Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Aftab Alam Khan. TEMPORARY REMOVAL: Why would sea-level rise for global warming and polar ice-melt?[J]. Geoscience Frontiers, 2019, 10(2): 481-494. doi: 10.1016/j.gsf.2018.01.008
Citation: Aftab Alam Khan. TEMPORARY REMOVAL: Why would sea-level rise for global warming and polar ice-melt?[J]. Geoscience Frontiers, 2019, 10(2): 481-494. doi: 10.1016/j.gsf.2018.01.008

TEMPORARY REMOVAL: Why would sea-level rise for global warming and polar ice-melt?

doi: 10.1016/j.gsf.2018.01.008

Siding Jin acknowledges the support of a Chinese Scholarship Council’s overseas student scholarship to enable her to visit the University of Vienna for 24 months. The paper was supported by Research Institute Exploration and Development, PetroChina Yumen Oilfield Company. The China National Key Research Project (No. 2017ZX05009-002-003) supported this study. The author appreciates the anonymous reviewers, whose comments and suggestions have helped improving the original manuscript. Dr. Si Chen is thanked for a constructive review of an early draft of this paper.

  • Received Date: 2017-07-20
  • Rev Recd Date: 2017-12-26
  • Publish Date: 2021-01-07
  • Two major causes of global sea level rise such as thermal expansion of the oceans and the loss of landbased ice for increased melting have been claimed by some researchers and recognized by the IPCC. However, other climate threat investigators revealed that atmosphere-ocean modeling is an imperfect representation, paleo-data consist of proxy climate information with ambiguities, and modern observations are limited in scope and accuracy. It is revealed that global warming and polar ice-melt although a reality would not contribute to any sea level rise. Floating-ice of the polar region on melting would reoccupy same displaced volume by floating ice-sheets. Land-ice cover in the polar region on melting can reduce load from the crust to activate elastic rebound that would raise land for its isostatic equilibrium. Such characteristics would not contribute to sea level rise. Equatorial bulge, polar flattening, elevation difference of the spheroidal surface between equator and pole with lower in the pole, strong gravity attraction of the polar region and week gravity attraction of the equatorial region, all these phenomena would play dominant role in preventing sea level rise. Palaeo-sea level rise and fall in macro-scale (10-100 m or so) were related to marine transgression and regression in addition to other geologic events like converging and diverging plate tectonics, orogenic uplift of the collision margin, basin subsidence of the extensional crust, volcanic activities in the oceanic region, prograding delta buildup, ocean floor height change and sub-marine mass avalanche. This study also reveals that geophysical shape, gravity attraction and the centrifugal force of spinning and rotation of the earth would continue acting against sea level rise.
  • loading
  • [1]
    Bintanja, R., van Oldenborgh, G.J., Drijfhout, S.S., Wouters, B., Katsman, C.A., 2013.
    Important role for ocean warming and increased ice-shelf melt in Antarctic seaice expansion. Nature Geoscience 6 (5), 376-379. https://doi.org/10.1038/ngeo1767.
    Cabanes, C., Cazenave, A., Lse Provost, C., 2001. Sea level rise during past 40 years determined from satellite and in situ observations. Science 294, 840-842.
    Cazenave, A., Llovel, W., 2010. Contemporary sea level rise. Annual Review of Marine Science 2, 145-173.
    Cazenave, A., Bonnefond, P., Mercier, F., Dominh, K., Toumazou, V., 2002. Sea level variations in the Mediterranean Sea and Black Sea from satellite altimetry and tide gauges. Global and Planetary Change 34, 59-86.
    Chambers, D.P., 2006. Observing seasonal steric sea level variations with GRACE and satellite altimetry. Marine Science Faculty Publications 182.
    Church, J.A., White, N.J., 2006. A 20th century acceleration in global sea-level rise.Geophysical Research Letters 33 (1). https://doi.org/10.1029/2005GL024826.L01602.
    Church, J.A., White, N.J., 2011. Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics 32 (4-5), 585-602. https://doi.org/10.1007/s10712-011-9119-1.
    Church, J.A., White, N.J., Aarup, T., Wilson, W.S., Woodworth, P.L., Domingues, C.M., Hunter, J.R., Lambeck, K., 2008. Understanding global sea levels:past, present and future. Sustainability Science 3, 9-22. https://doi.org/10.1007/s11625-008-0042-4.
    Church, J.A., Clark, P.U., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A., Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W., Stammer, D., Unnikrishnan, A., 2013. Sea level change. Climate change 2013:the physical science basis. In:Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 1137-1216.https://doi.org/10.1017/CBO9781107415324.026.
    Dobrin, M.B., 1976. Introduction to Geophysical Prospecting, third ed. McGraw-Hill, New York. 630pp.
    Domingues, C.M., Church, J.A., White, N.J., Gleckler, P.J., Wijffels, S.E., Barker, P.M., Dunn, J.R., 2008. Improved estimates of upper-ocean warming and multidecadal sea-level rise. Nature 453 (7198), 1090-1093. https://doi.org/10.1038/nature07080.
    Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K., Chappell, J., 1998.Refining the eustatic sea-level curve since the Last Glacial Maximum using farand intermediate-field sites. Earth and Planetary Science Letters 163 (1-4), 327-342. https://doi.org/10.1016/S0012-821X(98)00198-8.
    Hansen, J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson-Delmotte, V., Russell, G., Tselioudis, G., Cao, J., Rignot, E., Velicogna, I., Tormey, B., Donovan, B., Kandiano, E., von Schuckmann, K., Kharecha, P., Legrande, A.N., Bauer, M., Lo, Kwok-Wai, 2016.Ice melt, sea level rise and superstorms:evidence from paleoclimate data, climate modeling, and modern observations that 2 oC global warming could be dangerous. Atmospheric Chemistry and Physics 16, 3761-3812.
    Hay, C.C., Morrow, E., Kopp, R.E., Mitrovica, J.X., 2015. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517, 481-484.
    IPCC Climate Change, 2013. The physical science basis. In:Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
    Ivins, R.E., 2010. Rate of Lithospheric Uplift Due to Postglacial Rebound. NASA's Jet Propulsion Laboratory in Pasadena, California USA. https://en.wikipedia.org/wiki/Post-glacial_rebound.
    Jevrejeva, S., Grinsted, A., Moore, J.C., 2009. Anthropogenic forcing dominates sea level rise since 1850. Geophysical Research Letters 36, L20706. https://doi.org/10.1029/2009GL040216.
    Johansson, J.M., Davis, J.L., Scherneck, H.-G., Milne, G.A., Vermeer, M., Mitrovica, J.X., Bennett, R.A., Jonsson, B., Elgered, G., Elósegui, P., Koivula, H., Poutanen, M., Rönnäng, B.O., Shapiro, I.I., 2002. Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. Journal of Geophysical Research 107 (B8), 2157. https://doi.org/10.1029/2001JB000400.
    Kemp, A.C., Horton, B.P., Donnelly, J.P., Mann, M.E., Vermeer, M., Rahmstorf, S., 2011.Climate related sea-level variations over the past two millennia. Proceedings of the National Academy of Sciences of the United States of America 108 (27), 11017-11022. https://doi.org/10.1073/pnas.1015619108.
    Kemp, A.C., Dutton, A., Raymo, M.E., 2015. Paleo constraints on future sea level rise.Current Climate Change Report 1, 205-215.
    Khan, A.A., Akhter, S.H., Alam, S.M.M., 2000. In:Hosani, Mohamed and Al (Ed.), Evidence of Holocene Transgression, Dolomitization and the Source of Arsenic in the Bengal Delta. Geoengineering in Arid Lands. Balkema, Rotterdam, pp. 351-355.
    Lidberg, M., Johansson, J.M., Scherneck, H.G., Milne, G.A., 2010. Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. Journal of Geodynamics 50 (1), 8-18.
    Lindsay, R., Schweiger, A., 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere 9, 269-283.https://doi.org/10.5194/tc-9-269-2015.
    Lombard, A., Cazenave, A., Le Traon, P.Y., Ishii, M., 2005. Contribution of thermal expansion to present-day sea level rise revisited. Global and Planetary Change 47, 1-16.
    Lombard, A., Cazenave, A., Le Traon, P.Y., Guinehut, S., Cabanes, C., 2006. Perspectives on present-day sea level change:a tribute to Christian le Provost. Ocean Dynamics 56 (5-6), 445-451. https://doi.org/10.1007/s10236-005-0046-x.
    Melillo, Jerry M., Richmond, Terese (T.C.), Yohe, Gary W. (Eds.), 2014. Climate Change Impacts in the United States:The Third National Climate Assessment. U.S. Global Change Research Program. https://doi.org/10.7930/J0Z31WJ2, 841 pp.
    Milne, G.A., Antony, J.L., Sophie, E.B., 2005. Modelling Holocene relative sea-level observations from the Caribbean and South America. Quaternary Science Reviews 24 (10-11), 1183-1202. https://doi.org/10.1016/j.quascirev.2004.10.005.
    NOAA (http://oceanservice.noaa.gov/facts/sealevel.html).
    Parris, A., Bromirski, P., Burkett, V., Cayan, D., Culver, M., Hall, J., Horton, R., Knuuti, K., Moss, R., Obeysekera, J., Sallenger, A.,Weiss, J., 2012. Global Sea Level Rise Scenarios for the US National Climate Assessment. NOAA Tech Memo OAR CPO-1, 37 pp.
    Paulson, A., Zhong, S., Wahr, J., 2007. Inference of mantle viscosity from GRACE and relative sea level data. Geophysical Journal International 171, 497-508. https://doi.org/10.1111/j.1365-246X.2007.03556.x.
    Julia Pfeffer, J., Allemand, P., 2015. Contribution of vertical land motions to relative sea level variations:a global synthesis of multisatellite altimetry, tide gauge data and GPS measurements. Earth and Planetary Science Letters 439, 39-47.
    Rovere, A., Stocchi, P., Vacchi, M., 2016. Eustatic and Relative Sea Level Changes.Current Climate Change Report. https://doi.org/10.1007/s40641-016-0045-7.
    Rovere, A., Raymo, M.E., Vacchi, M., Lorscheid, T., Stocchi, P., GómezPujol, L., Harris, D.L., Casella, E., O'Leary, M.J., Hearty, P.J., 2016a. The analysis of last interglacial (MIS 5e) relative sea-level indicators:reconstructing sea-level in a warmer world. Earth Science Review 159, 404-427.
    Sella, G.F., Stein, S., Dixon, T.H., Craymer, M., et al., 2007. Observation of glacial isostatic adjustment in "stable" North America with GPS. Geophysical Research Letters 34 (2). https://doi.org/10.1029/2006GL027081.L02306.
    Shennan, I., Horton, B., 2002. Holocene land- and sea-level changes in Great Britain.Journal of Quaternary Science 17, 511-526.
    Snay, R.A., Freymueller, Jeffrey T., Craymer, Michael R., Pearson, Chris F., Saleh, Jarir, 2016. Modeling 3-D crustal velocities in the United States and Canada. Journal of Geophysical Research, Solid Earth, AGU 121 (7), 5365-5388.
    Telford, W.M., Geldart, L.P., Sheriff, R.E., Keys, D.A., 1976. Applied Geophysics.Cambridge University Press, 860 pp.
    Vacchi, M., Marriner, N., Morhange, C., Spada, G., Fontana, A., Rovere, A., 2016.Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean:variability in the sea-level histories and redefinition of the isostatic signal. Earth Science Review 155, 172-197.
    Vail, P.R., Mitchum Jr., R.M., Thompson Ⅲ, S., 1977. Seismic Stratigraphy and Global Changes of Sea Level:Part 4. Global Cycles of Relative Changes of Sea Level:Section 2. Application of Seismic Reflection Configuration to Stratigraphy Interpretation. AAPG Memoir Special Volume, pp. 83-97.
    Zhang, J., 2007. Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. American Meteorological Society 20, 2515-2529.
    Zhang, J.L., Rothrock, D.A., 2003. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. American Meteorological Society Monthly Weather Review 131, 845-861.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (103) PDF downloads(2) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint