R., Ripley, E.M., 2007. Os isotope systematics of mesoarchean chromitite-PGE deposits in the Singhbhum Craton (India):implications for the evolution of lithospheric mantle. Chemical Geology 244, 391-408.
    Mueller, P.A., Nutman, A.P., 2017. The Archean-Hadean Earth:modern paradigms and ancient processes. The Web of Geological Sciences Advances Impacts and Interactions II 523, 75-237.
    Mueller, P.A., Wooden, J.L., 2012. Trace element and Lu-Hf systematics in hadeanarchean detrital zircons:implications for crustal evolution. The Journal of Geology 120, 15-29.
    Mukhopadhyay, D., 2001. The Archean nucleus of Singhbhum:the present state of knowledge. Gondwana Research 4, 307-318.
    Mukhopadhyay, J., Beukes, N.J., Armstrong, R.A., Zimmermann, U., Ghosh, G., Medda, R.A., 2008. Dating the oldest greenstone in India:a 3.51-Ga precise U-Pb SHRIMP zircon age for dacitic lava of the Southern Iron Ore Group, Singhbhum craton. The Journal of Geology 116, 449-461.
    Mukhopadhyay, J., Crowley, Q.G., Ghosh, S., Ghosh, G., Chakrabarti, K., Misra, B., Heron, K., Bose, S., 2014. Oxygenation of the archean atmosphere:new paleosol constraints from eastern India. Geology 42, 923-926.
    Mukhopadhyay, J., Ghosh, G., Zimmermann, U., Guha, S., Mukherjee, T., 2012.3.51 Ga bimodal volcanics-BIF-ultramafic succession from Singhbhum craton:implications for Paleoarchean geodynamic processes from the oldest greenstone succession of Indian Subcontinent. Geological Journal 47, 284-311.
    Næraa, T., Schersten, A., Rosing, M.T., Kemp, A.I.S., Hoffmann, J.E., Kokfelt, T.F., Whitehouse, M.J., 2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485, 627-630.
    Naqvi, S.M., 2005. Geology and Evolution of the Indian Plate (From Hadean to Holocene:4 Ga to 4 Ka). Capital Publishing, New Delhi, p. 450.
    Nelson, D., Bhattacharya, H.N., Thern, E.R., Altermann, W., 2014. Geochemical and ion-microprobe U-Pb zircon constraints on the Archean evolution of Singhbhum Craton, eastern India. Precambrian Research 255, 412-432.
    Nowell, G.M., Kempton, P.D., Noble, S.R., Fitton, J.G., Saunders, A.D., Mahoney, J.J., Taylor, R.N., 1998. High precision Hf isotopic measurements of MORB and OIB by thermal ionization mass spectrometry:insights into the depleted mantle.Chemical Geology 149, 211-233.
    Nutman, A.P., Bennett, V.C., Friend, C.L., Hidaka, H., Yi, K., Lee, S.R., Kamiichi, T., 2013.The Itsaq gneiss Complex of Greenland:episodic 3900 to 3660 juvenile crust formation and recycling in the 3660 to 3600 Ma Isukasian Orogeny. American Journal of Science 313, 877-911.
    Nutman, A.P., Bennett, V.C., Friend, C.R.L., 2015. Proposal for a continent ‘Istaquia’ amalgamated at 3.66 Ga and rifted apart from 3.53 Ga:initiation of a Wilson cycle near the start of the rock record. American Journal of Science 315, 509-536.
    O'Neill, C., Debaille, V., 2014. The evolution of Hadean-Eoarchean geodynamics. Earth and Planetary Science Letters 406, 49-58.
    Prabhakar, N., Bhattacharya, A., 2013. Paleoarchean thrust-and-fold belt tectonics in the Singhbhum craton, eastern India. Precambrian Research 231, 106-121.
    Ramakrishnan, M., Vaidyanathan, R., 2008. Geology of India. Journal Geological Society of India, Bangalore, p. 556.
    Roberts, N.M.W., Spencer, C.J., 2015. The zircon archive of continent formation through time. In:Roberts, N.M.W., Van Kranendonk, M., Parman, S., Shirey, S., Clift, P.D. (Eds.), Continent Formation through Time, vol. 389. Geological Society of London, Special Publications, pp. 197-225.
    Roy, A.B., Bhattacharya, H.N., 2012. Tectonostratigraphic and geochronologic reappraisal constraining the growth and evolution of Singhbhum Archean craton, eastern India. Journal of the Geological Society of India 80, 455-469.
    Rubatto, D., 2002. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology 184, 123-138.
    Saha, A.K., Ray, S.L., Sarkar, S.N., 1988. Early history of the Earth:evidence from the eastern Indian shield. In:Mukhopadhyay, D. (Ed.), Precambrian of the Eastern Indian Shield, vol. 8. Geological Society of India, Memoir, pp. 13-37.
    Sandiford, M., Kranendonk, M.J.V., Bodorkos, S., 2004. Conductive incubation and the origin of dome-and-keel structure in Archaean granite-greenstone terrains:a model based on the eastern Pilbara Craton, Western Australia. Tectonics 23, TC1009.
    Sarkar, S.C., Gupta, A., 2012. Crustal Evolution and Metallogeny in India. Cambridge University Press, Cambridge, p. 840.
    Sarkar, S.N., Saha, A.K., 1983. Structure and Tectonics of the Singhbhum - Orissa Iron Ore Craton, Eastern India. Recent Research Geology (Structure and Tectonics of the Precambrian Rocks), vol. 10. Hindusthan Pub Corp., Delhi, India, pp. 1-25.
    Satkoski, A.M., Bickford, M.E., Samson, S.D., Bauer, R.L., Mueller, P.A., Kamenov, G.D., 2013. Geochemical and HfeNd isotopic constraints on the crustal evolution of Archean rocks from the Minnesota River Valley, USA. Precambrian Research 224, 36-50.
    Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the Lutetium-hafnium clock.Science 293, 683-687.
    Smithies, R.H., Champion, D.C., Van Kranendonk, M.J., 2009. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth and Planetary Science Letters 281, 298-306.
    Spencer, C.J., Hawkesworth, C.J., Cawood, P.A., Dhuime, B., 2013. Not all supercontinents are created equal:gondwana-Rodinia case study. Geology 41, 795-798.
    Stern, R.J., 2005. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in neoproterozoic time. Geology 33, 557-560.
    Stern, R.A., Bodorkos, S., Kamo, S.L., Hickman, A.H., Corfu, F., 2009. Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon Dating.Geostandards and Geoanalytical Research 33, 145-168.
    Tait, J., Zimmermann, U., Miyazaki, T., Presnyakov, S., Chang, Q., Mukhopadhyay, J., Sergeev, S., 2011. Possible juvenile Paleoarchean TTG magmatism in eastern India and its constraints for the evolution of the Singhbhum craton. Geological Magazine 148, 340-347.
    Tang, M., Chen, K., Rudnick, R.L., 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351, 372-375.
    Upadhyay, D., Chattopadhyay, S., Kooijman, E., Mezger, K., Berndt, J., 2014. Magmatic and metamorphic history of Paleoarchean tonalite-trondhjemite-granodiorite(TTG) suite from the Singhbhum craton, eastern India. Precambrian Research 252, 180-190.
    Vermeesch, P., 2018. IsoplotR:a free and open toolbox for geochronology. Geoscience Frontiers 9, 1479-1493.
    Vijaya Kumar, T., Bhaskar Rao, Y.J., Plavsa, D., Collins, A.S., Tomson, J.K., Vijaya Gopal, B., Babu, E.V.S.S.K., 2017. Zircon U-Pb ages and Hf isotopic systematics of charnockite gneisses from the Ediacaran-Cambrian high-grade metamorphic terrains, southern India:constraints on crust formation, recycling and Gondwana correlations. The Geological Society of America Bulletin 129, 625-648.
    Voice, P.J., Kowalewski, M., Eriksson, K.A., 2011. Quantifying the timing and rate of crustal evolution:global compilation of radiometrically dated detrital zircon grains. The Journal of Geology 119, 109-126.
    Wan, Y.-S., Liu, D.-Y., Dong, C.-Y., Xie, H.-Q., Kröner, A., Ma, M.-Z., Liu, S.-J., Xie, S.-W., Ren, P., 2015. Formation and evolution of Archean continental crust of the North China craton. In:Zhai, M. (Ed.), Precambrian Geology of China. Springer-Verlag, pp. 59-135.
    Wiemer, D., Schrank, C.E., Murphy, D.T., Wenham, L., Allen, C.M., 2018. Earth's oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns.Nature Geoscience 11, 357-361.
    Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175-178.
    Williams, I.S., 1998. UeThePb geochronology by ion microprobe. In:McKibben, M.A., Shanks III, W.C., Ridley, W.I. (Eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, vol. 7, pp. 1-35.
    Williams, I.S., Claesson, S., 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. II. Ion microprobe zircon U-Th-Pb. Contributions to Mineralogy and Petrology 97, 205-217.
    Wu, F.-Y., Zhang, Y.-B., Yang, J.-H., Xie, L.-W., Yang, Y.-H., 2008. Zircon UePb and Hf isotopic constraints on the early archean crustal evolution in anshan of the north China craton. Precambrian Research 167, 339-362.
    Zeh, A., Gerdes, A., Barton Jr., J.M., Klemd, R., 2010. UeThePb and LueHf systematics of zircon from TTG's, leucosomes, anorthosites and quartzites of the Limpopo Belt (South Africa):constraints for the formation, recycling, and metamorphism of Paleoarchean crust. Precambrian Research 179, 50-68.
    Zeh, A., Gerdes, A., Heubeck, C., 2013. U-Pb and Hf isotope data from detrital zircons of the Barberton greenstone belt:constraints on provenance and Archean crustal evolution. Geological Society of London 170, 215-223.
    Zeh, A., Gerdes, A., Millonig, L., 2011. Hafnium isotope record of the Ancient Gneiss Complex, Swaziland, southern Africa:evidence for Archean crustemantle formation and crust reworking between 3.66 and 2.73 Gyr. Geological Society of London 168, 953-963.
    Zeh, A., Stern, R., Gerdes, A., 2014. The oldest zircons of Africadtheir UePbeHfeO isotope and trace element systematics, and implications for Hadean to Archean crustemantle evolution. Precambrian Research 241, 203-230.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (66) PDF downloads(1) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint