Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Kazem Kazemi, Ali Kananian, Yilin Xiao, Fatemeh Sarjoughian. Petrogenesis of Middle-Eocene granitoids and their Mafic microgranular enclaves in central Urmia-Dokhtar Magmatic Arc (Iran): Evidence for interaction between felsic and mafic magmas[J]. Geoscience Frontiers, 2019, 10(2): 705-723. doi: 10.1016/j.gsf.2018.04.006
Citation: Kazem Kazemi, Ali Kananian, Yilin Xiao, Fatemeh Sarjoughian. Petrogenesis of Middle-Eocene granitoids and their Mafic microgranular enclaves in central Urmia-Dokhtar Magmatic Arc (Iran): Evidence for interaction between felsic and mafic magmas[J]. Geoscience Frontiers, 2019, 10(2): 705-723. doi: 10.1016/j.gsf.2018.04.006

Petrogenesis of Middle-Eocene granitoids and their Mafic microgranular enclaves in central Urmia-Dokhtar Magmatic Arc (Iran): Evidence for interaction between felsic and mafic magmas

doi: 10.1016/j.gsf.2018.04.006
  • Received Date: 2017-09-23
  • Rev Recd Date: 2018-02-12
  • Publish Date: 2021-01-07
  • Whole rock major and trace element geochemistry together with zircon U-Pb ages and Sr-Nd isotope compositions for the Middle Eocene intrusive rocks in the Haji Abad region are presented. The granitoid hosts, including granodiorite and diorite, yielded zircon U-Pb ages with a weighted mean value of 40.0±0.7 Ma for the granodiorite phase. Mafic microgranular enclaves (MMEs) are common in these plutons, and have relatively low SiO2 contents (53.04-57.08 wt.%) and high Mg# (42.6-60.1), probably reflecting a mantle-derived origin. The host rocks are metaluminous (A/CNK=0.69-1.03), arc-related calc-alkaline, and I-type in composition, possessing higher SiO2 contents (59.7-66.77 wt.%) and lower Mg# (38.6-52.2); they are considered a product of partial melting of the mafic lower crust. Chondrite-normalized REE patterns of the MMEs and granitoid hosts are characterized by LREE enrichment and show slight negative Eu anomalies (Eu/Eu*=0.60-0.93). The host granodiorite samples yield (87Sr/86Sr)i ratios ranging from 0.70498 to 0.70591, positive εNd(t) values varying from +0.21 to +2.3, and TDM2 ranging from 760 to 909 Ma, which is consistent with that of associated mafic microgranular enclaves (87Sr/86Sr)i=0.705111-0.705113, εNd(t)=+2.14 to +2.16, TDM2=697-785 Ma). Petrographic and geochemical characterization together with bulk rock Nd-Sr isotopic data suggest that host rocks and associated enclaves originated by interaction between basaltic lower crust-derived felsic and mantle-derived mafic magmas in an active continental margin arc environment.
  • loading
  • [1]
    Aftabi, A., Atapour, H., 2000. Regional aspects of shoshonitic volcanism in Iran.Episodes 23, 119-125.
    [2]
    Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B., Wortel, R., 2011. Zagros orogeny:a subduction-dominated process. Geological Magazine 148, 692-725.
    [3]
    Aghanabati, A., 1998. Major sedimentary and structural units of Iran (map). Geosciences 7 (Geological Survey of Iran).
    [4]
    Ahmadian, J., Sarjoughian, F., Lentz, D., Esna-Ashari, A., Murata, M., Ozawa, H., 2016.Eocene K-rich adakitic rocks in the Central Iran:implications for evaluating its CueAueMo metallogenic potential. Ore Geology Reviews 72, 323-342.
    [5]
    Ahmadzadeh, G., Jahangiri, A., Lentz, D., Mojtahedi, M., 2010. Petrogenesis of Plio-Quaternary post-collisional ultrapotassic volcanism in NW of Marand, NW Iran.Journal of Asian Earth Sciences 39, 37-50.
    [6]
    Alavi, M., 1994. Tectonic of the Zagros orogenic belt of Iran:new data and interpretations.Tectonophysics 229, 211-238.
    [7]
    Alizadeh, A., López Martínez, M., Sarkarinejad, K., 2010.40Ar-39Ar geochronology in a gneiss dome within the Zagros Orogenic Belt. Cometes Rendus Geoscience 342, 837-846.
    [8]
    Allègre, C.J., Minster, J.F., 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters 38, 1-25.
    [9]
    Allen, M.B., 2009. Discussion on the Eocene bimodal Piranshahr massif of the SanandajeSirjan zone, west Iran:a marker of the end of collision in the Zagros orogen. Journal of the Geological Society, London 166, 981-982.
    [10]
    Altherr, R., Holl, A., Hegner, E., 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides:northern Vosges (France) and northern Schwarzwald(Germany). Lithos 50, 51-73.
    [11]
    Amidi, S.M., Emami, M.H., Michel, R., 1984. Alkaline character of Eocene volcanism in the middle part of Central Iran and its geodynamic situation. Geologische Rundschau 73, 917-932.
    [12]
    Amidi, S.M., Michel, R., 1985. Cenozoic magmatism of the Surk area (central Iran)stratigraphy, petrography, geochemistry and their geodynamic implications.Géologie Alpine 61, 1-16.
    [13]
    Arvin, M., Dargahi, S., Babaei, A.A., 2004. Mafic microgranular enclave swarms in the Chenar granitoid stock, NW of Kerman, Iran:evidence for magma mingling.Journal of Asian Earth Sciences 24, 105-113.
    [14]
    Arvin, M., Pan, Y., Dargahi, S., Malekizadeh, A., Babaei, A., 2007. Petrochemistry of the Siah Kuh granitoid stock southwest of Kerman, Iran:implications for initiation of Neotethys subduction. Journal of Asian Earth Sciences 30, 474-489.
    [15]
    Asadi, S., Moore, F., Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran:a review. Earth-Science Reviews 138, 25-46.
    [16]
    Ayati, F., Yavuz, F., Asadi, H.H., Richards, J.P., Jourdan, F., 2013. Petrology and geochemistry of calc-alkaline volcanic and subvolcanic rocks, Dalli porphyry copper gold deposit, Markazi Province, Iran. International Geology Review 55, 158-184.
    [17]
    Azizi, H., Moinevaziri, H., 2009. Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. Journal of Geodynamics 47, 167-179.
    [18]
    Bagheri, S., Stampfli, G.M., 2008. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran:new geological data, relationships and tectonic implications. Tectonophysics 451, 123-155.
    [19]
    Ballato, P., Mulch, A., Landgraf, A., Strecker, M.R., Dalconi, M.C., Friedrich, A., Tabatabaei, S.H., 2010. Middle to late Miocene Middle Eastern climate from stable oxygen and carbon isotope data, southern Alborz mountains, N Iran.Earth and Planetary Science Letters 300, 125-138.
    [20]
    Ban, M., Takahashi, K., Horie, T., Toya, N., 2005. Petrogenesis of mafic inclusions in rhyolitic lavas from Narugo volcano, Northeastern Japan. Journal of Petrology 46, 1543-1563.
    [21]
    Barbarin, B., 1990. Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada batholith, California. Journal of Geophysical Research 95, 17747-17756.
    [22]
    Barbarin, B., 1999. A review of the relationship between granitoid types, their origins and their geodynamic environments. Lithos 46, 605-626.
    [23]
    Barbarin, B., 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:nature, origin, and relations with the hosts. Lithos 80, 155-177.
    [24]
    Barbarin, B., Didier, J., 1991. Conclusions:enclaves and granite petrology. In:Didier, J., Barbarin, B. (Eds.), Enclaves and Granite Petrology. Elsevier, Amsterdam, pp. 545-549.
    [25]
    Barbarin, B., Didier, J., 1992. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Transactions of the Royal Society of Edinburgh 83, 145-153.
    [26]
    Baxter, S., Feely, M., 2002. Magma mixing and mingling textures in granitoids:examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology 76, 63-74.
    [27]
    Berberian, F., Berberian, M., 1981. Tectono-plutonic episodes in Iran. In:Gupta, H.K., Delany, F.M. (Eds.), Zagroz Hindu Kush Himalaya Geodynamic Evolution. American Geophysical Union & Geological Society of America, Washington, pp. 5-32.
    [28]
    Berberian, F., Muir, I.D., Pankhurst, R.J., Berberian, M., 1982. Late cretaceous and early Miocene Andean-type plutonic activity in Northern Makran and Central Iran. Journal of the Geological Society 139, 605-614.
    [29]
    Berberian, M., King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210-265.
    [30]
    Bonin, B., 2004. Do coeval mafic and felsic magmas in post-collisional to withinplate regimes necessarily imply two constrasting, mantle and crust, sources? A review. Lithos 78, 1-24.
    [31]
    Brown, G.C., Thorpe, R.S., Webb, P.C., 1984. The geochemical characteristics of granitoids in contrasting arc and comments on magma sources. Journal of the Geological Society, London 141, 413-426.
    [32]
    Bussy, F., 1991. Enclaves of the late Miocene monte capanne granite, Elba island, Italy. In:Didier, J., Barbarin, B. (Eds.), Enclaves and Granite Petrology. Developments in Petrology, 13. Elsevier, Amsterdam, pp. 167-178.
    [33]
    Caillat, C., Dehlavi, P., Martel-Jantin, B., 1978. Géologie de la région de Saveh (Iran);contribution à l'étude duvolcanisme etduplutonismetertiaires de la zone de l'Iran Central. Thèse de Doctorat de Specialities. Grenoble University, France, p. 325 (in French).
    [34]
    Cao, M.J., Qin, K.Z., Li, G.M., Evans, N.J., Hollings, P., Jin, L.Y., 2016a. Genesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit, Western Junggar, NW-China. Lithos 246-247, 13-30.
    [35]
    Cao, M.J., Qin, K.Z., Li, G.M., Li, J.X., Zhao, J.X., Evans, N.J., Hollings, P., 2016b. Tectonomagmatic evolution of late Jurassic to early cretaceous granitoids in the west central Lhasa subterrane. Tibet. Gondwana Research 39, 386-400.
    [36]
    Cao, M.J., Qin, K.Z., Li, J.L., 2011. Research progress on the flat subduction and its metallogenic effect, two cases analysis and some prospects. Acta Petrologica Sinica 27, 3727-3748 (in Chinese with English abstract).
    [37]
    Chappell, B.W., 1978. Granitoids from the Moonbi district, new England Batholith, Eastern Australia. Journal of the Geological Society of Australia 25, 267-283.
    [38]
    Chappell, B.W., 1996. Magma mixing and the production of compositional variation within granite suites:evidence from the granites of southeastern Australia.Journal of Petrology 37, 449-470.
    [39]
    Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types. Pacific Geology 8, 173-174.
    [40]
    Chappell, B.W., White, A.J.R., Williams, I.S., Wyborn, D., Wyborn, L.A.I., 2000.Lachlan Fold Belt granites revisited:high- and low-temperature granites and their implications. Australian Journal of Earth Sciences 47, 123-138.
    [41]
    Chen, B., Chen, Z.C., Jahn, B.M., 2009. Origin of the mafic enclaves from the Taihang Mesozoic orogen, north China craton. Lithos 110, 343-358.
    [42]
    Chen, B., Zhai, M.G., Tian, W., 2007. Origin of the Mesozoic Magmatism in the North China Craton:Constraints from Petrological and Geochemical Data, 280.Geological Society, London, pp. 131-151. Special Publications.
    [43]
    Chen, C.J., Chen, B., Li, Z., Wang, Z.Q., 2016. Important role of magma mixing in generating the Mesozoic monzodioriticegranodioritic intrusions related to Cu mineralization, Tongling, East China:evidence from petrological and in situ Sr-Hf isotopic data. Lithos 248-251, 80-93.
    [44]
    Chen, F., Hegner, E., Todt, W., 2000. Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany:evidence for a Cambrian magmatic arc. International Journal of Earth Sciences 88, 791-802.
    [45]
    Chen, M., Sun, M., Buslov, M.M., Cai, K., Zhao, G., Kulikova, A.V., Rubanova, E.S., 2016.
    [46]
    Crustal melting and magma mixing in a continental arc setting:evidence from the Yaloman intrusive complex in the Gorny Altai terrane, Central Asian Orogenic Belt. Lithos 252-253, 76-91.
    [47]
    Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M., Iizuka, Y., 2013. Zircon U Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162-163, 70-87.
    [48]
    Christiansen, E.H., Keith, J.D., 1996. Trace element systematics in silicic magmas:a metallogenic perspective. In:Wyman, D.A. (Ed.), Trace Element Geochemistry of Volcanic Rocks:Applications for Massive Sulphide Exploration. Geological Association of Canada, pp. 115-151. Short Course Notes.
    [49]
    Clynne, M.A., 1999. A complex magma mixing origin for rocks erupted in 1915, Lassen peak, California. Journal of Petrology 40,105-132.
    [50]
    Collins, W.J., Richards, S.R., Healy, B.E., Ellison, P.I., 2000. Origin of heterogeneous mafic enclaves by two-stage hybridization in magma conduits (dykes) below and in granitic magma chambers. Transactions of the Royal Society of Edinburg Earth Sciences 91, 27-45.
    [51]
    Coney, P.J., Reynolds, S.J., 1977. Cordilleran Benioff zones. Nature 270, 403-406.
    [52]
    Cox, K.G., Bell, J.D., Pankhurts, R.J., 1979. The interpretation of igneous rocks. George Allen and Unwin, p. 450.
    [53]
    Dargahi, S., Arvin, M., Pan, Y., Babaei, A., 2010. Petrogenesis of post-collisional A type granitoids from the UrumieheDokhtar magmatic assemblage, Southwestern Kerman, Iran:constraints on the ArabianeEurasian continental collision. Lithos 115, 190-204.
    [54]
    Didier, J., Barbarin, B., 1991. In:Enclaves and Granite Petrology:Developments in Petrology, 13. Elsevier, Amsterdam.
    [55]
    Didier, J., 1973. Granites and Their Enclaves:the Bearing of Enclaves on the Origin of Granites. Developments in Petrology. Elsevier, Amsterdam, p. 393.
    [56]
    Didier, J., 1991. The various types of enclaves in the Hercynian granitoids of the Massif Central, France. In:Didier, J., Barbarin, B. (Eds.), Enclaves and Granite Petrology. Elsevier, pp. 47-61.
    [57]
    Dodge, F.C.W., Kistler, R.W., 1990. Some additional observations on inclusions in the granitic rocks of the Sierra Nevada. Journal of Geophysical Research 95, 17841-17848.
    [58]
    Dorouzi, T., Vosoughi Abedini,M., 2009. The role of magmatic fractionation and crustal contamination in the genesis of south and south eastern Boun-Zahra Eocene volcanic rocks. Iranian Journal of Geology 3, 15-23 (In Persian with English abstract).
    [59]
    Eby, G.N., 1992. Chemical subdivision of the A-type granitoids, petrogenetic and tectonic implications. Geology 20, 641-644.
    [60]
    Eghlimi, B., 2000. Geological Map of Danesphahan 1:100000 Survey Sheet.Geological survey of Iran.
    [61]
    Eichelberger, J.C., Cherkoff, D.G., Dreher, S.T., Nye, C.J., 2000. Magmas in collision:rethinking chemical zonation in silicic magmas. Geology 28, 603-606.
    [62]
    Espurt, N., Funiciello, F., Martinod, J., Guillaume, B., Regard, V., Faccenna, C., Brusset, S., 2008. Flat subduction dynamics and deformation of the South American plate:insights from analog modeling. Tectonics 27. https://doi.org/10.1029/2007TC002175.
    [63]
    Fang, Y., Zhang, Y.-H., Zhang, S.-T., Cao, H.-W., Zou, H., Dong, J.-H., 2018. Early Cretaceous I-type granites in the Tengchong terrane:new constraints on the late Mesozoic tectonic evolution of southwestern China. Geoscience Frontiers 9(2), 459-470. https://doi.org/10.1016/j.gsf.2017.04.007.
    [64]
    Fazeli, B., Khalili, M., Köksal, F.T., Mansouri Esfahani, M., Beavers, R., 2017. Petrological constraints on the origin of the plutonic massif of the Ghaleh Yaghmesh area, Urumieh-Dokhtar magmatic arc, Iran. Journal of African Earth Sciences 129, 233-247.
    [65]
    Fernandez, A.N., Barbarin, B., 1991. Relative rheology of coeval mafic and felsic magmas:nature of resulting interaction processes. Shape and mineral fabrics of microangular enclaves. In:Didier, J., Barbarin, B. (Eds.), Enclaves and Granite Petrology, Developments in Petrology, vol. 13. Elsevier, Amsterdam, pp. 19-23.
    [66]
    Fershtater, G.B., Borodina, N.S., 1977. Petrology of autholiths in granitic rocks. International Geology Review 19, 458-468.
    [67]
    Fershtater, G.B., Borodina, N.S., 1991. Enclaves in the Hercynian granitoids of the Ural mountains, USSR. In:Didier, J., Barbarin, B. (Eds.), Enclaves and Granite Petrology, Developments in Petrology 13. Elsevier, Amsterdam, pp. 83-94.
    [68]
    Foley, S., Tiepolo, M., Riccardo, V., 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417, 837-840.
    [69]
    Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Fllis, D.J., Frost, C.D., 2001.A Geochemical classification for granitic rocks. Journal of Petrology 42, 2033-2048.
    [70]
    Gharamohammadi, Z., Kananian, A., 2016. Geochemistry and petrogenesis of the Dehe Bala calc-alkaline granodiorites, south west of Boein Zahra. Iranian Journal of Petrology 7, 147-170 (In Persian with English abstract).
    [71]
    Ghasemi, A., Talbot, C.J., 2006. A new scenario for the SanandajSirjan zone (Iran).Journal of Asian Earth Sciences 26, 683-693.
    [72]
    Ghorbani, M.R., 2006. Lead enrichment in Neotethyan volcanic rocks from Iran:the implications of a descending slab. Geochemical Journal 40, 557-568.
    [73]
    Ghorbani, M.R., Bezenjani, R.N., 2011. Slab partial melts from the metasomatizing agent to adakite, Tafresh Eocene volcanic rocks, Iran. Island Arc 20, 188-202.
    [74]
    Gorton, M.P., Schandl, E.S., 2000. From continents to island arcs:a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. The Canadian Mineralogist 38, 1065-1073.
    [75]
    Grogan, S.E., Reavy, R.J., 2002. Disequilibrium textures in the Leinster granite complex, SE Ireland:evidence for acid-acid magma mixing. Mineralogical Magazine 66, 929-939.
    [76]
    Gutscher, M.A., Maury, R., Eissen, J.P., Bourdon, E.C., 2000a. Can slab melting be caused by flat subduction? Geology 28, 535-538.
    [77]
    Gutscher, M.A., Spakmam, W., Bijwaard, H., Engdahl, E.R., 2000b. Geodynamics of flat subduction:seismicity and tomographic constraints from the Andean margin. Tectonics 19, 814-833.
    [78]
    Hassanzadeh, J., 1993. Metallogenic and Tectonomagmatic Events in the SE Sector of the Cenozoic Active Continental Margin of Iran (Shahre Babak Area, Kerman Province). Ph.D. thesis. University of California, Los Angeles, California, USA, p. 204.
    [79]
    Hastie, A.R., Kerr, A.C., Pearce, J.A., Mitchell, S.F., 2007. Classification of altered volcanic island arc rocks using immobile trace elements:development of the Th-Co discrimination diagram. Journal of Petrology 48, 2341-2357.
    [80]
    Hibbard, M.J., 1991. Textural anatomy of twelve magma-mixed granitoid systems.In:Didier, J., Barbarin, B. (Eds.), Enclaves and Granite Petrology. Developments in Petrology. Elsevier, Amsterdam, pp. 431-444.
    [81]
    Hibbard, M.J., 1995. Petrography to Petrogenesis. Prentice Hall, Englewood Cliffs, NJ, p. 587.
    [82]
    Hofmann, A.W., 1988. Chemical differentiation of the Earth:the relationship between mantle, continental crust and oceanic crust. Earth and Planetary Science Letters 90, 297-314.
    [83]
    Honarmand, M., Rashidnejad Omran, N., Corfu, F., Emami, M.H., Nabatian, G., 2013a.Geochronology and magmatic history of a calc-alkaline plutonic complex in the UrumieheDokhtar Magmatic Belt, Central Iran:zircon ages as evidence for two major plutonic episodes. Neues Jahrbuch für Mineralogie-Abhandlungen 190, 67-77.
    [84]
    Honarmand, M., Rashidnejad Omran, N., Neubauer, F., Hashem Emami, M., Nabatian, G., Liu, X., Dong, Y., von Quadt, A., Chen, B., 2013b. Laser-ICP-MS U-Pb zircon ages and geochemical and SreNdePb isotopic compositions of the Niyasar plutonic complex, Iran:constraints on petrogenesis and tectonic evolution.International Geology Review 56, 104-132.
    [85]
    Honarmand, M., Rashidnejad Omran, N., Neubauer, F., Nabatian, G., Emami, M.H., Bernroider, M., Ahmadian, J., Ebrahimi, M., Liu, X., 2016. Mineral chemistry of a Cenozoic igneous complex, the UrumieheDokhtar magmatic belt, Iran:petrological implications for the plutonic rocks. Island Arc 25, 137-153.
    [86]
    Horton, B.K., Hassanzadeh, J., Stockli, D.F., Axen, G.J., Gillis, R.J., Guest, B., Amini, A., Fakhari, M.D., Zamanzadeh, S.M., Grove, M., 2008. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran:implications for chronostratigraphy and collisional tectonics. Tectonophysics 451, 97-122.
    [87]
    Hou, Z.,Wang, C., 2007. Determination of 35 trace elements in geological samples by inductively coupled plasma mass spectrometry. Journal of University of Science and Technology of China 37, 940-944 (in Chinese with English abstract).
    [88]
    Huang, H., Niu, Y.L., Nowell, G., Zhao, Z.D., Yu, X.H., Zhu, D.C., Mo, X.X., Ding, S., 2014.Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau:implications for continental crust growth through syn-collisional felsic magmatism. Chemical Geology 370, 1-18.
    [89]
    Huppert, H.E., Stephen, R., Sparks, J., 1989. Chilled margins in igneous rocks. Earth and Planetary Science Letters 92, 397-405.
    [90]
    Irvine, T.N., Baragar, W.R., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523-546.
    [91]
    Jahangiri, A., 2007. Post-collisional Miocene adakitic volcanism in NW Iran:geochemical and geodynamic implications. Journal of Asian Earth Sciences 30, 433-447.
    [92]
    Janoušek, V., Braithwaite, C.J.R., Bowes, D.R., Gerdes, A., 2004. Magma-mixing in the genesis of Hercynian calc-alkaline granitoids:an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78, 67-99.
    [93]
    Jolivet, L., Faccenna, C., 2000. Mediterranean extension and the Africa-Eurasia collision. Tectonics 19, 1095-1106.
    [94]
    Kadioglu, Y.K., Gulec, N., 1999. Types and genesis of the enclaves in central Anatolian granitoids. Geological Journal 34, 243-256.
    [95]
    Kananian, A., Sarjoughian, F., Nadimi, A., Ahmadian, J., Ling, W., 2014. Geochemical characteristics of the Kuh-e Dom intrusion, Urumieh Dokhtar Magmatic Arc(Iran):implications for source regions and magmatic evolution. Journal of Asian Earth Sciences 90, 137-148.
    [96]
    Karsli, O., Dokuz, A., Uysal, I., Aydin, F., Chen, B., Kandemir, R., Wijbrans, J., 2010.
    [97]
    Relative contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-type granitoidsin a subduction setting, with special reference to the Harsit Pluton, Eastern Turkey. Contributions to Mineralogy and Petrology 160, 467-487.
    [98]
    Kaygusuz, A., Sipahi, F., Ilbeyli, N., Arslan, M., 2013. Petrogenesis of the late Cretaceous Turnagöl intrusion in the eastern Pontides:implications for magma genesis in the arc setting. Geoscience Frontiers 4, 423-438.
    [99]
    Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A.,Woodhead, J.D., Hergt, J.M., Gray, C.M., Whitehouse, M.J., 2007. Magmatic and crustal differentiation history of granitic rocks from HfeO isotopes in zircon. Science 315, 980-983.
    [100]
    Koksal, S., Romer, R.L., Goncuoglu, M.C., Romer, R.L., Toksoy-Koksal, F., 2004. Timing of post-collisional H-type to A-type granitic magmatism, U-Pb titanite ages from the Alpine central Anatolian granitoids (Turkey). International Journal of Earth Sciences 93, 974-989.
    [101]
    Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277-279.
    [102]
    Kumar, S., Rino, V., 2006. Mineralogy and geochemistry of microgranular enclaves in Palaeoproterozoic Malanjkhand granitoids, central India:evidence of magma mixing, mingling, and chemical equilibration. Contributions to Mineralogy and Petrology 152, 591-609.
    [103]
    Lescuyer, J.L., Rio, R., 1976. Geologie de la region de Mianeh (Azarbaijan), contribution á l étude du volcanisme Tertiaire de l Iran. Théses. Univ. Grenoble, France, p. 233 (in French).
    [104]
    Li, Z.X., Li, X.H., 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:a flat-slab subduction model. Geology 35, 179-182.
    [105]
    Liu, S., Hua, R., Gaob, S., Fenga, C., Yud, B., Quia, Y., Wang, T., Fenga, G., Courlsone, I.M., 2009. Zircon U-Pb age, geochemistry and Sr-Nd-Pb isotopic compositions of adakitic volcanic rocks from Jiaodong, Shandong Province, Eastern China. Constraints on petrogenesis and implications. Journal of Asian Earth Sciences 35, 445-458.
    [106]
    Liu, X., Gao, S., Diwu, C., Yuan, H., Hu, Z., 2007. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 mm spot size.Chinese Science Bulletin 52, 1257-1264.
    [107]
    Lowell, G.R., Young, G.J., 1999. Interaction between coeval mafic and felsic melts in the St. Francois Terrane of Missouri, USA. Precambrian Research 95, 69-88.
    [108]
    Ludwig, K.R., 2003. Isoplot V. 3.0:a Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, p. 70. Special Publication 4.
    [109]
    Maas, R., Nicholls, I.A., Legg, C., 1997. Igneous and metamorphic enclaves in the Stype Deddick granodiorite, Lachlan Fold Belt, SE Australia:petrographic, geochemical and NdeSr isotopic evidence for crustal melting and magma mixing. Journal of Petrology 38, 815-841.
    [110]
    Maniar, P.D., Picooli, P.M., 1989. Tectonic discrimination of granitoids. The Geological Society of America Bulletin 101, 635-643.
    [111]
    Mazhari, S.A., Bea, F., Amini, S., Ghalamghash, J., Molina, J.F., Montero, P., Scarrow, J.H., Williams, I.S., 2009. The Eocene bimodal Piranshahr massif of the Sanandaj-Sirjan Zone, NW Iran:a marker of the end of the collision in the Zagros orogen. Journal of the Geological Society of London 166, 53-69.
    [112]
    Mohajjel, M., Fergusson, C.L., 2014. Jurassic to cenozoic tectonics of the zagros orogen in northwestern Iran. International Geology Review 56, 263-287.
    [113]
    Mohajjel, M., Fergusson, C.L., Sahandi, M.R., 2003. Cretaceousetertiary convergence and continental collision, sanandajesirjan zone, western Iran. Journal of Asian Earth Sciences 21, 397-412.
    [114]
    Moine-Vaziri, H., 1985. Volcanisme tértiaire et quatérnaire en Iran. Thèse d'Etat.Univer. Paris-Sud, Orsay, p. 290.
    [115]
    Mouthereau, F., 2011. Timing of uplift in the Zagros belt/Iranian plateau and accommodation of late Cenozoic ArabiaeEurasia convergence. Geological Magazine 148, 726-738.
    [116]
    Mouthereau, F., Lacombe, O., Vergés, J., 2012. Building the Zagros collisional orogen:timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence.Tectonophysics 532-535, 27-60.
    [117]
    Mouthereau, F., Tensi, J., Bellahsen, N., Lacombe, O., De Boisgrollier, T., Kargar, S., 2007. Tertiary sequence of deformation in a thin-skinned/thick-skinned collision belt:the Zagros Folded Belt (Fars, Iran). Tectonics 26, 28. https://doi.org/10.1029/2007TC002098.TC5006.
    [118]
    Müller, D., Groves, D.I., 1997. Potassic igneous rocks and associated gold-copper mineralization. Lecture Notes in Earth Sciences 238. No.56.
    [119]
    Nakamura, N., 1974. Determination of REE, Ba, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta 38, 757-775.
    [120]
    Nogole-Sadat, M.A.A., 1978. Les zones de décrochement et les virgations structurales en Iran, Conséquences des résultats de l'analyse structurale de la région de Qom. Ph.D.These. Université Scientifique etMédicale de Grenoble, France, p. 201 (in French).
    [121]
    Nogole-sadat, M.A.A., Hoshmandzadeh, A., 1984. Saveh Geological Map, Scale 1:250000. Geological survey of Iran.
    [122]
    Okay, A.I., Zattin, M., Cavazza, W., 2010. Apatite fission-track data for the Miocene Arabiae Eurasia collision. Geology 38, 35-38.
    [123]
    Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., Jolivet, L., 2008. Arc magmatism and subduction history beneath the Zagros Mountains, Iran:a new report of adakites and geodynamic consequences. Lithos 106, 380-398. https://doi.org/10.1016/j.lithos.2008.09.008.
    [124]
    Patiño Douce, A.E., 1999. What Do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? 168 Geological Society, London, pp. 55-75. Special Publications.
    [125]
    Pearce, J., 1996. Source and settings of granitic rocks. Episodes 19, 120-125.
    [126]
    Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956-983.
    [127]
    Perugini, D., Poli, G., 2012. The mixing of magmas in plutonic and volcanic environments:analogies and differences. Lithos 153, 261-277.
    [128]
    Perugini, D., Poli, G., Christofides, G., Eleftheriadis, G., 2003. Magma mixing in the Sithonia Plutonic Complex, Greece:evidence from mafic microgranular enclaves.Mineralogy and Petrology 78, 173-200.
    [129]
    Ramos, A., Cristallini, E.O., Pérez, D.J., 2002. The pampean flat-slab of the central andes. Journal of South American Earth Sciences 15, 59-78.
    [130]
    Rapp, R.P., Watson, E.B., 1995. Dehydration melting of metabasalt at 8-32 kbar:implications for continental growth and crustemantle recycling. Journal of Petrology 36, 891-931.
    [131]
    Rapp, R.P.,Watson, E.B., Miller, C.F.,1991. Partialmelting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research 51, 1-25.
    [132]
    Rapp, R.P., Xiao, L., Shimizu, N., 2002. Experimental constraints on the origin of potassium-rich adakites in eastern China. Acta Petrologica Sinica 18, 293-302.
    [133]
    Rezaei-Kahkhaei, M., Galindo, G., Pankhurst, R.J., Esmaeily, D., 2011. Magmatic differentiation in the calc-alkaline Khalkhab Neshveh pluton, Central Iran. Journal of Asian Earth Sciences 42, 499-514.
    [134]
    Roberts, N.M., 2013. The boring billion?-Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geoscience Frontiers 4, 681-691.
    [135]
    Romer, R.L., Forster, H.J., Breitkreuz, C., 2001. Intracontinental extensional magmatism with a subduction fingerprint:the late Carboniferous Halle Volcanic Complex (Germany). Contributions to Mineralogy and Petrology 141, 201-221.
    [136]
    Ross, P.-S., Bédard, J.H., 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Canadian Journal of Earth Sciences 46, 823-839.
    [137]
    Rudnick, R.L., Fountain, D.M., 1995. Nature and composition of the continental crust:a lower crustal perspective. Reviews of Geophysics 33, 267-309.
    [138]
    Sabzehei, M., 1974. Les Mélanges ophiolitiques de la région d'Esfandagheh (Iran méridional). E'tude pétrographique et structurale, interprétation dans Le Cadre Iranien. These pre'sesete'e a' l'universit'e de, Grenoble, p. 306.
    [139]
    Sarjoughian, F., Kananian, A., 2017. Zircon U-Pb geochronology and emplacement history of intrusive rocks in the Ardestan section, Central Iran. Geológica Acta 15, 25-36.
    [140]
    Sarjoughian, F., Kananian, A., Ahmadian, J., Murata, M., 2015. Chemical composition of biotite from the Kuh-e Dom pluton, Central Iran:implication for granitoid magmatism and related CueAu mineralization. Arabian Journal of Geosciences 8, 1521-1533.
    [141]
    Sarjoughian, F., Kananian, A., Haschke, M., Ahmadian, J., Ling, W., 2012a. Magma mingling and hybridization in the Kuh-e Dom pluton, Central Iran. Journal of Asian Earth Sciences 54-55, 49-63.
    [142]
    Sarjoughian, F., Kananian, A., Haschke, M., Ahmadian, J., 2012b. Geochemical signature of Eocene Kuh-e Dom shoshonitic dikes in NE Ardestan, central Iran:implications for melt evolution and tectonic setting. Journal of Geosciences 57, 241-264.
    [143]
    Sarjoughian, F., Lentz, D., Kananian, A., Ao, S., Xiao, W., 2018. Geochemical and isotopic constraints on the role of juvenile crust and magma mixing in the UDMA magmatism, Iran:evidence from mafic microgranular enclaves and cogenetic granitoids in the Zafarghand igneous complex. International Journal of Earth Sciences 107 (3), 1127-1151. https://doi.org/10.1007/s00531-017-1548-8.
    [144]
    Schiano, P., Monzier, M., Eissen, J.P., Martin, H., Koga, K.T., 2010. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes.Contributions to Mineralogy and Petrology 160, 297-312.
    [145]
    Sen, C., Dunn, T., 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 Gpa:implications for the origin of adakites. Contributions to Mineralogy and Petrology 117, 394-409.
    [146]
    Shafaii Moghadam, H., Khademi, M., Hu, Z., Stern, R.J., Santos, J.F., Wu, Y., 2015a.Cadomian (EdiacaraneCambrian) arc magmatism in the ChahJameBiarjmand metamorphic complex (Iran):magmatism along the northern active margin of Gondwana. Gondwana Research 27, 439-452.
    [147]
    Shafiei, B., Haschke, M., Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran.Mineralium Deposita 44, 265-283.
    [148]
    Shahabpour, J., 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences 24, 405-417.
    [149]
    Shahabpour, J., 2007. Island-arc affinity of the central Iranian volcanic belt. Journal of Asian Earth Sciences 30, 652-665.
    [150]
    Shellnutt, J.G., Jahn, B.M., Dostal, J., 2010. Elemental and SreNd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China. Lithos 19, 34-46.
    [151]
    Shellnutt, J.G., Wang, C.Y., Zhou, M.F., Yang, Y., 2009. Zircon LueHf isotopic compositions of metaluminous and peralkaline A-type granitic plutons of the Emeishan large igneous province (SW China):constraints on the mantle source. Journal of Asian Earth Sciences 35, 45-55.
    [152]
    Stöcklin, J., 1974. Possible ancient continental margins in Iran. In:Burk, C.A., Drake, C.L. (Eds.), The Geology of Continental Margins. Springer-Verlag, Berlin, pp. 873-887.
    [153]
    Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In:Saunders, A.D., Norrey, M.J. (Eds.), Magmatism in the Ocean Basins, 42. Geological Society of London, pp. 313-345.
    [154]
    Sylvester, P.J., 1998. Post-collisional strongly peraluminous granites. Lithos 45, 29-44.
    [155]
    Tabbakh Shabani, A., 1991. Petrogeraphy and Petrology of Boin Zahra Igneouse Intrusive Bodies. M.S. thesis. Tarbiat Moalem University, Tehran, p. 175 (In Persian with English abstract).
    [156]
    Takin, M., 1972. Iranian geology and continental drift in the Middle East. Nature 235, 147-150. https://doi.org/10.1038/235147a0.
    [157]
    Taylor, S.R., McLennan, S.M., 1985. The continental crust:its composition and evolution. Blackwell Scientific Publication, Carlton, p. 312.
    [158]
    Verdel, C., Wernicke, B.P., Hassanzadeh, J., Guest, B., 2011. A Paleogene extensional arc flare-up in Iran. Tectonics 30, Tc3008. https://doi.org/10.1029/2010tc002809.
    [159]
    Vernon, R.H., 1983. Restite, xenoliths and microgranitoid enclaves in granites.Journal & Proceedings of the Royal Society of New South Wales 116, 77-103.
    [160]
    Vernon, R.H., 1984. Microgranitoid enclaves in granites-globules of hybrid magma quenched in a plutonic environment. Nature 309, 438-439.
    [161]
    Wang, Q., Xu, J.F., Zhao, Z.H., Xiong, X.L., Bao, Z.W., Xu, W., Xiong, X.L., 2004.Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China:adakites in an extensional tectonic regime within a continent.Geochemical Journal 38, 417-434.
    [162]
    Weaver, B.L., Tarney, J., 1984. Empirical approach to estimating the composition of the continental crust. Nature 310, 575-577.
    [163]
    Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217-1232.
    [164]
    Whalen, J.B., Currie, K.L.B.W., 1987. A-type granite:geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407-419.
    [165]
    White, A.J.R., Chappell, B.W., 1977. Ultrametamorphism and granitoid genesis.Tectonophysics 43, 7-22.
    [166]
    White, A.J.R., Chappell, B.W., Wyborn, D., 1999. Application of the restite model to the Deddick Granodiorite and its enclaves e a reinterpretation of the observations and data of Maas et al. (1997). Journal of Petrology 40, 413-421.
    [167]
    Wiebe, R.A., Smith, D., Sturn, M., King, E.M., Seckler, 1997. Enclaves in the Cadillac mountain granite (Coastal Maine):samples of hybrid magma from the base of the chamber. Journal of Petrology 38, 393-426.
    [168]
    Wilmsen, M., Fürsich, F.T., Seyed-Emami, K., Majidifard, M.R., Taheri, J., 2009. The Cimmerian Orogeny in northern Iran:tectono-stratigraphic evidence from the foreland. Terra Nova 21, 211-218.
    [169]
    Xu, J.F., Shinjo, R., Defant, M.J., Wang, Q., Rapp, R.P., 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:partial melting of delaminated lower continental crust. Geology 30, 1111-1114.
    [170]
    Yang, H., Ge, W., Zhao, G., Dong, Y., Xu, W.L., Ji, Z., Yu, J., 2015. Late Triassic intrusive complex in the Jidong region, JiamusieKhanka Block, NE China:geochemistry, zircon U-Pb ages, LueHf isotopes, and implications for magma mingling and mixing. Lithos 224-225, 143-159.
    [171]
    Yang, J.H., Wu, F.Y., Chung, S.L., Wilde, S.A., Chu, M.F., 2004. Multiple sources for the origin of granites:geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, NE China. Geochimica et Cosmochimica Acta 68, 4469-4483.
    [172]
    Yang, J.H., Wu, F.Y., Chung, S.L., Wilde, S.A., Chu, M.F., 2006. A hybrid origin for the Qianshan A-type granite, northeast China:geochemical and SreNdeHf isotopic evidence. Lithos 89, 89-106.
    [173]
    Yeganehfar, H., Ghorbani, M.R., Shinjo, R., Ghaderi, M., 2013. Magmatic and geodynamic evolution of urumieh-Dokhtar basic volcanism, Centeral Iran:major, trace element, isotopic and geodynamic implication. International Geology Review 55, 767-786.
    [174]
    Yilmaz Şahin, S., 2008. Geochemistry of mafic microgranular enclaves in the Tamdere quartz monzonite, south of Dereli/Giresun, eastern Pontides, Turkey.Chemie der Erde 68, 81-92.
    [175]
    Yilmaz Şahin, S., Aysal, N., Gungur, Y., 2012. Petrogenesis of late cretaceous adakitic magmatism in the_Istanbul zone (Çavuşbaşı granodiorite, NW Turkey). Turkish Journal of Earth Sciences 21, 1029-1045.
    [176]
    Zarasvandi, A., Liaghat, S., Zentilli, M., 2005. Porphyry copper deposits of the Urumieh-Dokhtar magmatic arc, Iran. In:Porter, T.M. (Ed.), Super Porphyry Copper and Gold Deposits:A Global Perspective, v. 2. PGC Publishing, Linden Park, South Australia, pp. 441-452.
    [177]
    Zhou, J., 1985. The timing of calc-alkaline magmatism in parts of the Alpine-Himalayan collision zone and its relevance to the interpretation of Caledonian magmatism. Journal of the Geological Society 142, 309-317.
    [178]
    Zindler, A., Staudigel, H., Batiza, R., 1984. Isotope and trace element geochemistry of young Pacific seamounts:implications for the scale of upper mantle heterogeneity.Earth and Planetary Science Letters 70, 175-195.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (202) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return