Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Siding Jin, Haiyang Cao, Hua Wang, Michael Wagreich, Sylvain Richoz. Orbital cyclicity in sedimentary sequence and climatic indications of C-O isotopes from Lower Cretaceous in Qingxi Sag, Jiuquan Basin, NW China[J]. Geoscience Frontiers, 2019, 10(2): 467-479. doi: 10.1016/j.gsf.2018.01.005
Citation: Siding Jin, Haiyang Cao, Hua Wang, Michael Wagreich, Sylvain Richoz. Orbital cyclicity in sedimentary sequence and climatic indications of C-O isotopes from Lower Cretaceous in Qingxi Sag, Jiuquan Basin, NW China[J]. Geoscience Frontiers, 2019, 10(2): 467-479. doi: 10.1016/j.gsf.2018.01.005

Orbital cyclicity in sedimentary sequence and climatic indications of C-O isotopes from Lower Cretaceous in Qingxi Sag, Jiuquan Basin, NW China

doi: 10.1016/j.gsf.2018.01.005
  • Received Date: 2017-01-14
  • Rev Recd Date: 2017-12-27
  • Publish Date: 2021-01-07
  • Sedimentary deposits of the Lower Cretaceous Xiagou Formation form the most significant potential hydrocarbon reservoirs in the Qingxi Sag, Jiuquan Basin (NW China). Zircon U-Pb ages of the dated basalts at the top of the Xiagou Formation give an isochron age of 115.6 Ma, and the sedimentation interval of the Xiagou Formation was speculated to range from about 125/124 Ma to 115 Ma based on paleontological research and stratigraphic correlation analysis. Here we use GR logging data as a palaeoenvironmental and palaeoclimatic proxy to conduct a detailed cyclostratigraphic study of five selected wells. Power spectra, evolutionary fast Fourier transformation and wavelet analysis all reveal significant sedimentary cycles in the Xiagou Formation. The ratios of cycle wavelengths in these stratigraphic units are 33.82 m:7.91 m:3.06 m:1.79 m, which is similar to the ratio of orbital targets of 20:5:2:1. The ratio of 20:5:2:1 is interpreted as Milankovitch cycles of 405 kyr long eccentricity, 100 kyr short eccentricity, 37 kyr obliquity, and 22 kyr precession cycles respectively. A high-resolution astronomical time scale is constructed by tuning the stratigraphy into target curves of orbital cycles respectively. Based on the astronomical time scale, the absolute ages of 55 samples were estimated, which are used for subsequent stable carbon and oxygen isotope stratigraphy analysis. The analysis results of the five studied wells in the Qingxi Sag indicate: (1) a negative trend of δ13C values upwards in the Xiagou Formation, and (2) negative δ18O values with a positive trend upwards. Both relatively heavy values and pronounced covariances of δ13C values and δ18O values indicate an arid-evaporation-controlled climate during the sedimentary period of the Lower Cretaceous Xiagou Formation, Qingxi Sag, Jiuquan Basin. Moreover, positive covariances of SQK1g2+3 indicate extremely high temperature, and negative covariances of SQK1g1 indicate a relatively low temperature.
  • loading
  • [1]
    Armenteros, I., Huerta, P., 2006. The role of clastic sediment influx in the formation of calcrete and palustrine facies:a response to paleographic and climatic conditions in the southeastern Tertiary Duero basin (northern Spain). Geological Society of America Special Paper 416, 119-132.
    Aziz, H.A., Krijgsman, W., Hilgen, F.J., Wilson, D.S., Calvo, J.P., 2003. An astronomical polarity timescale for the late middle Miocene based on cyclic continental sequences.Journal of Geophysical Research 108 (B3), 1-16.
    Berger, A., Loutre, M.F., Laskar, J., 1992. Stability of the astronomical frequencies over the earth's history for paleoclimate studies. Science New Series 255 (5044), 560-566.
    Cao, K., Wang, M., 2009. Constraints of sedimentary records on Cretaceous paleoclimate simulation in China mainland. Earth Science Frontiers 16 (5), 29-36 (in Chinese with English abstract).
    Cao, H.Y., Jin, S.D., Sun, M., Wang, H., 2016. Astronomical forcing of sedimentary cycles of Late Eocene Liushagang Formation in the Bailian Sag, Fushan Depression, Beibuwan Basin, South China Sea. Journal of Central South University 23, 1427-1438.
    Chamberlain, C.P., Wan, X.Q., Graham, S.A., Carroll, A.R., Doebbert, A.C., Sageman, B.B., Blisniuk, P., Kent-Corson, M.L., Wang, Z., Wang, C.S., 2013. Stable isotopic evidence for climate and basin evolution of the Late Cretaceous Songliao basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology 385, 106-124.
    Chen, J.P., Huang, D.F., 1996. Formation and mechanism of the abnormal pressure zone and its relation to oil and gas accumulations in the Eastern Jiuquan Basin, northwest China. Science in China Series D 39, 194-204 (in Chinese with English abstract).
    Chen, J.J., Zhang, D.J., 2003. Research of the Oil Gas Generation and Migration of Lower Cretaceous in the Jiuxi Depression, NWChina, 27(2). Research Institute of Petroleum Exploration and Development CNPC, Beijing, pp. 181-187.
    Chen, J.P., Chen, J.J., Zhang, L.P., Zhong, N.N., Wang, Z.Y., 2001. New opinions on oil and gas generation and exploration in Jiuxi basin (I):Basin petroleum and geological condition and oil-generation potential. Petroleum Exploration and Development 28, 19-22 (in Chinese with English abstract).
    Chen, S., Wang, H., Wei, J., Lv, Z.Y., Gan, H.J., Jin, S.D., 2014. Sedimentation of the Lower Cretaceous Xiagou Formation and its response to regional tectonics in the Qingxi Sag, Jiuquan Basin, NW China. Cretaceous Research 47, 72-86.
    Cleveland, W.S., 1979. Robust locally weighted regression and smoothing scatterplots.Publications of the American Statistical Association 74, 829-836.
    Deng, S.H., Lu, Y.Z., 2008. Fossil plants from Lower Cretaceous of the Jiuquan Basin, Gansu, NW China and their palaeoclimatic implications. Acta Geologica Sinica 82 (1), 104-116 (in Chinese with English abstract).
    Deng, S.H., Yang, X.J., Lu, Y.Z., 2005. Pseudofrenelopsis (Cheirolepidiaceae) from the Lower Cretaceous of Jiuquan, Gansu, NW China. Acta Palaeontologica Sinica 44(4), 505-516 (in Chinese with English abstract).
    Deng, S.H., Lu, Y.Z., 2008. Fossil plants from lower cretaceous of the Jiuquan Basin, Gansu, NW China and their palaeoclimatic implications. Acta Geologica Sinica 82 (1), 104-116 (in Chinese with English abstract).
    Drummond, C.N., Patterson, W.P., Walker, J.C.G., 1995. Climatic forcing of carboneoxygen isotopic covariance in temperate-region marl lakes. Geology 23, 1031-1034.
    Eldrett, J.S., Ma, C., Bergman, S.C., Lutz, B., Gregory, J., Dodsworth, P., Phipps, M., Hardas, P., Minisini, D., Ozkan, A., Ramezani, J., Bowring, S.A., Kamo, S.L., Ferguson, K., Macaulay, C., Kelly, A.E., 2015. An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA:implications for global chronostratigraphy. Cretaceous Research 56, 316-344.
    Gao, Y., Ibarra, D.E., Wang, C.S., Caves, J.K., Chamberlain, C.P., Graham, S.A., Wu, H.C., 2015. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous. Geology 43, 287-290. https://doi.org/10.1130/G36427.1.
    Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., Yiou, P., 2002. Advanced spectral methods for climatic time series. Reviews of Geophysics 40 (1), 3-1-3-41.
    Guo, Y., Song, Y., Luo, Q., Li, B., Du, J., Chen, J., 2016. Advantageous sourcereservoir combination in siliciclastic-carbonate sedimentary systems in a saline lacustrine basin (Jiuquan Basin, NW China):implications for prediction of tight oil enrichment. Marine and Petroleum Geology. https://doi.org/10.1016/j.marpetgeo.2015.12.021.
    Halim, N., Kravchinsky, V., Gilder, S.A., 1998. Paleomagnetic study from the Mongol-Okhotsk Region:Rotated early cretaceous volcanics and remagnetized mesozoic sediments. Earth & Planetary Science Letters 159, 133-145.
    Hinnov, L.A., 2000. New perspectives on orbitally forced stratigraphy. Annual Review of Earth and Planetary Sciences 28 (1), 419-475.
    Hinnov, L.A., Ogg, J.G., 2007. Cyclostratigraphy and the astronomical time scale.Stratigraphy 4, 239-251.
    Hinnov, L.A., Hilgen, F.J., 2012. Cyclostratigraphy and astrochronology. Geologic Time Scale, 2012. Elsevier. Ogg J.G, Hinnov L.A, Huang C.J. Cretaceous. In:Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), The geologic time scale, pp. 793-853.
    Hu, Y.X., Xu, D.L., 2005. Early Cretaceous ostracods from the Xiagou Formation in Xiagou, Gansu province. Acta Micropalaeontologica Sinica 22 (2), 173-184 (in Chinese with English abstract).
    Huang, C.J., Hesselbo, S.P., 2014. Pacing of the Toarcian Oceanic Anoxic Event (Early Jurassic) from astronomical correlation of marine sections. Gondwana Research 25, 1348-1356.
    Janaway, T.M., Parnell, J., 1989. Carbonate production within the Orcadian Basin, northern Scotland:a petrographic and geochemical study. Palaeogeography, Palaeoclimatology, Palaeoecology 70, 89-105.
    Jin, S.D., Wang, H., Chen, S., Gan, H.J., Lv, Z.Y., Cao, H.Y., 2013. Control of anticline crest zone on depositional system and its geological significance for petroleum in Changshaling, Yinger Sag, Eastern Jiuquan Basin. Journal of Earth Science 24, 947-961.
    Keith, M.L., Weber, J.N., 1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta 28, 1787-1816.
    Khadkikar, A.S., Chamyal, L.S., Ramesh, R., 2000. The character and genesis of calcrete in Late Quaternary alluvial deposits, Gujarat, western India, and its bearing on the interpretation of ancient climates. Palaeogeography, Palaeoclimatology, Palaeoecology 162, 239-261.
    Kuang, H.W., Liu, Y.Q., Peng, N., Xu, H., Liu, Y.X., Dong, C., Chen, J., Liu, H., Xu, J.L., Xue, P.L., 2013. Stratigraphy and depositional palaeogeography of the Early Cretaceous basins in Da Hinggan Mountains-Mongolia orogenic belt and its neighboring areas. Geological Bulletin of China 7 (32), 17-38 (in Chinese with English abstract).
    Larson, R.L., 1991. Latest puls of the Earth:evidence for a mid-Cretaceous superplume.Geology 19, 547-550.
    Laskar, J., Robulet, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004.A long-term numerical solution for the insolation quantities of the earth. Astronomy and Astrophysics 428 (1), 261-285.
    Laskar, J., Fienga, A., Gatineau, M., Manche, H., 2011. La2010:a new orbital solution for the long-term motion of the Earth. Astronomy and Astrophysics 532, A89.
    Li, H.B., Yang, J.T., 2004. Evidence for Cretaceous uplift of the northern Qinghai-Tibetan plateau. Earth Science Frontiers 11, 345-359 (in Chinese with English abstract).
    Li, H.B., Yang, J.T., Xu, Z.Q., Sun, Z.M., Tapponnier, P., 2006. The constraint of the Altyn Tagh fault system to the growth and rise of the northern Tibetan plateau.Earth Science Frontiers 13, 59-79 (in Chinese with English abstract).
    Li, X.H., Xu, W.L., Liu, W.H., Zhou, Y., Wang, Y., Sun, Y., Liu, L., 2013. Climatic and environmental indications of carbon and oxygen isotopes from the Lower Cretaceous calcrete and lacustrine carbonates in Southeast and Northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology 385, 171-189.
    Li, M.S., Ogg, J., Zhang, Y., Huang, C.J., Hinnov, L., Chen, Z.Q., Zou, Z., 2016a. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany. Earth and Planetary Science Letters 441, 10-25.
    Li, M.S., Huang, C.J., Hinnov, L., Ogg, J., Chen, Z.Q., Zhang, Y., 2016b. Obliquityforced climate during the Early Triassic hothouse in China. Geology 44 (8), 623-626.
    Liu, Z.H., 2012. Orbital cycles analysis and its genesis significance for the sequence hierarchy:a case study of Carboniferous Karashayi Formation, Central Tarim basin. Journal of Earth Science 23 (4), 516-528.
    Lloyd, R.M., 1966. Oxygen isotope enrichment of sea-water by evaporation. Geochimica et Cosmochimica Acta 30, 801-814.
    Luo, P., Yang, S.S., Ma, L., Su, L.P., 2001. Origin, feature and its significance to the petroleum exploration of the clay-size plagioclase in lacustrine laminated argillaceous dolomite, Qingxi depression in Jiuxi basin. Petroleum Exploration and Development 28 (6), 32-34 (in Chinese with English abstract).
    Ma, Q.H., Lin, Q.B., Ye, C.H., Shen, Y.B., 1984. Division and correlation of the xinminpu formation in the Jiuxi Basin, Gansu. Journal of Stratigraphy 8, 255-270 (in Chinese with English abstract).
    Ma, C., Meyers, S.R., Sageman, B.B., Singer, B.S., Jicha, B.R., 2014. Testing the astronomical time scale for oceanic anoxic event 2, and its extension into Cenomanian strata of the Western Interior Basin (U.S.A.). The Geological Society of America Bulletin 126, 974-989.
    Ma, C., Meyers, S.R., Sageman, B.B., 2017. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence. Nature 542 (7642), 468-470.
    Mann, M.E., Lees, J.M., 1996. Robust estimation of background noise and signal detection in climatic time series. Climatic Change 33, 409-445.
    Mayer, H., Appel, E., 1999. Milankovitch cyclicity and rock-magnetic signatures of palaeoclimatic change in the Early Cretaceous Biancone Formation of the Southern Alps, Italy. Cretaceous Research 20, 189-214.
    Meyers, S.R., Siewert, S.E., Singer, B.S., Sageman, B.B., Condon, D.J., Obradovich, J.D., Jicha, B.R., Sawyer, D.A., 2012. Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, Western Interior Basin, USA. Geology 40, 7-10.
    Niu, S.W., 1987. Late mesozoic stratigraphy in the Jiuquan Basin, Gansu. Journal of Stratigraphy 11, 1-22 (in Chinese with English abstract).
    Oberhänsli, H., Allen, P.A., 1987. Stable isotopic signatures of Tertiary lake carbonates, Eastern Ebro Basin, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 60, 59-75.
    Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs time-series analysis. EOS Transactions 77, 379.
    Pan, L.Y., Xie, J.L., Li, M.J., Zhen, M., 2006. Cretaceous-Cenozoic regional tectonic evolution in Jiuquan Basin and petroleum exploration. Oil & Gas Geology 27, 65-68 (in Chinese with English Abstract).
    Ogg, J.G., Hinnov, L.A., Huang, C.J., 2012. Cretaceous. In:Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), The Geologic Time Scale, pp. 793-853.
    Prokph, A., Villeneuve, M., Agterberg, F.P., 2001. Geochronology and calibration of global Milankovitch cyclicity at the Cenomanian-Turonian boundary. Geology 29 (6), 523-526.
    Schlanger, S.O., Jenkyns, H.C., 1976. Cretaceous oceanic anoxic events:Cause and consequence. Geologie en Mijinbouw 55, 179-184.
    Schnyder, J., Ruffell, A., Deconinck, J.F., Baudin, F., 2006. Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic-early Cretaceous palaeoclimate change (Dorset, UK). Palaeogeography, Palaeoclimatology, Palaeoecology 229, 303-320.
    Scott, R.W., Wan, X.Q., Wang, C.S., Huang, Q.H., 2012. Late Cretaceous chronostratigraphy(Turonian-Maastrichtian):SK1 core Songliao Basin, China.Geoscience Frontiers 3 (4), 357-367.
    Shi, Y.F., Li, J.J., Li, B.Y., 1998. Uplift and Environment Changes of QinghaiXizang(Tibet) Plateau in the Late Cenozoic. Guangdong Science and Technology Press, Guangzhou, pp. 52-189 (in Chinese with English abstract).
    Suarez, M.B., González, L.A., Ludvigson, G.A., You, H., 2008. Stable carbon isotope chemostratigraphy of the fossil bird-bearing Early Cretaceous Xiagou Formation in Changma basin, Gansu province, China. Abstract:68th Annual Meeting of the Society-of-Vertebrate-Paleontology Location:Cleveland Museum Nat Hist, Cleveland, OH Date:OCT 15-18, 2008. Journal of Vertebrate Paleontology 28(3), 149A.
