Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Chen Wang, Jianchao Liu, Haidong Zhang, Xinzhu Zhang, Deming Zhang, Zhixuan Xi, Zijie Wang. Geochronology and mineralogy of the Weishan carbonatite in Shandong province, eastern China[J]. Geoscience Frontiers, 2019, 10(2): 769-785. doi: 10.1016/j.gsf.2018.07.008
Citation: Chen Wang, Jianchao Liu, Haidong Zhang, Xinzhu Zhang, Deming Zhang, Zhixuan Xi, Zijie Wang. Geochronology and mineralogy of the Weishan carbonatite in Shandong province, eastern China[J]. Geoscience Frontiers, 2019, 10(2): 769-785. doi: 10.1016/j.gsf.2018.07.008

Geochronology and mineralogy of the Weishan carbonatite in Shandong province, eastern China

doi: 10.1016/j.gsf.2018.07.008
Funds:

This work was supported by the Shandong Geological Survey (Nos. 203027160439, 213027160438), Geological Investigation Work Project of China Geological Survey (Grant No. 12120115069701), Scientific Innovation Practice Project of Postgraduates of Chang’an University (2018019) and Fundamental Research Funds for the Central Universities (No. 300102278402).

  • Received Date: 2018-02-05
  • Rev Recd Date: 2018-05-14
  • Publish Date: 2021-01-07
  • The Weishan REE deposit is located at the eastern part of North China Craton (NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages (129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REE-bearing carbonatite mainly consists of Generation-1 igneous calcite (G-1 calcite) with a small amount of Generation-2 hydrothermal calcite (G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ13CV-PDB (-6.5‰ to -7.9‰) and δ13OV-SMOW (8.48‰-9.67‰) values are similar to those of primary, mantle-derived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.
  • loading
  • [1]
    Ayers, J.C., Watson, E.B., 1993. Apatite/fluid partitioning of rare earth elements and strontium:experimental results at 1.0 Gpa and 1000 ℃ and application to models of fluid-rock interaction. Chemical Geology 110, 299-314.
    [2]
    Bau, M., Dulski, P., 1995. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contributions to Mineralogy and Petrology 119, 213-223.
    [3]
    Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., Fisher, N.I., 2002. Apatite as an indicator mineral for mineral exploration:trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration 76, 45-69.
    [4]
    Brooker, R.A., Hamilton, D.L., 1990. Three-liquid immiscibility and the origin of carbonatites. Nature 346, 459-462.
    [5]
    Castor, S.B., 2008. The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. Canadian Mineralogist 46, 779-806.
    [6]
    Chakhmouradian, A.R., Mumin, A.H., Demény, A., Elliott, B., 2008. Postorogenic carbonatites at Eden Lake, Trans-Hudson Orogen (northern Manitoba, Canada):geological setting, mineralogy and geochemistry. Lithos 103, 503-526.
    [7]
    Chen, Y.J., Pirajno, F., Lai, Y., Li, C., 2004. Metallogenic time and tectonic setting of the Jiaodong gold province, eastern China. Acta Petrologica Sinica 20, 907-922 (in Chinese with English abstract).
    [8]
    Cherniak, D.J., 2000. Rare earth element diffusion in apatite. Geochimica et Cosmochimica Acta 64, 3871-3885.
    [9]
    Dalton, J.A.,Wood, B.J., 1993. The compositions of primary carbonate melts and their evolution throng wallrock reaction in the mantle. Earth and Planetary Science Letters 119, 511-525.
    [10]
    Dalton, J.A., Prenall, D.C., Dean, C., 1998. The continuum of primary carbonatitickimberlitic melt compositions in equilibrium with lherzolite:data from the system CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa. Journal of Petrology 39, 1953-1964.
    [11]
    Demeny, A., Ahijado, A., Casillas, R., Vennemann, T.W., 1998. Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain):a C, O, H isotope study. Lithos 44, 101-115.
    [12]
    Deng, J., Chen, Y.M., Liu, Q., Yang, L.Q., 2010. The Gold Metallogenic System and Mineral Resources Exploration of Sanshandao Fault Zone. Geological Publishing House, Shandong Province. Beijing, pp. 1-371 (in Chinese with English abstract).
    [13]
    Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., Mortimer, G.E., Sylvester, P., McCulloch, M.T., Hergt, J.M., Handler, M.R., 1997. A simple method for the precise determination of >40 trace elements in geological samples by ICP-MS using enriched isotope internal standardisation. Chemical Geology 134, 311-326.
    [14]
    Eggler, D.H., 1989. Carbonatites, primary melts, and mantle dynamics. In:Bell, K.(Ed.), Carbonatites:Genesis and Evolution. Unwin Hyman, London, pp. 561-579.
    [15]
    Freestone, I.C., Hamilton, D.L., 1980. The role of liquid immiscibility in the genesis of carbonatites-an experimental study. Contributions to Mineralogy and Petrology 73, 105-117.
    [16]
    Frietsch, R., Perdahl, J.A., 1995. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geology Reviews 9, 489-510.
    [17]
    Halama, R., Vennemann, T., Siebel, W., Markl, G., 2005. The Gronnedal-Ika carbonatite-syenite complex, South Greenland:carbonatite formation by liquid immiscibility. Journal of Petrology 46, 191-217.
    [18]
    Harmer, R.E., Gittins, J., 1998. The case for primary, mantle-derived carbonatite magma. Journal of Petrology 39, 1895-1903.
    [19]
    Hou, Z.Q., Tian, S.H., Yuan, Z.X., Xie, Y.L., Yin, S.P., Yi, L.S., Fei, H.C., Yang, Z.M., 2006.The Himalayan collision zone carbonatites in western Sichuan, SW China:petrogenesis, mantle source and tectonic implication. Earth and Planetary Science Letters 244, 234-250.
    [20]
    Hu, Z.C., Liu, Y.S., Chen, L., 2011. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution. Journal of Analytical Atomic Spectrometry 26, 425-430.
    [21]
    Kjarsgaard, B.A., Hamilton, D.L., 1988. Liquid immiscibility and the origin of alkalipoor carbonatites. Mineralogical Magazine 52, 43-55.
    [22]
    Kolker, A., 1982. Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite)deposits and evaluation of the liquid immiscibility hypothesis. Economic Geology 77, 1146-1158.
    [23]
    Lan, T.G., Fan, H.R., Hu, F.F., Yang, K.F., Wang, Y., 2011. Genesis of the Weishan REE deposit, Shandong Province:evidences from Rb-Sr isochron age, LA-MC-ICPMS Nd isotopic compositions and fluid inclusions. Geochimica 40, 428-442 (in Chinese with English abstract).
    [24]
    Lee, W.J., Wyllie, P.J., 1998. Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO-(MgO+FeO)-(Na2O+K2O)-(SiO2-+Al2O3+TiO2)-CO2. Journal of Petrology 39, 495-517.
    [25]
    Lee Bas, M.J., Keller, J., Tao, K.J., Wall, F., Williams, C.T., Zhang, P.S., 1992. Carbonatite dykes at Baiyun Obo, Inner Mongolia, China. Mineralogy and Petrology 46, 193-228.
    [26]
    Li, J.K., Yuan, Z.X., Bai, G., Chen, Y.C., Wang, D.H., Ying, L.J., Zhang, J., 2009. Oreforming fluid evolvement and its controlling to REE(Ag) mineralizing in the Weishan deposit, Shandong. Journal of Mineralogy and Petrology 29, 60-68 (in Chinese with English abstract).
    [27]
    Liang, Y.W., Lai, Y., Hu, H., Zhang, F., 2017. Zircon U-Pb ages and geochemical characteristics study of syenite from Weishan REE deposit, western Shandong.Acta Scientiarum Naturalium Universitatis Pekinensis 53, 652-666 (in Chinese with English abstract).
    [28]
    Liu, Y., Hou, Z.Q., 2017. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China. Journal of Asian Earth Sciences 137, 26-79.
    [29]
    Liu, Y.S., Gao, S., Hu, Z.C., Gao, C.G., Zong, K.Q., Wang, D.B., 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology 51, 537-571.
    [30]
    Liu, Y.S., Hu, Z.C., Zong, K.Q., Gao, C.G., Gao, S., Xu, J., Chen, H.H., 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin 55, 1535-1546.
    [31]
    Maruyama, S., Send, T., 1986. Orogeny and relative plate motions:example of the Japanese islands. Tectonophysics 127, 305-329.
    [32]
    Maruyama, S., Isozaki, Y., Kimura, G., Terabayashi, M., 1997. Paleogeographic maps of the Japanese Islands:plate tectonic systhesis from 750 Ma to the present. Island Arc 6, 124-142.
    [33]
    Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system.Earth science Reviews 37, 215-224.
    [34]
    Möller, P., Morteani, G., 1983. On the geochemical fractionation of rare earth elements during the formation of Ca-minerals and its application to problems of the genesis of ore deposits. Bulletin De Lacadémie Nationale De Médecine 152, 747-791.
    [35]
    Möller, P., Parekh, P.P., Schneider, H.J., 1976. The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis. Mineralium Deposita 11, 111-116.
    [36]
    OReilly, S.Y., Griffin, W.L., 2000. Apatite in the mantle:implication for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 53, 217-232.
    [37]
    Qiu, J.S., Zhang, X.L., Hu, J., Li, Z., 2009. In suit LA-ICP-MS analyses of apatites from arbonatites in western Shandong province, Implication for petrogenesis. Acta Petrologica Sinica 25, 2855-2865 (in Chinese with English abstract).
    [38]
    Song, B., Zhang, Y., Wan, Y., Jian, P., 2002. Mount making and procedure of the SHRIMP dating. Geological Review 48, 26-30 (in Chinese with English abstract).
    [39]
    Song, W.L., Xu, C., Smith, M.P., Chakhmouradian, A.R., Brenna, M., Kynický, J., Chen, W., Yang, Y.H., Deng, M., Tang, H.Y., 2018. Genesis of the world's largest rare earth element deposit, Bayan Obo, China:protracted mineralization evolution over ~1 b.y. Geology 46, 323-326.
    [40]
    Stoppa, F., Liu, L., 1995. Chemical composition and genetic implication of apatite from some ultra-alkaline Italian rocks. European Journal of Mineralogy 7, 391-402.
    [41]
    Subías, I., Fernández-Nieto, C., 1995. Hydrothermal events in the Valle de Tena(Spanish Western Pyrenees) as evidenced by fluid inclusions and trace-element distribution from fluorite deposits. Chemical Geology 124, 267-282.
    [42]
    Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of ocean basalts:implications for mantle composition and processes. Geological Society London Special Publications 42, 313-345.
    [43]
    Sweeney, R.J., 1994. Carbonatite melt compositions in the Earth's mantle. Earth and Planetary Science Letters 128, 259-270.
    [44]
    Taylor, H.P., Frechen, J., Degens, E.T., 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See district, west Germany and the Alno district, Sweden. Geochimica et Cosmochimica Acta 31, 407-430.
    [45]
    Tian, J.X., Zhang, R.T., Fan, Y.C., Li, X.Z., Xu, H.Y., Wang, B.Y., 2002. Geological characteristics and relation with rare earth elements of alkaline complex in Chishan of Shandong province. Geology of Shandong 18, 21-25 (in Chinese with English abstract).
    [46]
    Tian, J.X., Li, X.Z., Song, Z.Y., Liu, H.D., Huang, Y.B., Zhu, D.C., 2015. Environment, formation age and material sources of Mesozoic gold deposits in western Shandong:a synthesis. Acta Geologica Sinica 89, 1530-1537.
    [47]
    Veksler, I.V., Petibon, C.M., Jenner, G.A., Dorfman, A.M., Dingwell, D.B., 1998. Trace element partitioning in immiscible silicate-carbonate liquid systems:an initial experimental study using a centrifuge autoclave. Journal of Petrology 39, 2095-2104.
    [48]
    Wang, Y., 2009. Late Mesozoic Magmatism and Gold-copper Mineralization in the Southwestern Part of Shandong Province. Graduate University of the Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
    [49]
    Wang, J., Li, S., 1992. Langshanebaiyun Obo Rift of North China. Press of Peking University, Beijing (in Chinese with English abstract).
    [50]
    Woolley, A.R., Kempe, D.R.C., 1989. Carbonatites:nomenclature, average chemical compositions, and element distribution. In:Bell, K. (Ed.), Carbonatites:Genesis and Evolution. Unwin Hyman, London.
    [51]
    Wright, J.B., 1969. A simple alkalinity ratio and its application to questions of nonorogenic granite genesis. Geological Magazine 106, 370-384.
    [52]
    Wyllie, P.J., Huang, W.L., 1976. Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications.Contributions to Mineralogy and Petrology 54, 79-107.
    [53]
    Xie, Y.L., Verplanck, P., Hou, Z.Q., Goldfarb, R., Zhong, R.C., 2017. Rare Earth Element Deposits in China:Characteristics and Ore Genesis. Society of Economic Geologists, Inc. China University of Geosciences, Beijing.
    [54]
    Xu, J.W., Zhu, G., 1992. Review of the ten years of research on the Tancheng-Lujiang fault zone. Geological Review 38, 316-324 (in Chinese with English abstract).
    [55]
    Xu, W.L., Wang, D.Y., Wang, S.M., 2000. pTtc model of Mesozoic and Cenozoic volcanisms and lithospheric evolution in eastern China. Journal of Changchun University of Science and Technology 30, 329-335 (in Chinese with English abstract).
    [56]
    Xu, G.Z., Zhou, R.,Wang, Y.F., She, H.Q., Li, B., Du, B.M., Song, M.C., 2002. The intrinsic factors causing the significant differences in Mesozoic mineralization between Jiaodong and Luxi areas. Geoscience 16, 9-18 (in Chinese with English abstract).
    [57]
    Xu, C., Zhang, H., Huang, Z.L., Liu, C.Q., Qi, L., Li, W.B., Guan, T., 2004a. Genesis of the carbonatite-syenite complex and REE deposit at Maoniuping, Sichuan Province, China:evidence from Pb isotope geochemistry. Geochemical Journal 38, 67-76.
    [58]
    Xu, Y.G., Ma, J.L., Huang, X.L., Iizuka, Y., Chung, S.L.,Wang, Y.B.,Wu, X.Y., 2004b. Early Cretaceous gabbroic complex from Yinan, Shandong province:petrogenesis and mantle domains beneath the north China Craton. International Journal of Earth Sciences 93, 1025-1041.
    [59]
    Xu, C., Campbell, I.H., Allen, C.M., Huang, Z.L., Qi, L., Zhang, H., Zhang, G.S., 2007. Flat rare earth element patterns as an indicator of cumulate processes in the Lesser Qinling carbonatites, China. Lithos 95, 267-278.
    [60]
    Xu, C., Campbell, I.,H., Kynicky, J., Allen, C.M., Chen, Y.J., Huang, Z.L., Qi, L., 2008.Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposit, China. Lithos 106, 12-24.
    [61]
    Xu, C., Kynicky, J., Chakhmouradian, A.R., Campbell, I.H., Allen, C.M., 2010a. Traceelement modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China. Lithos 118, 145-155.
    [62]
    Xu, C., Kynicky, J., Chakhmouradian, A.R., Liang, Q., Song, W.D., 2010b. A unique Mo deposit associated with carbonatites in the Qinling orogenic belt, central China.Lithos 118, 50-60.
    [63]
    Xu, C., Taylor, R.N., Li, W.B., Kynicky, J., Chakhmouradian, A.R., Song, W.B., 2012.Comparison of fluorite geochemistry from REE deposits in the Panxi region and Bayan Obo, China. Journal of Asian Earth Sciences 57, 76-89.
    [64]
    Xu, C., Kynicky, J., Chakhmouradian, A.R., Li, X.H., Song, W.B., 2015. A case example of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in South Qinling orogen:Miaoya rare-metal deposit, central China.Lithos 227, 107-121.
    [65]
    Yan, G.H., Cai, J.H., Rem, K.X., Mu, B.L., Li, F.T., Chu, Z.Y., 2008. Nd, Sr and Pb isotopic geochemistry of late-Mesozoic alkaline-rich intrusion from the Tanlu Fault zone:evidence of the magma source. Acta Petrologica Sinica 24, 1223-1236 (in Chinese with English abstract).
    [66]
    Yang, C.H., 2007. Chronology and Geochemistry of Mesozoic High-Mg Diorites in Western Shandong:Constraints on Lithospheric Evolution of the North China Craton. Jilin University, Jilin (in Chinese with English abstract).
    [67]
    Yang, J.H., Wu, F.W., Wilde, S.A., 2003. A review of the geodynamic setting of largescale Late Mesozoic gold mineralization in the North China Craton:an association with lithospheric thinning. Ore Geology Reviews 23, 125-152.
    [68]
    Yang, K.F., Fan, H.R., Hu, F.F., Wang, K.Y., 2010. Intrusion sequence of carbonatite dykes and REE accumulation mechanism in Bayan Obo district. Acta Petrologica Sinica 26, 1523-1529 (in Chinese with English abstract).
    [69]
    Yang, K.F., Fan, H.R., Santosh, M., Hu, F.F., Wang, K.Y., 2011. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China:constraints for the mechanism of super accumulation of rare earth elements.Ore Geology Reviews 40, 122-131.
    [70]
    Ying, J.F., Zhou, X.H., Zhang, H.F., 2004. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source. Lithos 75, 413-426.
    [71]
    Yu, X.F., Tang, H.S., Han, Z.Z., Li, C.Y., 2010. Geological characteristics and origin of rare earth elements deposits related with alkaline rock in the Chishan-Longbaoshan area, Shandong province. Acta Geologica Sinica 84, 407-417 (in Chinese with English abstract).
    [72]
    Zhang, H.F., Sun, M., Zhou, X.H., Fan, W.M., Zhai, M.G., Yin, J.F., 2002. Mesozoic lithosphere destruction beneath the North China Craton:evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology 144, 241-253.
    [73]
    Zhang, H.F., Sun, M., Zhou, X.H., Ying, J.F., 2005. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications. Lithos 81, 297-317.
    [74]
    Zhang, J.D., Hao, T.Y., Dong, S.W., Chen, S.H., Cui, J.J., Yang, X.Y., Liu, C.Z., Li, T.J., Xu, Y., Huang, S., Re, F.L., 2015. The structural and tectonic relationships of the major fault systems of the Tan-Lu fault zone, with a focus on the segments within the North China region. Journal of Asian Earth Sciences 110, 85-100.
    [75]
    Zhao, G.C., Wilde, S.A., Cawood, P.A., Sun, M., 2001. Archean blocks and their boundaries in the North China Craton:Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research 107, 45-73.
    [76]
    Zhou,W.W., Cai, J.H., Yan, G.H., 2013. The geochemical characteristics and geological significance of alkaline complex in Chishan of Shandong province. Northwestern Geology 64, 93-105 (in Chinese with English abstract).
    [77]
    Zhu, J., Wang, L.X., Peng, S.G., Peng, L.H., Wu, C.X., Qiu, X.F., 2016a. U-Pb zircon age, geochemical and isotopic characteristics of the Miaoya syenite and carbonatite complex, central China. Geological Journal 52, 938-954.
    [78]
    Zhu, G., Wang, W., Gu, C.C., Zhang, S., Liu, C., 2016b. Late Mesozoic evolution history of the tan-Lu fault zone and its indication to destruction processes of the north China Craton. Acta Petrologica Sinica 32, 935-949 (in Chinese with English abstract).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (90) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return