Volume 10 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Lee Yit Leng, Osumanu Haruna Ahmed, Mohamadu Boyie Jalloh. Brief review on climate change and tropical peatlands[J]. Geoscience Frontiers, 2019, 10(2): 373-380. doi: 10.1016/j.gsf.2017.12.018
Citation: Lee Yit Leng, Osumanu Haruna Ahmed, Mohamadu Boyie Jalloh. Brief review on climate change and tropical peatlands[J]. Geoscience Frontiers, 2019, 10(2): 373-380. doi: 10.1016/j.gsf.2017.12.018

Brief review on climate change and tropical peatlands

doi: 10.1016/j.gsf.2017.12.018
Funds:

We acknowledge all literatures which enabled us to come out with this short review.We express our gratitude to Universiti Putra Malaysia, Universiti Malaysia Perlis, and Ministry of Higher Education Malaysia for the continued support in our research work related to peats through Putra Grant (9439100) and Fundamental Research Grant Scheme (5524983).

  • Received Date: 2017-04-30
  • Rev Recd Date: 2017-10-28
  • Publish Date: 2021-01-07
  • In 2008, the very extensive tropical peats were estimated to be about 182 million ha spanning South America, Asia and Africa. About 20.3% (36.9 million ha) of this area exist in Asia. Peats are classified based on their degree of decomposition, namely Fibrists, Hemists, Saprists and Folists. This makes them different in characteristics. The activities of microorganisms vary in different types of peat due to, for example, the sapric layer of well humified peat can provide water and food to microorganisms during heat stress. In another scenario, deeper peat is older and typically has lower levels of labile carbon to provide substrate for microbes compared to surface peat. A complete understanding of the microbial communities in different layers of peat is essential as microorganisms play major roles in peat decomposition and are important to ecosystem processes. These peats are a very important global carbon (C) store or reserve and could severely impact climate change if not managed well. Peatlands can store as much as 40 to 90 Gt C. Mis-management of peats could severely impact the environment particularly the emission of carbon into the atmosphere. For instance, clearing of peatlands using fire has been reported to release an estimated 88 t C ha-1 to the atmosphere. There are several factors which influence the environmental consequences of tropical peat especially in relation to climate change. The main influences are: (i) changes in temperature, (ii) changes in precipitation or rainfall, (iii) changes in atmospheric composition, and (iv) fire and haze. This paper is a brief review on these four influences in relation to climate change. It is apparent from the brief review that there is a need for continued short and long-term research to better understand tropical peats and how they affect our climate. This will hopefully provide the basis for predicting better what could happen under various scenarios.
  • loading
  • [1]
    Abdel-Salam, A.E., 2017. Stabilization of peat soil using locally admixture. HBRC Journal. https://doi.org/10.1016/j.hbrcj.2016.11.004.
    [2]
    Adeolu, A.R., Mohammad, T.A., Dauk, N.N.N., Mustapha, S., Sayok, A.K., Rory, P., Stephanie, E., 2015. Investigating the influence of rainfall on soil carbon quantity in a tropical peatland. Procedia Environmental Sciences 30, 44-49.
    [3]
    Ahmed, O.H., Liza Nuriati, L.K.C., 2015. Greenhouse Gas Emission and Carbon Leaching in Pineapple Cultivation on Tropical Peat Soil. Universiti Putra Malaysia Press, Serdang. https://doi.org/10.1155/2014/906021.
    [4]
    Ahmed, O.H., Ahmad, M.H.A., Anuar, A.R., Hanafi, M.M., 2013. Sustainable Production of Pineapples on Tropical Peat Soils. UPM Press, Serdang, Malaysia, p. 144.
    [5]
    Amthor, J.S., 2000. Direct effect of elevated CO2 on nocturnal in situ leaf respiration in nine temperate deciduous trees species is small. Tree Physiology 20, 139-144.
    [6]
    Andriesse, J.P., 1988. Nature and management of tropical peat soils. In:FAO Soils Bulletin 59. FA, Rome, p. 165.
    [7]
    Baath, E., Arnebrant, K., 1994. Growth rate and response of bacterial communities to pH in limed and ash treated forest soils. Soil Biology and Biochemistry 26, 995-1001.
    [8]
    Barber, K.E., 1993. Peatlands as scientific archives of past biodiversity. Biodiversity & Conservation 2, 474-489.
    [9]
    Belyea, L.R., Malmer, N., 2004. Carbon sequestration in peatland:patterns and mechanisms of response to climate change. Global Change Biology 10, 1043-1052.
    [10]
    Blouin, M., Hodson, M.E., Delgado, E.A., Baker, G., Brussaard, L., Butt, K.R., Dai, J., Dendooven, L., Peres, G., Tondoh, J.E., Cluzeau, D., Brun, J.J., 2013. A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science 64, 161-182.
    [11]
    Cai, W., Borlace, S., Lengaigne, M., Rensch, P.V., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M.J., Wu, L., England, M.H., Wang, G., Guilyardi, E., Jin, F.F., 2014. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change 4, 111-116.
    [12]
    Canakci, H., Sidik, W., Kilic, I.H., 2015. Bacterial calcium carbonate precipitation in peat. Arabian Journal for Science and Engineering 40 (8), 2251-2260.
    [13]
    Certini, G., 2005. Effects of fire on properties of forest solid:a review. Oecologia 143, 1-10.
    [14]
    Chambers, F.M., Charman, D.J., 2004. Holocene environmental change:contributions from the peatland archive. The Holocene 14, 1-6.
    [15]
    Chimner, R.A., Ewel, K.C., 2004. Differences in carbon fluxes between forested and cultivated Micronesian tropical peatlands. Wetlands Ecology and Management 12, 419-427.
    [16]
    Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R.K., Kwon, W.-T., Laprise, R., Magaña Rueda, V., Mearns, L., Menéndez, C.G., Räisänen, J., Rinke, A., Sarr, A., Whetton, P., 2007. Regional climate projections. In:Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Climate Change 2007:the Physical Science Basis. Contribution ofWorking Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    [17]
    Christian, T.J., Kleiss, B., Yokelson, R.J., Holzinger, R., Crutzen, P.J., Hao, W.M., Saharjo, B.H., Ward, D.E., 2003. Comprehensive laboratory measurements of biomass-burning emissions:1. Emissions from Indonesian, African, and other fuels. Journal of Geophysical Research 108 (D23), 4719. https://doi.org/10.1029/2003JD003704.
    [18]
    Cobb, A.R., Hoyt, A.M., Gandois, L., Eri, J., Dommain, R., Salim, K.A., Fuu, M.K., Suut, N.S.H., Harvey, C.F., 2017. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proceedings of the National Academy of Sciences of the United States of America 114 (26), E5187-E5196.
    [19]
    Comas, X., Kettridge, N., Binley, A., Slater, L., Parsekian, A., Baird, A.J., Strack, M., Waddington, J.M., 2014. The effect of peat structure on the spatial distribution of biogenic gases within bogs. Hydrological Processes 28, 5483-5494.
    [20]
    Couwenberg, J., 2011. Greenhouse gas emissions from managed peat soils:is the IPCC reporting guidance realistic? Mires & Peat 8 (2), 1-10.
    [21]
    Curtis, P.S., Wang, X., 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113, 299-313.
    [22]
    Daniels, S.M., Agnew, C.T., Allott, T.E.H., Evans, M.G., 2008. Water table variability and runoff generation in an eroded peatland, South Pennines, UK. Journal of Hydrology 361 (1-2), 214-226.
    [23]
    Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165-173.
    [24]
    Drake, B.G., Azcón-Bieto, J., Berry, J.A., Bunce, J., Dijkstra, P., Farrar, J., Koch, G.W., Gifford, R., Gonzàlez-Meler, M.A., Lambers, H., 1999. Does elevated CO2 inhibit plant mitochondrial respiration in green plants? Plant, Cell and Environment 22, 649-657.
    [25]
    Estop-Aragones, C., Blodau, C., 2012. Effects of experimental drying intensity and duration on respiration and methane production recovery in fen peat incubations.Soil Biology and Biochemistry 47, 1-9.
    [26]
    Fenner, N., Freeman, C., 2011. Drought-induced carbon loss in peatlands. Nature Geoscience 4, 895-900.
    [27]
    Frandsen, W.H., 1997. Ignition probability of organics soils. Canadian Journal of Forest Research 27, 1471-1477.
    [28]
    García-Palacios, P., Vandegehuchte, M.L., Shaw, E.A., Dam, M., Post, K.H., Ramirez, K.S., Sylvain, Z.A., De Tomasel, C.M., Wall, D.H., 2015. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective. Global Change Biology 21, 1590-1600.
    [29]
    George, K., Norby, R.J., Hamilton, J.G., DeLucia, E.H., 2003. Fine-root respiration in a loblolly pine and sweetgum forest growing in elevated CO2. New Phytologist 160, 511-522.
    [30]
    Gonzalez-Perez, J.A., Gonzalez-Vila, F.J., Almendros, G., Knicker, H., 2004. The effect of fire on soil organic matter-a review. Environment International 30 (6), 855-870.
    [31]
    Hamilton, J.G., DeLucia, E.H., George, K., Naidu, S., Finzi, A.C., Schlesinger, W.H., 2002. Forest carbon balance under CO2. Oecologia 131, 250-260.
    [32]
    Hao, Q., Jiang, C., 2014. Contribution of root respiration to soil respiration in a rape(Brassica campestris L.) field in Southwest China. Plant, Soil and Environment 60(1), 8-14.
    [33]
    Hapsari, K.A., Biagioni, S., Jennerjahn, T.C., Reimer, P.M., Saad, A., Achnopha, Y., Sabiham, S., Behling, H., 2017. Environmental dynamics and carbon accumulation rate of a tropical peatland in Central Sumatra, Indonesia. Quaternary Science Reviews 169, 173-187.
    [34]
    Hernández-Delgado, E.A., 2015. The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands:cumulative impacts and synergies. Marine Pollution Bulletin 101, 5-28.
    [35]
    Holden, J., Chapman, P.J., Labadz, J.C., 2004. Artificial drainage of peatlands:hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography 28, 95-123.
    [36]
    Hooijer, A., Page, S.E., Canadell, J.G., Silvius, M., Kwadijk, J., Wösten, H., Jauhiainen, J., 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7 (5), 1505-1514.
    [37]
    IPCC (Intergovernmental Panel on Climate Change) Climate Change, 2014. Summary for policymakers. In:Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., Minx, J.C.(Eds.), Climate Change 2014:Mitigation of Climate Change. Contribution of Working Group Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    [38]
    IPCC (Intergovernmental Panel on Climate Change) Climate Change, 2013. The physical science basis. In:Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 1535.
    [39]
    Jauhiainen, J., Page, S.E., Vasander, H., 2016. Greenhouse gas dynamics in degraded and restored tropical peatlands. Mires & Peat 17, 1-12.
    [40]
    Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S., Vasander, H., 2014. Heterotrophic respiration in drained tropical peat is greatly affected by temperature-a passive ecosystem cooling experiment. Environmental Research Letters 9, 105013.
    [41]
    Jauhiainen, J., Takahashi, H., Heikkinen, J.E.P., Martikainen, P.J., Vasander, H., 2005.Carbon fluxes from a tropical peat swamp forest floor. Global Change Biology 11, 1788-1797.
    [42]
    Johnson, D.W., Geisinger, D., Walker, R., Newman, J., Vose, J.M., Elliott, K.J., Ball, T., 1994. Soil pCO2, soil respiration, and root activity in CO2-fumigated and nitrogen-fertilized ponderosa pine. Plant and Soil 165, 129-138.
    [43]
    Joosten, H., Tapio-Bistrom, M.L., Tol, S., 2012. Peatlands-Guidance for Climate Change Mitigation by Conservation, Rehabilitation and Sustainable Use. FAO, Rome.
    [44]
    Joosten, H., 2010. The global peatland CO2 picture-peatland status and drainage related emissions in all countries of the world. Wetlands International 36.Available at:https://www.wetlands.org/publications/the-global-peatland-co2-picture.
    [45]
    Kechavarzi, C., Dawson, Q., Bartlett, M., Leeds-Harrison, P.B., 2010. The role of soil moisture, temperature and nutrient amendment on CO2 efflux from agricultural peat soil microcosms. Geoderma 154, 203-210.
    [46]
    Kellner, E., Price, J.S., Waddington, J.M., 2004. Pressure variations in peat as a result of gas bubble dynamics. Hydrological Processes 18, 2599-2605.
    [47]
    Kita, K., Fujiwara, M., Kawakami, S., 2000. Total ozone increases associated with forest fires over the Indonesian region and its relation to the El Niño-Southern Oscillation. Atmospheric Environment 34, 2681-2690.
    [48]
    Kløve, B., Sveistrup, T.E., Hauge, A., 2010. Leaching of nutrients and emission of greenhouse gases from peatland cultivation at Bodin, Northern Norway. Geoderma 154, 219-232.
    [49]
    Koh, L.P., Miettinen, J., Liew, S.C., Ghazoul, J., 2011. Remotely sensed evidence of tropical peatland conversion to oil palm. Proceedings of the National Academy of Science of the United States of America 108 (12), 5127-5132.
    [50]
    Koplitz, S.N., Mickley, L.J., Marlier, M.E., Buonocore, J., Kim, P.S., Liu, T., Sulprizio, M.P., Defries, R.S., Jacob, D.J., Schwartz, J., Pongsiri, M., Myers, S.S., 2016. Public health impacts of the severe haze in Equatorial Asia in SeptembereOctober 2015:demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environmental Research Letters 11 (9), 94023.
    [51]
    Kuzyakov, Y., 2006. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry 38, 425-448.
    [52]
    Kwan, M.J., Haraguchi, A., Kang, H., 2013. Long-term water regime differentiates changes in decomposition and microbial properties in tropical peat soils exposed to the short-term drought. Soil Biology and Biochemistry 60, 33-44.
    [53]
    Lampela, M., Jauhiainen, J., Kamari, L., Koskinen, M., Tanhuanpaa, T., Valkeapaa, A., Vasander, H., 2016. Ground surface microtopography and vegetation patterns in a tropical peat swamp forest. Catena 139, 127-136.
    [54]
    Leng, L.Y., Husni, M.H.A., Samsuri, A.W., Razak, N.A., Lailina, N.M., Ismail, R.I., 2017.Chemical Characterization of Pineapple Leaf Residue Chars Generated by Controlled Combustion and by Open Burning. MATEC Web of Conferences 97, 01061.
    [55]
    Longdoz, B., Yernaux, M., Aubinet, M., 2000. Soil CO2 efflux measurements in a mixed forest:impact of chamber distances, spatial variability and seasonal evolution. Global Change Biology 6, 907-917.
    [56]
    Mahowald, N.M., Artaxo, P., Baker, A.R., Jickells, T.D., Okin, G.S., Randerson, J.T., Townsend, A.R., 2005. Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Global Biogeochemical Cycles 19, 4030.
    [57]
    Matamala, R., Gonzalez-Meler, M.A., Jastrow, J.D., Norby, R.J., Schlesinger, W.H., 2003. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302, 1385-1387.
    [58]
    Matamala, R., Schlesinger, W.H., 2000. Effects of elevated atmospheric CO2 on fineroot production and activity in an intact temperate forest ecosystem. Global Change Biology 6, 967-979.
    [59]
    McKenzie, S.W., Hentley, W.T., Hails, R.S., Jones, T.H., Vanbergen, A.J., Johnson, S.N., 2013. Global climate change and above-belowground insect herbivore interactions.Frontiers of Plant Science 4, 1-6.
    [60]
    Meehan, T.D., Crossley, M.S., Lindroth, R.L., 2010. Impacts of elevated CO2 and O3 on aspen leaf litter chemistry and earthworm and springtail productivity. Soil Biology and Biochemistry 42, 1132-1137.
    [61]
    Melling, L., 2016. Peatland in Malaysia. In:Osaki, M., Tsuji, N. (Eds.), Tropical Peatland Ecosystems. Springer, Tokyo.
    [62]
    Mitsch, W.J., Bernal, B., Nahlik, A.M., Mander, U., Zhang, L., Anderson, C.J., Jorgensen, S.E., Brix, H., 2012. Wetlands, carbon, and climate change. Landscape Ecology. https://doi.org/10.1007/s10980-012-9758-8.
    [63]
    Muraleedharan, T.R., Radojevic, M., Waugh, A., Caruana, A., 2000. Emissions from the combustion of peat:an experimental study. Atmospheric Environment 34, 3033-3035.
    [64]
    Nielsen, U.N., Wall, D.H., 2013. The future of soil invertebrate communities in Polar Regions:different climate change responses in the Arctic and Antarctic? Ecology Letters 16, 409-419.
    [65]
    Nijp, J.J., Metselaar, K., Limpens, J., Teutschbein, C., Peichl, M., Nilsson, M.B., Berendse, F., van der Zee, S.E.A.T.M., 2017. Including hydrological self-regulating processes in peatland models:effects on peatmoss drought projections. The Science of the Total Environment 580, 1389-1400.
    [66]
    Page, S.E., Hooijer, A., 2016. In the line of fire:the peatlands of Southeast Asia.Philosophical Transactions of the Royal Society B 371, 20150176.
    [67]
    Page, S.E., Rieley, J.O., Banks, C.J., 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology 17, 798-818.
    [68]
    Page, S.E., Wuest, R., Weiss, D., Rieley, J., Shotyk, W., Limin, S.H., 2004. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia):implications for past, present and future carbon dynamics. Journal of Quaternary Science 19, 625-635.
    [69]
    Parfenova, L.N., Selyanina, S.B., Trufanova, M.V., Bogolitsyn, K.G., Orlov, A.S., Volkova, N.N., Ponomareva, T.I., Sokolova, T.V., 2016. Influence of climatic and hydrological factors on structure and composition of peat from northern wetland territories with low anthropogenic impact. The Science of the Total Environment 551-552, 108-115.
    [70]
    Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva, T., Silvius, M., Stringer, L.(Eds.), 2008. Assessment on Peatlands, Biodiversity and Climate Change:Main Report. Global Environment Centre and Wetlands International (Netherlands), Kuala Lumpur.
    [71]
    Prieto-Fernandez, A., Acea, M.J., Carballas, T., 1998. Soil microbial and extractable C and N after wildfire. Biology and Fertility of Soils 27 (2), 132-142.
    [72]
    Ponette-González, A.G., Curran, L.M., Pittman, A.M., Carlson, K.M., Steele, B.G., Ratnasari, D., Kathleen, C., 2016. Weathers biomass burning drives atmospheric nutrient redistribution within forested peatlands in Borneo. Environmental Research Letters 11 (8), 085003.
    [73]
    Rosenberry, D.O., Glaser, P.H., Siegel, D.I., 2006. The hydrology of northern peatlands as affected by biogenic gas:current developments and research needs. Hydrological Processes 20, 3601-3610.
    [74]
    Roswintiarti, O., Raman, S., 2003. Three-dimensional simulations of the mean air transport during the 1997 forest fires in Kalimantan, Indonesia using a mesoscale numerical model. Pure and Applied Geophysics 160, 429-438.
    [75]
    Roulet, N.T., Frolking, S., Ouyang, B., Hilaire, F. St, Lafleur, P., Wu, J., 2005. Hydrologydthe Key to Modeling a Peatland's Carbon Cycle in a Changing or Variable Climate, Paper Presented at Annual Meeting. Can. Geophys. Union, Calgary, Alberta, Canada.
    [76]
    Sangok, F.E., Maie, N., Melling, L., Watanabe, A., 2017. Evaluation on the decomposability of tropical forest peat soils after conversion to an oil palm plantation.The Science of the Total Environment 587-588, 381-388.
    [77]
    Satrio, A.E., Gandaseca, S., Ahmed, O.H., Majid, N.M.A., 2009. Effect of precipitation fluctuation on soil carbon storage of a tropical peat swamp forest. American Journal of Applied Sciences 6 (8), 1484-1488.
    [78]
    See, S.W., Balasubramanian, R., Rianawati, E., Kathikeyan, A., Streets, D.G., 2007.Characterization and source apportionment of particulate matter ≤ 2.5 mm in Sumatra, Indonesia, during a recent peat fire episode. Environmental Science and Technology 10, 3488-3494.
    [79]
    Siegert, F., Hoffmann, A.A., 2000. The 1998 forest fires in East Kalimantan(Indonesia):a quantitative evaluation using high resolution, multitemporal ERS-2 SAR images and NOAA-AVHRR hotspots data. Remote Sensing of Environment 72, 64-77.
    [80]
    Strack, M., Kellner, E., Waddington, J.M., 2005. Dynamics of biogenic gas bubbles in peat and their effects on peatland biogeochemistry. Global Biogeochemical Cycles 19. https://doi.org/10.1029/2004GB002330.
    [81]
    Sun, T., Dong, L., Wang, Z., Lu, X., Mao, Z., 2016. Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests. Soil Biology and Biochemistry 93, 50-59.
    [82]
    Taft, H.E., Cross, P.A., Edwards-Jones, G., Moorhouse, E.R., Jones, D.L., 2017. Greenhouse gas emissions from intensively managed peat soils in an arable production system. Agriculture, Ecosystems & Environment 237, 162-172.
    [83]
    Tang, Y., Kachi, N., Akio, F., Awang, M., 1996. Light reduction by regional haze and its effect on simulated leaf photosynthesis in a tropical forest of Malaysia. Forest Ecology and Management 89 (1-3), 205-211.
    [84]
    Thangarajan, R., Bolan, N.S., Tian, G., Naidu, R., Kunhikrishnan, A., 2013. Role of organic amendment application on greenhouse gas emission from soil. The Science of the Total Environment 465, 72-96.
    [85]
    Thompson, D.K., Waddington, J.M., 2013. Peat properties and water retention in boreal forested peatlands subject to wildfire. Water Resources Research 49, 3651-3658.
    [86]
    Tonks, A.J., Aplin, P., Beriro, D.J., Cooper, H., Evers, S., Vane, C.H., Sjogersten, S., 2017.Impacts of conversion of tropical peat swampforest to oil palm plantation onpeat organic chemistry, physical properties and carbon stocks. Geoderma 289, 36-45.
    [87]
    Torrent, J.G., Ramirez-Gomez, A., Fernandez-Anez, N., Pejic, L.M., Tascon, A., 2016.Influence of the composition of solid biomass in the flammability and susceptibility to spontaneous combustion. Fuel 184, 503-511.
    [88]
    Usup, A., Hashimoto, Y., Takahasi, H., Hayasaka, H., 2004. Combustion and thermal characteristics of peat fire in tropical peatland in Central Kalimantan, Indonesia.Tropics 14 (1), 1-19.
    [89]
    Van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S., Morton, D.C., DeFries, R.S., Jin, Y.V., van Leeuwen, T.T., 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics 10, 11707-11735.
    [90]
    Varkkey, H.M., 2011. Plantation land management, fires and haze in Southeast Asia.Malaysian Journal of Environmental Management 12 (2), 33-41.
    [91]
    Veloo, R., Paramanathan, S., Ranst, E.V., 2014. Classification of tropical lowland peats revisited:the case of Sarawak. Catena 118, 179-185.
    [92]
    Vepraskas, M.J., Craft, C.B., 2016. Wetland Soils:Genesis, Hydrology, Landscapes, and Classification, second ed. CRC Press, p. 508.
    [93]
    Wang, H., Hong, Y., Lin, Q., Hong, B., Zhu, Y., Wang, Y., Xu, H., 2010. Response of humification degree to monsoon climate during the Holocene from the Hongyuan peat bog, eastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 286 (3-4), 171-177.
    [94]
    Warren, M., Frolking, S., Dai, Z., Kurnianto, S., 2016. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century:implications for climate mitigation. Mitigation and Adaptation Strategies for Global Change 21.
    [95]
    Wong, L.S., Hashim, R., Ali, F.H., 2009. A review on experimental investigations of peat stabilization. Australian Journal of Basic and Applied Sciences 3 (4), 3537-3552.
    [96]
    Wosten, J.H.M., Clymans, E., Page, S.E., Rieley, J.O., Limin, S.H., 2008. Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena 73(2), 212-224.
    [97]
    Wösten, J.H.M., Ritzema, H.P., 2001. Land and water management options for peatland development in Sarawak, Malaysia. International Peat Journal 11, 59-66.
    [98]
    Yu, Z., Loisel, J., Brosseau, D.P., Beilman, D.W., Hunt, S.J., 2010. Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters 37, L13402.
    [99]
    Zaller, J.G., Arnone, J.A., 1999. Earthworm responses to plant species' loss and elevated CO2 in calcareous grassland. Plant and Soil 208, 1-8.
    [100]
    Zebiak, S.E., Orlove, B., Munoz, A.G., Vaughan, C., Hansen, J., Troy, T., Thomson, M.C., Lustig, A., Garvin, S., 2015. Investigating El Nino-Southern Oscillation and society relationships. Wiley Interdisciplinary Reviews:Climatic Change 6 (1), 17-34.
    [101]
    Zhao, X., Liu, S.L., Pu, C., Zhang, X.Q., Xue, J.F., Zhang, R., Wang, Y.Q., Lal, R., Zhang, H.L., Chen, F., 2016. Methane and nitrous oxide emissions under no-till farming in China:a meta-analysis. Global Change Biology 22, 1372-1384.
    [102]
    Zulkefli, M., Liza Nuriati, L.K.C., Ismail, A.B., 2010. Soil CO2 flux from tropical peatland under different land clearing techniques. Journal of Tropical Agriculture and Food Science 38 (1), 131-137.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (119) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return