    Strasser, A., Hilgen, F.J., Heckel, P.H., 2006. Cyclostratigraphy-concepts, definitions, and applications. Newsletters on Stratigraphy 42 (2), 75-114.
    Tandon, S.K., Andrews, J.E., 2001. Lithofacies associations and stable isotopes of palustrine and calcrete carbonates:examples from an Indian Maastrichtian regolith. Sedimentology 48, 339-355.
    Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79, 61-78.
    Ten Veen, J.H., Postma, G., 1996. Astronomically forced variations in gamma-ray intensity:Late Miocene hemipelagic successions in the eastern Mediterranean basin as a test case. Geology 24, 15-18.
    Wagreich, M., Hohenegger, J., Neuhuber, S., 2012. Nannofossil biostratigraphy, strontium and carbon isotope stratigraphy, cyclostratigraphy and an astronomically calibrated duration of the Late Campanian Radotruncana calcarata Zone. Cretaceous Research 38, 8-96.
    Wang, C.S., Cao, K., Huang, Y.J., 2009. Sedimentary record and Cretaceous Earth surface system changes. Earth Science Frontiers 16 (5), 1-14 (in Chinese with English abstract).
    Wang, J., Wang, H., Chen, S., Gan, H.J., Liu, X.L., Lv, Z.Y., Mei, B.B., Ren, J.F., 2012.Control of Palaeogeomorphology on sedimentary system distribution:an example from Qingxi Depression, Jiuquan Basin. Marine Geology Frontiers 28, 25-33 (in Chinese with English abstract).
    Wang, G.D., Cheng, R.H.,Wang, P.J., Gao, Y.F.,Wang, C.S., Ren, Y.G., Huang, Q.H., 2015.High resolution continuous sedimentary records of Upper Cretaceous obtained from the continent al drilling (SK-1) borehole in Songliao Basin:Sifangtai and Mingshui Formation. Geoscience Frontiers 6, 895-912.
    Wang, T.T., Ramezani, J., Wang, C.S., Wu, H.C., He, H.Y., Bowring, S.A., 2016. Highprecision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China. Earth and Planetary Science Letters 446, 37-44.
    Weedon, G., 2003. Time-Series Analysis and Cyclostratigraphy. Cambridge University Press, Cambridge, pp. 1-259.
    Wen, G.H., Zheng, R.C., Ye, T.R., Gao, H.C., Wang, M.F., 2005. Sedimentary characteristics of the Lower Cretaceous strata and prediction of the favorable exploration areas in the Qingxi depression, Jiuxi Basin, Gansu. Sedimentary Geology and Tethyan Geology 25, 71-77 (in Chinese with English abstract).
    Wu, H.C., Zhang, S.Z., Hinnov, L.A., Jiang, G.Q., Yang, T.S., Li, H.Y., Wan, X.Q., Wang, C.S., 2014. Cyclostratigraphy and orbital tuning of the terrestrial upper Santonian-Lower Danian in Songliao Basin, northeastern China. Earth and Planetary Science Letters 407, 82-95.
    Wu, J.L., Wang, S.M., 1996. Oxygen isotopes from the RM core in eastern QinghaiXizang(Tibet) plateau:Reveals of the Last Glacial Maximum climate. Science Bulletin in China 41 (17), 1601-1604.
    Wu, H.C., Zhang, S.H., Jiang, G.Q., Hinnov, L., Yang, T.S., Li, H.Y.,Wan, X.Q.,Wang, C.S., 2013. Astrochronology of the early turonian-Early campanian terrestrial succession in the Songliao Basin, Northeastern China and its implication for longperiod behavior of the solar system. Palaeogeography Palaeoclimatology Palaeoecology 385 (3), 55-70.
    Yang, L., Zhu, L.D., Zhen, R.C., Yang, W.G., Wang, C.S., 2011. Sedimentary characteristics and tectonic setting of the Lower Cretaceous strata in Jiuxi Basin, Gansu.Northwestern Geology 44 (1), 112-118 (in Chinese with English abstract).
    Zhang, H.R., 1998. Yanshan event. Acta Geologica Sinica 72 (2), 103-111 (in Chinese with English abstract).
    Zhang, P., Mei, L., Xiong, P., Hu, X.L., Li, R.Y., Qiu, H.N., 2017. Structural features and proto-type basin reconstructions of the Bay of Bengal Basin:A remnant ocean basin model. Journal of Earth Sciences 28 (4), 666-682.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (107) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint