Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Omar Bartoli. Reintegrating nanogranitoid inclusion composition to reconstruct the prograde history of melt-depleted rocks[J]. Geoscience Frontiers, 2019, 10(2): 517-525. doi: 10.1016/j.gsf.2018.02.002
Citation: Omar Bartoli. Reintegrating nanogranitoid inclusion composition to reconstruct the prograde history of melt-depleted rocks[J]. Geoscience Frontiers, 2019, 10(2): 517-525. doi: 10.1016/j.gsf.2018.02.002

Reintegrating nanogranitoid inclusion composition to reconstruct the prograde history of melt-depleted rocks

doi: 10.1016/j.gsf.2018.02.002
Funds:

This research was supported by the Italian Ministry of Education, University, Research (Grant SIR RBSI14Y7PF to O.B.). I am grateful to F. Korhonen, S. Iaccarino, A. Langone and an anonymous referee for providing insightful and constructive reviews. Associated Editor Dr. C. Spencer is thanked for his careful editorial handling.

  • Received Date: 2017-09-27
  • Rev Recd Date: 2018-01-18
  • Publish Date: 2021-01-07
  • A recent fascinating development in the study of high-grade metamorphic basements is represented by the finding of tiny inclusions of crystallized melt (nanogranitoid inclusions) hosted in peritectic phases of migmatites and granulites. These inclusions have the potential to provide the primary composition of crustal melts at the source. A novel use of the recently-published nanogranitoid compositional database is presented here. Using granulites from the world-renowned Ivrea Zone (NW Italy) on which the original melt-reintegration approach has been previously applied, it is shown that reintegrating melt inclusion compositions from the published database into residual rock compositions can be a further useful method to reconstruct a plausible prograde history of melt-depleted rocks. This reconstruction is fundamental to investigate the tectonothermal history of geological terranes.
  • loading
  • [1]
    Acosta-Vigil, A., Buick, I., Hermann, J., Cesare, B., Rubatto, D., London, D., Morgan VI, G.B., 2010. Mechanisms of crustal anatexis:a geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain. Journal of Petrology 51, 785-821.
    [2]
    Acosta-Vigil, A., Barich, A., Bartoli, O., Garrido, C., Cesare, B., Remusat, L., Poli, S., Raepsaet, C., 2016. The composition of nanogranitoids in migmatites overlying the Ronda peridotites (Betic Cordillera, S Spain):the anatectic history of a polymetamorphic basement. Contributions to Mineralogy and Petrology 171, 24.
    [3]
    Anderson, J.R., Kelsey, D.E., Hand, M., Collins, W.J., 2013. Conductively driven, highthermal gradient metamorphism in the Anmatjira Range, Arunta region, central Australia. Journal of Metamorphic Geology 31, 1003-1026.
    [4]
    Angiboust, S., Langdon, R., Agard, P., Waters, D., Chopin, C., 2012. Eclogitization of the Monviso ophiolite (W. Alps) and implications on subduction dynamics.Journal of Metamorphic Geology 30, 37-61.
    [5]
    Barboza, S.A., Bergantz, G.W., 2000. Metamorphism and anatexis in the Mafic Complex contact aureole, Ivrea Zone, northern Italy. Journal of Petrology 41, 1307-1327.
    [6]
    Barich, A., Acosta-Vigil, A., Garrido, C.J., Cesare, B., Tajčmanová, L., Bartoli, O., 2014.Microstructures and petrology of melt inclusions in the anatectic sequence of Jubrique (Betic Cordillera, S Spain):implications for crustal anatexis. Lithos 206-207, 303-320.
    [7]
    Bartoli, O., 2017. Phase equilibria modelling of residual migmatites and granulites:an evaluation of the melt-reintegration approach. Journal of Metamorphic Geology 35, 919-942.
    [8]
    Bartoli, O., Cesare, B., Poli, S., Bodnar, R.J., Acosta-Vigil, A., Frezzotti, M.L., Meli, S., 2013a. Recovering the composition of melt and the fluid regime at the onset of crustal anatexis and S-type granite formation. Geology 41, 115-118.
    [9]
    Bartoli, O., Cesare, B., Poli, S., Acosta-Vigil, A., Esposito, R., Turina, A., Bodnar, R.J., Angel, R.J., Hunter, J., 2013b. Nanogranite inclusions in migmatitic garnet:behavior during piston cylinder re-melting experiments. Geofluids 13, 405-420.
    [10]
    Bartoli, O., Tajčmanová, L., Cesare, B., Acosta-Vigil, A., 2013c. Phase equilibria constraints on melting of stromatic migmatites from Ronda (S. Spain):insights on the formation of peritectic garnet. Journal of Metamorphic Geology 31, 775-789.
    [11]
    Bartoli, O., Cesare, B., Remusat, L., Acosta-Vigil, A., Poli, S., 2014. The H2O content of granite embryos. Earth and Planetary Science Letters 395, 281-290.
    [12]
    Bartoli, O., Acosta-Vigil, A., Ferrero, S., Cesare, B., 2016a. Granitoid magmas preserved as melt inclusions in high-grade metamorphic rocks. American Mineralogist 101, 1543-1559.
    [13]
    Bartoli, O., Acosta-Vigil, A., Tajčmanová, L., Cesare, B., Bodnar, R.J., 2016b. Using nanogranitoids and phase equilibria modeling to unravel anatexis in the crustal footwall of the Ronda peridotites (Betic Cordillera, S Spain). Lithos 256-257, 282-299.
    [14]
    Bea, F., Montero, P., 1999. Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust:an example from the Kinzigite formation of Ivrea-Verbano, NW Italy. Geochimica et Cosmochimica Acta 63, 1133-1153.
    [15]
    Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34 (11), 961-964.
    [16]
    Brown, M., 2007. Crustal melting and melt extraction, ascent and emplacement in orogens:mechanisms and consequences. Journal of Geological Society, London 164, 709-730.
    [17]
    Brown, C.R., Yakymchuk, C., Brown, M., Fanning, C.M., Korhonen, F.J., Piccoli, P.M., Siddoway, C.S., 2016. From source to sink:petrogenesis of Cretaceous anatectic granites from the Fosdick migmatite-granite complex, West Antarctica. Journal of Petrology 57, 1241-1278.
    [18]
    Brown, M., Rushmer, T., 2006. Evolution and Differentiation of the Continental Crust. Cambridge University Press, pp. 296-331.
    [19]
    Caddick, M.J., Konopásek, J., Thompson, A.B., 2010. Preservation of garnet growth zoning and the duration of prograde metamorphism. Journal of Petrology 51, 2327-2347.
    [20]
    Carosi, R., Montomoli, C., Langone, A., Turina, A., Cesare, B., Iaccarino, S., Fascioli, L., Visonà, D., Ronchi, A., Rai, S.M., 2015. Eocene partial melting recorded in peritectic garnets from kyanite-gneiss, Greater Himalayan Sequence, central Nepal.In:Mukherjee, S., Carosi, R., van der Beek, P.A., Mukherjee, B.K., Robinson, D.M.(Eds.), Tectonics of the Himalaya, vol. 412. Geological Society, London, Special Publications, pp. 111-129.
    [21]
    Carvalho, B.B., Sawyer, E.W., Janasi, V.A., 2016. Crustal reworking in a shear zone:transformation of metagranite to migmatite. Journal of Metamophic Geology 34, 237-264.
    [22]
    Carvalho, B.B., Sawyer, E.W., Janasi, V.A., 2017. Enhancing maficity of granitic magma during anatexis:entrainment of infertile mafic lithologies. Journal of Petrology 58, 1333-1362.
    [23]
    Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D., Cavallo, A., 2009. Nanogranite and glassy inclusions:the anatectic melt in migmatites and granulites. Geology 37, 627-630.
    [24]
    Cesare, B., Acosta-Vigil, A., Bartoli, O., Ferrero, S., 2015.What can we learn from melt inclusions in migmatites and granulites? Lithos 239, 186-216.
    [25]
    Chappell, B.W., White, A.J.R., Wyborn, D., 1987. The importance of residual source material (Restite) in granite petrogenesis. Journal of Petrology 28, 1111-1138.
    [26]
    Clemens, J.D., Stevens, G., 2012. What controls chemical variation in granitic magmas? Lithos 134-135, 317-329.
    [27]
    Coggon, R., Holland, T.J.B., 2002. Mixing properties of phengitic micas and revised garnetephengite thermobarometers. Journal of Metamorphic Geology 20, 683-696.
    [28]
    Connolly, J.A.D., 2009. The geodynamic equation of state:what and how.Geochemistry, Geophysics, Geosystems 10, Q10014.
    [29]
    Deng, L.-P., Liu, Y.-C., Gu, X.-F., Groppo, C., Rolfo, F., 2018. Partial melting of ultrahigh-pressure metamorphic rocks at convergent continental margins:evidences, melt compositions and physical effects. Geoscience Frontiers 9 (4), 1229-1242. https://doi.org/10.1016/j.gsf.2017.08.002.
    [30]
    Deniel, C., Vidal, P., Fernandez, A., LeFort, P., Pecaut, J.J., 1987. Isotopic study of the Manaslu granite (Himalaya, Nepal):inferences of the age and source of Himalayan leucogranites. Contributions to Mineralogy and Petrology 96, 78-92.
    [31]
    Dumond, G., Goncalves, P., Williams, M.L., Jercinovic, M.J., 2015. Monazite as a monitor of melting, garnet growth and feldspar recrystallization in continental lower crust. Journal of Metamorphic Geology 33, 735-762.
    [32]
    Evans, T.P., 2004. A method for calculating effective bulk composition modification due to crystal fractionation in garnet-bearing schist:implication for isopleth thermobarometry. Journal of Metamorphic Geology 22, 547-557.
    [33]
    Ewing, T.A., Hermann, J., Rubatto, D., 2013. The robustness of the Zr-in-rutile and Tiinzircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contributions to Mineralogy and Petrology 4, 757-779.
    [34]
    Ewing, T.A., Rubatto, D., Beltrando, M., Hermann, J., 2015. Constraints on the thermal evolution of the Adriatic margin during Jurassic continental break-up:U-Pb dating of rutile from the IvreaeVerbano Zone, Italy. Contributions to Mineralogy and Petrology 169, 44.
    [35]
    Ferrero, S., Bartoli, O., Cesare, B., Salvioli-Mariani, E., Acosta-Vigil, A., Cavallo, A., Groppo, C., Battiston, S., 2012. Microstructures of melt inclusions in anatectic metasedimentary rocks. Journal of Metamorphic Geology 30, 303-322.
    [36]
    Ferrero, S., Wunder, B., Walczak, K., O'Brien, P.J., Ziemann, M.A., 2015. Preserved near ultrahigh-pressure melt from continental crust subducted to mantle depths. Geology 43, 447-450.
    [37]
    Ferrero, S., Godard, G., Palmeri, R., Wunder, B., Cesare, B., 2018. Partial Melting of Ultramafic Granulites from Dronning Maud Land, Antarctica:Constraints from Melt Inclusions and Thermodynamic Modeling. American Mineralogist submitted.
    [38]
    Ferrero, S.,Wunder, B., Ziemann, M.A., Wälle, M., O'Brien, P.J., 2016. Carbonatitic and granitic melts produced under conditions of primary immiscibility during anatexis in the lower crust. Earth and Planetary Science Letters 454, 121-131.
    [39]
    Gaidies, F., Abart, R., De Capitani, C., Schuster, R., Connolly, J.A.D., Reusser, 2006.Characterization of polymetamorphism in the Austroalpine basement east of the Tauern Window using garnet isopleththermobarometry. Journal of Metamorphic Geology 24, 451-475.
    [40]
    Gao, P., Zheng, Y.-F., Zhao, Z.-F., 2016. Experimental melts from crustal rocks:a lithochemical constraint on granite petrogenesis. Lithos 266-267, 133-157.
    [41]
    Garcia-Arias, M., Stevens, G., 2017. Phase equilibrium modelling of granite magma petrogenesis:a. An evaluation of the magma compositions produced by crystal entrainment in the source. Lithos 277, 131-153.
    [42]
    Grant, J.A., 2009. THERMOCALC and experimental modelling of pelite, Morton Pass, Wyoming. Journal of Metamorphic Geology 27, 571-578.
    [43]
    Groppo, C., Rolfo, F., Lombardo, B., 2009. P-T evolution across the Main Central Thrust Zone (Eastern Nepal):hidden discontinuities revealed by petrology.Journal of Petrology 50, 1149-1180.
    [44]
    Guernina, S., Sawyer, E.W., 2003. Large-scale melt-depletion in granulite terranes:an example from the Archean Ashuanipi subprovince of Quebec. Journal of Metamorphic Geology 21, 181-201.
    [45]
    Holland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16, 309-343.
    [46]
    Holland, T.J.B., Powell, R., 2003. Activity-composition relations for phases in petrological calculations:an asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology 145, 492-501.
    [47]
    Iaccarino, S., Montomoli, C., Carosi, R., Massonne, H.-J., Visonà, D., 2017. Geology and tectono-metamorphic evolution of the Himalayan metamorphic core:insights from the Mugu Karnali transect, Western Nepal (Central Himalaya). Journal of Metamorphic Geology 35, 301-325.
    [48]
    Kelsey, D.E., Hand, M., 2014. On ultrahigh temperature crustal metamorphism:phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers 6, 311-356.
    [49]
    Koblinger, B.M., Pattison, D.R.M., 2017. Crystallization of heterogeneous pelitic migmatites:insights from thermodynamic modeling. Journal of Petrology 58(2), 297-326.
    [50]
    Konrad-Schmolke, M., O'Brie, P.J., de Capitani, C., Carswell, D.A., 2008. Garnet growth at high- and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition. Lithos 103, 309-332.
    [51]
    Korhonen, F.J., Saito, S., Brown, M., Siddoway, C.S., 2010. Modeling multiple melt loss events in the evolution of an active continental margin. Lithos 116, 230-248.
    [52]
    Korhonen, F.J., Brown, M., Clark, C., Bhattacharya, S., 2013. Osumilite-bearing equilibria and implications for the evolution of the Eastern Ghats Province, India. Journal of Metamorphic Geology 31, 881-907.
    [53]
    Korhonen, F.J., Brown, Clark, C., Foden, J.D., Taylor, R., 2015. Are granites and granulites consanguineous? Geology 43 (11), 991-994.
    [54]
    Kunz, B.E., Johnson, T.E., White, R.W., Redler, C., 2014. Partial melting of metabasic rocks in Val Strona di Omegna, Ivrea Zone, northern Italy. Lithos 190-191, 1-12.
    [55]
    Marmo, B.A., Clarke, G.L., Powell, R., 2002. Fractionation of bulk rock composition due to porphyroblast growth; effects on eclogitefacies mineral equilibria, Pam Peninsula, New Caledonia. Journal of Metamorphic Geology 20, 151-165.
    [56]
    Milord, I., Sawyer, E.W., Brown, M., 2001. Formation of diatexite migmatite and granite magma during anatexis of semi-pelitic metasedimentary rocks:an example from St. Malo, France. Journal of Petrology 42, 487-505.
    [57]
    Morfin, S., Sawyer, E.W., Bandyayera, D., 2013. Large volumes of anatectic melt retained in granulite facies migmatites:an injection complex in northern Quebec. Lithos 168-169, 200-218.
    [58]
    Morrissey, L.J., Hand, M., Lane, K., Kelsey, D.E., Dutch, R.A., 2016. Upgrading iron-ore deposits by melt loss during granulite facies metamorphism. Ore Geology Reviews 74, 101-121.
    [59]
    Nehring, F., Foley, S., Holta, P., Van Den Kerkhof, M., 2009. Internal differentiation of the Archean continental crust:fluid-controlled partial melting of granulites and TTG-amphibolite associations in central Finland. Journal of Petrology 50, 3-35.
    [60]
    Newton, R.C., Charlu, T.V., Kleppa, O.J., 1980. Thermochemistry of high structural state plagioclases. Geochimica et Cosmochimica Acta 44, 933-941.
    [61]
    Palin, R.M., Searle, M.,Waters, D.J., Horstwood, M.S.A., Parrish, R.R., 2012. Combined thermobarometry and geochronology of peraluminous metapelites from the Karakoram metamorphic complex, North Pakistan; New insight into the tectonothermal evolution of the Baltoro and Hunza Valley regions. Journal of Metamorphic Geology 30, 793-820.
    [62]
    Palin, R.M., Weller, O.M., Waters, D.J., Dyck, B., 2016a. Quantifying geological uncertainty in metamorphic phase equilibria modelling:a Monte Carlo assessment and implications for tectonic interpretations. Geoscience Frontiers 7, 591-607.
    [63]
    Palin, R.M., White, R.W., Green, E.C.R., Diener, J.F.A., Powell, R., Holland, T.J.B., 2016b.High-grade metamorphism and partial melting of basic and intermediate rocks.Journal of Metamorphic Geology 34, 871-892.
    [64]
    Powell, R., 1983. Fluids and melting under upper amphibolite facies conditions.Journal of Geological Society of London 140, 629-633.
    [65]
    Powell, R., Holland, J.B., 2008. On thermobarometry. Journal of Metamorphic Geology 26, 155-179.
    [66]
    Quick, J.E., Sinigoi, S., Snoke, A.W., Kalakay, T.J., Mayer, A., Peressini, G., 2003.Geologic Map of the Southern IvreaeVerbano Zone, Northwestern Italy, Geologic Investigations Series Map I-2776 and Booklet. US Geological Survey, US Government Printing Office, p. 22.
    [67]
    Redler, C., Johnson, T.E., White, R.W., Kunz, B.E., 2012. Phase equilibrium constraints on a deep crustal metamorphic field gradient:metapelitic rocks from the Ivrea Zone (NW Italy). Journal of Metamorphic Geology 30, 235-254.
    [68]
    Redler, C., White, R.W., Johnson, T.E., 2013. Migmatites in the Ivrea Zone (NW Italy):constraints on partial melting and melt loss in metasedimentary rocks from Val Strona di Omegna. Lithos 175-176, 40-53.
    [69]
    Rolfo, F., Groppo, C., Mosca, P., 2015. Petrological constraints of the ‘Channel Flow’ model in eastern Nepal. In:Mukherjee, S., Carosi, R., van der Beek, P.A., Mukherjee, B.K., Robinson, D.M. (Eds.), Tectonics of the Himalaya, vol. 412.Geological Society, London, Special Publications, pp. 177-197.
    [70]
    Sawyer, E.W., 2008. Atlas of Migmatites. The Canadian Mineralogist Special Publication 9. NRC Research Press, Ottawa, Ontario, Canada.
    [71]
    Sawyer, E.W., 2014. The inception and growth of leucosomes:microstructure at the start of melt segregation in migmatites. Journal of Metamorphic Geology 32, 695-712.
    [72]
    Sawyer, E.W., Cesare, B., Brown, M., 2011. When the continental crust melts. Elements 7, 229-234.
    [73]
    Schmid, S.M., 1993. Ivrea Zone and adjacent southern Alpine basement. In:V.Raumer, Neubauer, F. (Eds.), Pre-Mesozoic Geology in the Alps. Springer-Verlag, Berlin, pp. 567-583.
    [74]
    Schmid, R., Wood, B.J., 1976. Phase relationships in granulitic metapelites from the IvreaeVerbano zone (Northern Italy). Contributions to Mineralogy and Petrology 54, 255-279.
    [75]
    Schnetger, B., 1994. Partial melting during evolution of the amphibolite-to granulite facies gneisses of the Ivrea Zone. Chemical Geology 113, 71-101.
    [76]
    Stepanov, S., Hermann, J., 2013. Fractionation of Nb and Ta by biotite and phengite:implications for the "missing Nb paradox". Geology 41 (3), 303-306.
    [77]
    Stepanov, S., Hermann, J., Rubatto, D., Korsakov, A.V., Danyushevsky, L.V., 2016.Melting history of an ultrahigh-pressure paragneiss revealed by multiphase solid inclusions in garnet, Kokchetav Massif, Kazakhstan. Journal of Petrology 57 (8), 1531-1554.
    [78]
    Stevens, G., Villaros, A., Moyen, J.-F., 2007. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35, 9-12.
    [79]
    Tajčmanová, L., Conolly, J.A.D., Cesare, B., 2009. A thermodynamic model for titanium and ferric iron solution in biotite. Journal of Metamorphic Geology 27, 153-165.
    [80]
    Taylor, J., Nicoli, G., Stevens, G., Frei, D., Moyen, J.-F., 2014. The processes that control the leucosome composition in metasedimentary granulites:perspectives from the Southern Marginal Zone migmatites, Limpopo Belt, South Africa. Journal of Metamorphic Geology 32, 713-742.
    [81]
    Thompson, J.B., Hovis, G.L., 1979. Entropy of mixing in sanidine. American Mineralogist 64, 57-65.
    [82]
    Villaros, A., Stevens, G., Moyen, J.-F., Buick, I.S., 2009. The trace element compositions of S-type granites:evidence for disequilibrium melting and accessory phase entrainment in the source. Contributions to Mineralogy and Petrology 158, 543-561.
    [83]
    Wang, D., Guo, J., 2017. Late archean high-pressure pelitic granulites in the Yinshan Block, North China Craton. Precambrian Research 303, 251-267. https://doi.org/10.1016/j.precamres.2017.03.027.
    [84]
    Weinberg, R.F., Hasalová, P., 2015. Water-fluxed melting of the continental crust:a review. Lithos 212-215, 158-188.
    [85]
    White, R.W., Powell, R., 2002. Melt loss and the preservation of granulite facies mineral assemblages. Journal of Metamorphic Geology 20, 621-632.
    [86]
    White, R.W., Powell, R., Halpin, J.A., 2004. Spatially-focussed melt formation in aluminous metapelites from Broken Hill, Australia. Journal of Metamorphic Geology 22, 825-845.
    [87]
    White, R.W., Powell, R., Holland, T.J.B., 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology 25, 511-527.
    [88]
    White, R.W., Palin, R.M., Green, E.C.R., 2017. High-grade metamorphism and partial melting in Archean composite grey gneiss complexes. Journal of Metamorphic Geology 35, 181-195.
    [89]
    White, R.W., Stevens, G., Johnson, T.E., 2011. Is the crucible reproducible? Reconciling melting experiments with thermodynamic calculations. Elements 241-246.
    [90]
    Yakymchuk, C., Brown, M., 2014. Consequences of open-system melting in tectonics.Journal of the Geological Society 171, 21-40.
    [91]
    Yakymchuk, C., Brown, M., Clark, C., Korhonen, F.J., Piccoli, P.M., Siddoway, C.S., Vervoort, J.D., 2015. Decoding polyphase migmatites using geochronology and phase equilibria modeling. Journal of Metamorphic Geology 33, 203-230.
    [92]
    Zingg, A., 1980. Regional metamorphism in the Ivrea zone (Southern Alps, N-Italy):field and microscopic investigations. Schweizerische Mineralogische und Petrographische Mitteilungen 60, 153-173.
    [93]
    Zeng, L., Saleeby, J.B., Asimow, P., 2005. Nd isotope disequilibrium during crustal anatexis:a record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California. Geology 33, 53-56.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (92) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return