Volume 11 Issue 2
Aug.  2020
Turn off MathJax
Article Contents
Yang Xiao, Minqiang Meng, Ali Daouadji , Qingsheng Chen , ZhijunWu , Xiang Jiang. Effects of particle size on crushing and deformation behaviors of rockfillmaterials[J]. Geoscience Frontiers, 2020, (2): 375-388. doi: 10.1016/j.gsf.2018.10.010
Citation: Yang Xiao, Minqiang Meng, Ali Daouadji , Qingsheng Chen , ZhijunWu , Xiang Jiang. Effects of particle size on crushing and deformation behaviors of rockfill materials[J]. Geoscience Frontiers, 2020, (2): 375-388. doi: 10.1016/j.gsf.2018.10.010

Effects of particle size on crushing and deformation behaviors of rockfill materials

doi: 10.1016/j.gsf.2018.10.010
Funds:

The authors would like to acknowledge the financial support from the 111 Project (Grant No. B13024), the National Science Foundation of China (Grant Nos. 51509024, 51678094 and 51578096), the Fundamental Research Funds for the Central Universities (Grant No. 106112017CDJQJ208848), the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2017T100681), and the State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology (Grant No. SKLGDUEK1810).

  • Received Date: 2018-05-12
  • Rev Recd Date: 2018-07-16
  • Publish Date: 2020-08-26
  • Strength and deformation behaviors of rockfill materials, key factors for determining the stability of dams, pertain strongly to the grain crushing characteristics. In this study, single-particle crushing tests were carried out on rockfill materials with nominal particle diameters of 2.5 mm, 5 mm and 10 mm to investigate the particle size effect on the single-particle strength and the relationship between the characteristic stress and probability of non-failure. Test data were found to be described by the Weibull distribution with the Weibull modulus of 3.24. Assemblies with uniform nominal grains were then subjected to one-dimensional compression tests at eight levels of vertical stress with a maximum of 100 MPa. The yield stress in one-dimensional compression tests increased with decreasing the particle size, which could be estimated from the single-particle crushing tests. The void ratio-vertical stress curve could be predicted by an exponential function. The particle size distribution curve increased obviously with applied stresses less than 16 MPa and gradually reached the ultimate fractal grading. The relative breakage index became constant with stress up to 64 MPa and was obtained from the ultimate grading at the fractal dimension (a ¼ 2:7). A hyperbolical function was also found useful for describing the relationship between the relative breakage index and input work during one-dimensional compression tests.
  • loading
  • [1]
    Altuhafi, F.N., Coop, M.R., 2011. Changes to particle characteristics associated with the compression of sands. Géotechnique 61 (6), 459e471.
    [2]
    Anderson, W.F., Fair, P., 2008. Behavior of railroad ballast under monotonic and cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering 134 (3), 316e327.
    [3]
    Bandini, V., Coop, M.R., 2011. The influence of particle breakage on the location of the critical state line of sands. Soils and Foundations 51 (4), 591e600.
    [4]
    Baziar, M.H., Salemi, S., Heidari, T., 2006. Analysis of earthquake response of an asphalt concrete core embankment dam. International Journal of Civil Engineering 4 (3), 192e210.
    [5]
    Belkhatir, M., Arab, A., Schanz, T., Missoum, H., Della, N., 2011. Laboratory study on the liquefaction resistance of sand-silt mixtures: effect of grading characteristics. Granular Matter 13, 599e609.
    [6]
    Berenbaum, R., Brodie, I., 1959. Measurement of the tensile strength of brittle materials. British Journal of Applied Physics 10 (6), 281e287.
    [7]
    Chaney, R.C., Demars, K.R., Yasin, S., Umetsu, K., Tatsuoka, F., Arthur, J., Dunstan, T., 1999. Plane strain strength and deformation of sands affected by batch variations and different apparatus types. Geotechnical Testing Journal 22 (1), 80e100.
    [8]
    Charles, J.A., Watts, K.S., 1980. The influence of confining pressure on the shear strength of compacted rockfill. Géotechnique 30 (4), 353e367.
    [9]
    Chen, Q., Indraratna, B., Carter, J.P., Nimbalkar, S., 2016. Isotropic-kinematic hardening model for coarse granular soils capturing particle breakage and cyclic loading under triaxial stress space. Canadian Geotechnical Journal 53 (4), 646e658.
    [10]
    Cheng, Y.P., Bolton, M.D., Nakata, Y., 2004. Crushing and plastic deformation of soils simulated using DEM. Géotechnique 54 (2), 131e141.
    [11]
    Chiu, C.F., Fu, X.J., 2008. Interpreting undrained instability of mixed soils by equivalent intergranular state parameter. Géotechnique 58 (9), 751e755.
    [12]
    Ciantia, M.O., Arroyo, M., Butlanska, J., Gens, A., 2016a. DEM modelling of cone penetration tests in a double-porosity crushable granular material. Computers and Geotechnics 73, 109e127.
    [13]
    Ciantia, M.O., Arroyo, M., Calvetti, F., Gens, A., 2016b. A numerical investigation of the incremental behavior of crushable granular soils. International Journal for Numerical and Analytical Methods in Geomechanics 40 (13), 1773e1798.
    [14]
    Daouadji, A., Hicher, P.-y., 2010. An enhanced constitutive model for crushable granular materials. International Journal for Numerical and Analytical Methods in Geomechanics 34 (6), 555e580.
    [15]
    Daouadji, A., Hicher, P.-Y., Rahma, A., 2001. An elastoplastic model for granular materials taking into account grain breakage. European Journal of Mechanics - A: Solids 20 (1), 113e137.
    [16]
    Daouadji, A., Yuqi, Z., Sukumaran, B., Daya, E.M., Jrad, M., 2019. Experimental and numerical investigation of single particle breakage under uniaxial compression. Mechanics Research Communications (in press).
    [17]
    Einav, I., 2007a. Breakage mechanics-Part I: theory. Journal of the Mechanics and Physics of Solids 55 (6), 1274e1297.
    [18]
    Einav, I., 2007b. Fracture propagation in brittle granular matter. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences 463 (2087), 3021e3035.
    [19]
    Einav, I., 2007c. Soil mechanics: breaking ground. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 365 (1861), 2985e3002.
    [20]
    Frossard, E., Dano, C., Hu,W., Hicher, P.Y., 2012. Rockfill shear strength evaluation: a rational method based on size effects. Géotechnique 62 (5), 415e427.
    [21]
    Ganju, E., Han, F., Prezzi, M., Salgado, R., Pereira, J.S., 2019. Quantification of displacement and particle crushing around a penetrometer tip. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2019.05.007.
    [22]
    Genç, Ö., Benzer, A.H., Ergün, S¸ .L., 2014. Analysis of single particle impact breakage characteristics of raw and HPGR-crushed cement clinkers by drop weight testing. Powder Technology 259, 37e45.
    [23]
    Genç, Ö., Ergün, L., Benzer, H., 2004. Single particle impact breakage characterization of materials by drop weight testing. Physicochemical Problems of Mineral Processing 38, 241e255.
    [24]
    Gupta, A.K., 2016. Effects of particle size and confining pressure on breakage factor of rockfill materials using medium triaxial test. Journal of Rock Mechanics and Geotechnical Engineering 8 (3), 378e388.
    [25]
    Hardin, B.O., 1985. Crushing of soil particles. Journal of Geotechnical Engineering 111 (10), 1177e1192.
    [26]
    Hu, W., Yin, Z., Dano, C., Hicher, P.-Y., 2011. A constitutive model for granular materials considering grain breakage. Science China Technological Sciences 54 (8), 2188e2196.
    [27]
    Indraratna, B., Ionescu, D., Christie, H.D., 1998. Shear behavior of railway ballast based on large-scale triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering 124 (5), 439e449.
    [28]
    Indraratna, B., Lackenby, J., Christie, D., 2005. Effect of confining pressure on the degradation of ballast under cyclic loading. Géotechnique 55 (4), 325e328.
    [29]
    Indraratna, B., Thakur, P.K., Vinod, J.S., 2010. Experimental and numerical study of railway ballast behavior under cyclic loading. International Journal of Geomechanics 10 (4), 136e144.
    [30]
    Indraratna, B., Wijewardenat, L.S.S., Balasubramaniami, A.S., 1993. Large-scale triaxial testing of greywacke rockfill. Géotechnique 43 (1), 37e51.
    [31]
    Jaeger, J.C., 1967. Failure of rocks under tensile conditions. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstract 4 (2), 219e227.
    [32]
    Jayatilaka, A.D.S., Trustrum, K., 1977. Statistical approach to brittle fracture. Journal of Materials Science 12 (7), 1426e1430.
    [33]
    Kato, A., Nakata, Y., Hyodo, M., Yoshimoto, N., 2016. Macro and micro behaviour of methane hydrate-bearing sand subjected to plane strain compression. Soils and Foundations 56 (5), 835e847.
    [34]
    Lackenby, J., Indraratna, B., McDowell, G., Christie, D., 2007. Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading. Géotechnique 57 (6), 527e536.
    [35]
    Ladd, R.S., 1978. Preparing test specimens using undercompaction. Geotechnical Testing Journal 1 (1), 16e23.
    [36]
    Lawn, B.R., Wiederhorn, S.M., Roberts, D.E., 1984. Effect of sliding friction forces on the strength of brittle materials. Journal of Materials Science 19 (8), 2561e2569.
    [37]
    Liburkin, R., Portnikov, D., Kalman, H., 2015. Comparing particle breakage in an uniaxial confined compression test to single particle crush tests-model and experimental results. Powder Technology 284, 344e354.
    [38]
    Lin, J., Bauer, E., Wu, W., 2019. A combined method to model grain crushing with DEM. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2019.02.011.
    [39]
    Liu, H., Chen, Y., Yu, T., Yang, G., 2013. Seismic analysis of the zipingpu concretefaced rockfill dam response to the 2008 wenchuan, China, earthquake. Journal of Performance of Constructed Facilities 29 (5), 04014129.
    [40]
    Marachi, N.D., Chan, C.K., Seed, H.B., 1972. Evaluation of properties of rockfill materials. Journal of the Soil Mechanics and Foundations Division 98 (1), 95e114.
    [41]
    Marsal, R.J., 1967. Large scale testing of rockfill materials. Journal of the Soil Mechanics and Foundations Division 93 (2), 27e43.
    [42]
    Marsal, R.J., 1973. Mechanical Properties of Rockfill. John Wiley & Sons (Incorporated).
    [43]
    McDowell, G.R., 2002. On the yielding and plastic compression of sand. Soils and Foundations 42 (1), 139e145.
    [44]
    McDowell, G.R., 2005. A physical justification for logeelogs based on fractal crushing and particle kinematics. Géotechnique 55 (9), 697e698.
    [45]
    McDowell, G.R., Amon, A., 2000. The application of Weibull statistics to the fracture of soil particles. Soils and Foundations 40 (5), 133e141.
    [46]
    McDowell, G.R., Bolton, M.D., 1998. On the micromechanics of crushable aggregates. Géotechnique 48 (5), 667e679.
    [47]
    McDowell, G.R., Bolton, M.D., Robertson, D., 1996. The fractal crushing of granular materials. Journal of the Mechanics and Physics of Solids 44 (12), 2079e2102.
    [48]
    McDowell, G.R., De Bono, J.P., 2013. On the micro mechanics of one-dimensional normal compression. Géotechnique 63 (11), 895e908.
    [49]
    McDowell, G.R., Humphreys, A., 2002. Yielding of granular materials. Granular Matter 4 (1), 1e8.
    [50]
    Miao, G., Airey, D., 2013. Breakage and ultimate states for a carbonate sand. Géotechnique 63 (14), 1221e1229.
    [51]
    Nakata, Y., Hyde, A.F.L., Hyodo, M., Murata, H., 1999. A probabilistic approach to sand particle crushing in the triaxial test. Géotechnique 49 (5), 567e583.
    [52]
    Nakata, Y., Hyodo, M., Hyde, A.F.L., Kato, Y., Murata, H., 2001a. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils and Foundations 41 (1), 69e82.
    [53]
    Nakata, Y., Kato, Y., Hyodo, M., Murata, H., 2001b. One-dimensional compression behaviour of unuformly granded sand related to single particle crushing strength. Soils and Foundations 41 (2), 39e51.
    [54]
    Oldecop, L.A., Alonso, E.E., 2001. A model for rockfill compressibility. Géotechnique 51 (2), 127e139.
    [55]
    Ovalle, C., Frossard, E., Dano, C., Hu, W., Maiolino, S., Hicher, P.Y., 2014. The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mechanica 225 (8), 2199e2216.
    [56]
    Ovri, J.E.O., 2000. A parametric study of the biaxial strength test for brittle materials. Materials Chemistry and Physics 66 (1), 1e5.
    [57]
    Papadopoulou, A.I., Tika, T.M., 2016. The effect of fines plasticity on monotonic undrained shear strength and liquefaction resistance of sands. Soil Dynamics and Earthquake Engineering 88, 191e206.
    [58]
    Peiris, L.M.N., Madabhushi, S.P.G., Schofield, A.N., 2008. Centrifuge modeling of rock-fill embankments on deep loose saturated sand deposits subjected to earthquakes. Journal of Geotechnical and Geoenvironmental Engineering 134 (9), 1364e1374.
    [59]
    Pino, L.F.M., Baudet, B.A., 2015. The Effect of the Particle Size Distribution on the Mechanics of Fibre-reinforced Sands under One-dimensional Compression, pp. 250e258.
    [60]
    Polito, C.P., Green, R.A., Lee, J., 2008. Pore pressure generation models for sands and silty soils subjected to cyclic loading. Journal of Geotechnical amd Geoenvironment Engineering 134 (10), 1490e1500.
    [61]
    Polito, C.P., Martin Ii, J.R., 2001. Effects of nonplastic fines on the liquefaction resistance of sands. Journal of Geotechnical amd Geoenvironment Engineering 127 (5), 408e415.
    [62]
    Salim, W., Indraratna, B., 2004. A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage. Canadian Geotechnical Journal 41 (4), 657e671.
    [63]
    Shipton, B., Coop, M.R., 2015. Transitional behaviour in sands with plastic and nonplastic fines. Soils and Foundations 55 (1), 1e16.
    [64]
    Strahler, A., Stuedlein, A.W., Arduino, P.W., 2016. Stress-strain response and dilatancy of sandy gravel in triaxial compression and plane strain. Journal of Geotechnical and Geoenvironmental Engineering 142 (4), 04015098.
    [65]
    Sun, Y., Xiao, Y., Ju, W., 2014. Bounding surface model for ballast with additional attention on the evolution of particle size distribution. Science China Technological Sciences 57 (7), 1352e1360.
    [66]
    Tapias, M., Alonso, E.E., Gili, J. a., 2015. A particle model for rockfill behaviour. Géotechnique (12), 975e994.
    [67]
    Tejchman, J., Górski, J., Einav, I., 2012. Effect of grain crushing on shear localization in granular bodies during plane strain compression. International Journal for Numerical and Analytical Methods in Geomechanics 36 (18), 1909e1931.
    [68]
    Thakur, P.K., Vinod, J.S., Indraratna, B., 2010. Effect of particle breakage on cyclic densification of ballast: a DEM approach. IOP Conference Series: Materials Science and Engineering 10 (1), 1e7.
    [69]
    Tyler, S.W., Wheatcraft, S.W., 1989. Application of fractal mathematics to soil water retention estimation. Soil Science Society of America Journal 53 (4), 987e996.
    [70]
    Valdes, J.R., Fernandes, F.L., Einav, I., 2012. Periodic propagation of localized compaction in a brittle granular material. Granular Matter 14 (1), 71e76.
    [71]
    Varadarajan, A., Sharma, K.G., Venkatachalam, K., Gupta, A.K., 2003. Testing and modeling two rockfill materials. Journal of Geotechnical and Geoenvironmental Engineering 129 (3), 206e218.
    [72]
    Walberg, F.C., Stark, T.D., Nicholson, P.J., Castro, G., Byrne, P.M., Axtell, P.J., Dillon, J.C., Empson, W.B., Topi, J.E., Mathews, D.L., Bellew, G.M., 2013. Seismic retrofit of tuttle creek dam. Journal of Geotechnical and Geoenvironmental Engineering 139 (6), 975e986.
    [73]
    Wang, B., Martin, U., Rapp, S., 2017. Discrete element modeling of the single-particle crushing test for ballast stones. Computers and Geotechnics 88, 61e73.
    [74]
    Wang, W., Coop, M.R., 2016. An investigation of breakage behaviour of single sand particles using a high-speed microscope camera. Géotechnique 66 (12), 984e998.
    [75]
    Wang, Y., Dan, W., Xu, Y., Xi, Y., 2015. Fractal and morphological characteristics of single marble particle crushing in uniaxial compression tests. Advances in Materials Science and Engineering (1), 1e10.
    [76]
    Weibull, W., 1951. A statistical distribution function of wide applicability. Journal of Applied Mechanics 13 (2), 293e297.
    [77]
    Wong, R.H.C., Lin, P., Tang, C.A., 2006. Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression. Mechanics of Materials 38 (1e2), 142e159.
    [78]
    Xiao, Y., Coop, M.R., Liu, H., Liu, H., Jiang, J.S., 2016. Transitional behaviors in wellgraded coarse granular soils. Journal of Geotechnical and Geoenvironmental Engineering 142 (12), 06016018.
    [79]
    Xiao, Y., Liu, H., 2017. Elastoplastic constitutive model for rockfill materials considering particle breakage. International Journal of Geomechanics 17 (1), 04016041.
    [80]
    Xiao, Y., Liu, H., Chen, Q., Long, L., Xiang, J., 2017a. Evolution of particle breakage and volumetric deformation of binary granular soils under impact load. Granular Matter 19 (4), 71.
    [81]
    Xiao, Y., Liu, H., Chen, Q., Ma, Q., Xiang, Y., Zheng, Y., 2017b. Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotechnica 12 (5), 1177e1184.
    [82]
    Xiao, Y., Liu, H., Chen, Y., Chu, J., 2014a. Influence of intermediate principal stress on the strength and dilatancy behavior of rockfill material. Journal of Geotechnical and Geoenvironmental Engineering 140 (11), 04014064.
    [83]
    Xiao, Y., Liu, H., Chen, Y., Chu, J., 2014b. Strength and dilatancy of silty sand. Journal of Geotechnical and Geoenvironmental Engineering 140 (7), 06014007.
    [84]
    Xiao, Y., Liu, H., Chen, Y., Jiang, J., 2014c. Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: influences of density and pressure. Journal of Geotechnical and Geoenvironmental Engineering 140 (12), 04014070.
    [85]
    Xiao, Y., Liu, H., Chen, Y., Jiang, J., 2014d. Strength and deformation of rockfill material based on large-scale triaxial compression tests. II: influence of particle breakage. Journal of Geotechnical and Geoenvironmental Engineering 140 (12), 04014071.
    [86]
    Xiao, Y., Liu, H.L., Nan, B.W., McCartney, J.S., 2018a. Gradation-dependent thermal conductivity of sands. Journal of Geotechnical and Geoenvironmental Engineering 144 (9), 06018010.
    [87]
    Xiao, Y., Stuedlein, A.M., Chen, Q., Liu, H., Liu, P., 2018b. Stress-strain-strength response and ductility of gravels improved by polyurethane foam adhesive. Journal of Geotechnical and Geoenvironmental Engineering 144 (2), 04017108.
    [88]
    Xiao, Y., Sun, Y., Hanif, K.F., 2015. A particle-breakage critical state model for rockfill material. Science China Technological Sciences 58 (7), 1125e1136.
    [89]
    Xiao, Y., Yuan, Z., Chu, J., Liu, H., Huang, J., Luo, S.N., Wang, S., Lin, J., 2019a. Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression. Acta Geotechnica. https://doi.org/10.1007/s11440-11019- 00768-z.
    [90]
    Xiao, Y., Sun, Z., Desai, C.S., Meng, M., 2019b. Strength and surviving probability in grain crushing under acidic erosion and compression. International Journal of Geomechanics 19 (11), 04019123.
    [91]
    Xiao, Y., Wang, L., Jiang, X., Evans, T.M., Stuedlein, A.W., Liu, H., 2019c. Acoustic Emission and Force Drop in Grain Crushing of Carbonate Sands. Journal of Geotechnical and Geoenvironmental Engineering 145 (9), 04019057.
    [92]
    Xiao, Y., Yin, F., Liu, H., Chu, J., Zhang, W., 2017c. Model tests on soil movement during the installation of piles in transparent granular soil. International Journal of Geomechanics 17 (4), 06016027.
    [93]
    Xu, B., Zou, D., Kong, X., Zhou, Y., Liu, X., 2017. Concrete slab dynamic damage analysis of CFRD based on concrete nonuniformity. International Journal of Geomechanics 17 (9), 04017055-04017055.
    [94]
    Yan, W.M., Shi, Y., 2014. Evolution of grain grading and characteristics in repeatedly reconstituted assemblages subject to one-dimensional compression. Géotechnique Letters 4, 223e229.
    [95]
    Yang, S., Lacasse, S., Sandven, R., 2006. Determination of the transitional fines content of mixtures of sand and non-plastic fines. Geotechnical Testing Journal 29 (2), 102e107.
    [96]
    Yoshimoto, N., Hyodo, M., Nakata, Y., Orense, R.P., Hongo, T., Ohnaka, A., 2012. Evaluation of shear strength and mechanical properties of granulated coal ash based on single particle strength. Soils and Foundations 52 (2), 321e334.
    [97]
    Zhang, P., Li, S.X., Zhang, Z.F., 2011. General relationship between strength and hardness. Materials Science and Engineering A 529 (1), 62e73.
    [98]
    Zhao, B., Wang, J., Coop, M.R., Viggiani, G., Jiang, M., 2015. An investigation of single sand particle fracture using X-ray micro-tomography. Géotechnique 65 (8), 625e641.
    [99]
    Zhou, H.J., Ma, G., Yuan, W., Zhou, W., Chang, X.L., 2017. Size effect on the crushing strengths of rock particles. Rock and Soil Mechanics 38 (8), 2425e2433.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (333) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return