Citation: | J. H. Abdulkareem, B. Pradhan, W. N. A. Sulaiman, N. R. Jamil. Prediction of spatial soil loss impacted by long-term land-use/land-cover change in a tropical watershed[J]. Geoscience Frontiers, 2019, 10(2): 389-403. doi: 10.1016/j.gsf.2017.10.010 |
[1] |
Adhikary, P.P., Tiwari, S.P., Mandal, D., Lakaria, B.L., Madhu, M., 2014. Geospatial comparison of four models to predict soil erodibility in a semi-arid region of Central India. Environmental Earth Sciences 72, 5049-5062. https://doi.org/10.1007/s12665-014-3374-7.
|
[2] |
Adinarayana, J., Gopal Rao, K., Rama Krishna, N., Venkatachalam, P., Suri, J.K., 1999. A rule-based soil erosion model for a hilly catchment. Catena 37, 309-318.https://doi.org/10.1016/S0341-8162(99)00023-5.
|
[3] |
Adnan, N.A., Atkinson, P.M., 2011. Exploring the impact of climate and land use changes on streamflow trends in a monsoon catchment. International Journal of Climatology 31, 815-831. https://doi.org/10.1002/joc.2112.
|
[4] |
Ali, S.A., Hagos, H., 2016. Estimation of soil erosion using USLE and GIS in Awassa Catchment, Rift valley, Central Ethiopia. Geoderma Regional 7, 159-166. https://doi.org/10.1016/j.geodrs.2016.03.005.
|
[5] |
Arnoldus, H.M.J., 1980. An approximation to the rainfall factor in the universal soil loss equation. In:De Boodt, Gabriels (Ed.), Assessment of Erosion. Wiley, New York.
|
[6] |
Baban, S.M.J., Yusof, K., 2001. Modelling soil erosion in tropical environments using remote sensing and geographical information systems. Hydrological Sciences Journal 46, 191-198. https://doi.org/10.1080/02626660109492815.
|
[7] |
Bagarello, V., Di Stefano, V., Ferro, V., Giordano, G., Iovino, M., Pampalone, V., 2012.Estimating the USLE soil erodibility factor in Sicily, South Italy. Applied Engineering in Agriculture 28, 199-206. https://doi.org/10.13031/2013.41347.
|
[8] |
Bagherzadeh, A., 2014. Estimation of soil losses by USLE model using GIS at Mashhad plain, Northeast of Iran. Arabian Journal of Geosciences 7, 211-220.https://doi.org/10.1007/s12517-012-0730-3.
|
[9] |
Bathrellos, G.D., Gaki-Papanastassiou, K., Skilodimou, H.D., Papanastassiou, D., Chousianitis, K.G., 2012. Potential suitability for urban planning and industry development using natural hazard maps and geological-geomorphological parameters.Environmental Earth Sciences 66, 537-548. https://doi.org/10.1007/s12665-011-1263-x.
|
[10] |
Bathrellos, G.D., Gaki-Papanastassiou, K., Skilodimou, H.D., Skianis, G.A., Chousianitis, K.G., 2013. Assessment of rural community and agricultural development using geomorphological-geological factors and GIS in the Trikala prefecture (Central Greece). Stochastic Environmental Research and Risk Assessment 27, 573-588. https://doi.org/10.1007/s00477-012-0602-0.
|
[11] |
Botterweg, P., Leek, R., Romstad, E., Vatn, A., 1998. The EUROSEM-GRIDSEM modeling system for erosion analyses under different natural and economic conditions. Ecological Modelling 108, 115-129. https://doi.org/10.1016/S0304-3800(98)00023-4.
|
[12] |
Brueckner, J.K., 2009. International Regional Science Review. https://doi.org/10.1177/016001700761012710.
|
[13] |
Buttafuoco, G., Conforti, M., Aucelli, P.P.C., Robustelli, G., Scarciglia, F., 2012.Assessing spatial uncertainty in mapping soil erodibility factor using geostatistical stochastic simulation. Environmental Earth Sciences 66, 1111-1125.https://doi.org/10.1007/s12665-011-1317-0.
|
[14] |
Chan, N.W., 1995. Flood disaster management in Malaysia:an evaluation of the effectiveness of government resettlement schemes. Disaster Prevention and Management 4, 22-29. https://doi.org/10.1108/09653569510093405.
|
[15] |
Correa, S.W., Mello, C.R., Chou, S.C., Curi, N., Norton, L.D., 2016. Soil erosion risk associated with climate change at Mantaro River basin, Peruvian Andes. Catena 147, 110-124. https://doi.org/10.1016/j.catena.2016.07.003.
|
[16] |
Demirci, A., Karaburun, A., 2012. Estimation of soil erosion using RUSLE in a GIS framework:a case study in the Buyukcekmece Lake watershed, northwest Turkey. Environmental Earth Sciences 66, 903-913. https://doi.org/10.1007/s12665-011-1300-9.
|
[17] |
Desmet, P.J.J., Govers, G., 1996. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation 51, 427-433.
|
[18] |
DID, 2010. Guideline for Erosion and Sediment Control Plan.
|
[19] |
Elfert, S., Bormann, H., 2010. Simulated impact of past and possible future land use changes on the hydrological response of the Northern German lowland "Hunte" catchment. Journal of Hydrology 383, 245-255. https://doi.org/10.1016/j.jhydrol.2009.12.040.
|
[20] |
Ganasri, B.P., Ramesh, H., 2016. Assessment of soil erosion by RUSLE model using remote sensing and GIS-a case study of Nethravathi Basin. Geoscience Frontiers 7, 953-961. https://doi.org/10.1016/j.gsf.2015.10.007.
|
[21] |
Glaeser, E., Kahn, M., 2004. Sprawl and urban growth. In:Henderson, V., Thisse, J.(Eds.), Handbook of Regional and Urban Economics:Cities and Geography, Handbooks in Economics. Elsevier, Amsterdam.
|
[22] |
Hajkowicz, S., Perraud, J.M., Dawes, W., DeRose, R., 2005. The strategic landscape investment model:a tool for mapping optimal environmental expenditure.
|
[23] |
Environmental Modelling and Software 20, 1251-1262. https://doi.org/10.1016/j.envsoft.2004.08.009.
|
[24] |
Hörmann, G., Horn, A., Fohrer, N., 2005. The evaluation of land-use options in mesoscale catchments:prospects and limitations of eco-hydrological models.Ecological Modelling 187, 3-14. https://doi.org/10.1016/j.ecolmodel.2005.01.022.
|
[25] |
Jain, M.K., Mishra, S.K., Shah, R.B., 2010. Estimation of sediment yield and areas vulnerable to soil erosion and deposition in a Himalayan watershed using GIS.Current Science 98, 213-221.
|
[26] |
Jamaliah, J., 2007. Emerging trends of urbanization in Malaysia. Journal of the Department of Statistics, Malaysia. Accessed from:http://www.statistics.gov.my/eng/images/stories/files/journalDOSM/V104 Article Jamaliah.pdf[Accessed 20 January 2016].
|
[27] |
Khosrokhani, M., Pradhan, B., 2013. Spatio-temporal assessment of soil erosion at Kuala Lumpur metropolitan city using remote sensing data and GIS. Geomatics, Natural Hazards and Risk 5705, 1-19. https://doi.org/10.1080/19475705.2013.794164.
|
[28] |
Klein, J., Jarva, J., Frank-Kamenetsky, D., Bogatyrev, I., 2013. Integrated geological risk mapping:a qualitative methodology applied in St. Petersburg, Russia.Environmental Earth Sciences 70, 1629-1645. https://doi.org/10.1007/s12665-013-2250-1.
|
[29] |
Koomen, E., Rietveld, P., Nijs, T., 2008. Modelling land-use change for spatial planning support. The Annals of Regional Science 42, 1-10. https://doi.org/10.1007/s00168-007-0155-1.
|
[30] |
Kouli, M., Soupios, P., Vallianatos, F., 2008. Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology 57, 483-497. https://doi.org/10.1007/s00254-008-1318-9.
|
[31] |
Lambin, E., 2003. Linking socioeconomic and remote sensing data at the community or at the household level. In:Fox, J., Rindfuss, R.R., Walsh, S.J., Mishra, V. (Eds.), People and the Environment. Springer, Boston, MA.
|
[32] |
Lazzari, M., Gioia, D., Piccarreta, M., Danese, M., Lanorte, A., 2015. Sediment yield and erosion rate estimation in the mountain catchments of the Camastra artificial reservoir (Southern Italy):a comparison between different empirical methods. Catena 127, 323-339.
|
[33] |
Lee, S., 2004. Soil erosion assessment and its verification using the Universal Soil Loss Equation and Geographic Information System:a case study at Boun, Korea.Environmental Geology 45, 457-465. https://doi.org/10.1007/s00254-003-0897-8.
|
[34] |
Lu, H., Moran, C.J., Prosser, I.P., 2006. Modelling sediment delivery ratio over the Murray Darling Basin. Environmental Modelling and Software 21, 1297-1308.https://doi.org/10.1016/j.envsoft.2005.04.021.
|
[35] |
Mallick, J., Alashker, Y., Mohammad, S.A.-D., Ahmed, M., Hasan, M.A., 2014. Risk assessment of soil erosion in semi-arid mountainous watershed in Saudi Arabia by RUSLE model coupled with remote sensing and GIS. Geocarto International 29, 915-940.
|
[36] |
Mello, C.R. de, Norton, L.D., Pinto, L.C., Beskow, S., Curi, N., 2016. Agricultural watershed modeling:a review for hydrology and soil erosion processes. Ciência-Agrotecnologia 40, 7-25. https://doi.org/10.1590/S1413-70542016000100001.
|
[37] |
Mondal, A., Khare, D., Kundu, S., Mukherjee, S., Mukhopadhyay, A., Mondal, S., 2017.Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs. Geoscience Frontiers 8, 425-436. https://doi.org/10.1016/j.gsf.2016.03.004.
|
[38] |
Nearing, M.A., 2013. Soil Erosion and Conservation, Environmental Modelling:Finding Simplicity in Complexity, second ed. https://doi.org/10.1002/9781118351475.ch22.
|
[39] |
Nejadhashemi, A.P., Wardynski, B.J., Munoz, J.D., 2011. Evaluating the impacts of land use changes on hydrologic responses in the agricultural regions of Michigan and Wisconsin. Hydrology and Earth System Sciences Discussions 8, 3421-3468. https://doi.org/10.5194/hessd-8-3421-2011.
|
[40] |
Neupane, R.P., Kumar, S., 2015. Estimating the effects of potential climate and land use changes on hydrologic processes of a large agriculture dominated watershed.Journal of Hydrology 529, 418-429. https://doi.org/10.1016/j.jhydrol.2015.07.050.
|
[41] |
Pradhan, B., 2010a. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches.Journal of Indian Society of Remote Sensing 38, 301-320.
|
[42] |
Pradhan, B., 2010b. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Advances in Space Research 45, 1244-1256. https://doi.org/10.1016/j.asr.2010.01.006.
|
[43] |
Pradhan, B., 2009. Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing Biswajeet. Journal of Spatial Hydrology 9, 9. No. 2 Fall 2009.
|
[44] |
Pradhan, B., Chaudhari, A., Adinarayana, J., Buchroithner, M.F., 2012. Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS:a case study at Penang Island, Malaysia. Environmental Monitoring and Assessment 184, 715-727. https://doi.org/10.1007/s10661-011-1996-8.
|
[45] |
Pradhan, B., Youssef, A.M., 2011. A 100-year maximum flood susceptibility mapping using integrated hydrological and hydrodynamic models:Kelantan River Corridor, Malaysia. Journal of Flood Risk Management 4, 189-202. https://doi.org/10.1111/j.1753-318X.2011.01103.x.
|
[46] |
Prasannakumar, V., Vijith, H., Abinod, S., Geetha, N., 2012. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geoscience Frontiers 3, 209-215. https://doi.org/10.1016/j.gsf.2011.11.003.
|
[47] |
Renard, K.G., Foster, G.R., Weesies, G.A., Mccool, D.K., Yoder, D.C., 2000. Predicting Soil Erosion by Water:a Guide to Conservation Planning with the Revised Universal Soil Loss Equation (Rusle).
|
[48] |
Rizeei, H.M., Saharkhiz, M.A., Pradhan, B., Ahmad, N., 2016. Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto International 1-20. https://doi.org/10.1080/10106049.2015.1120354.
|
[49] |
Segura, C., Sun, G., McNulty, S., Zhang, Y., 2014. Potential impacts of climate change on soil erosion vulnerability across the conterminous United States. Journal of Soil and Water Conservation 69, 171-181. https://doi.org/10.2489/jswc.69.2.171.
|
[50] |
Serpa, D., Nunes, J.P., Santos, J., Sampaio, E., Jacinto, R., Veiga, S., Lima, J.C., Moreira, M., Corte-Real, J., Keizer, J.J., Abrantes, N., 2015. Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Science of the Total Environment 538, 64-77.https://doi.org/10.1016/j.scitotenv.2015.08.033.
|
[51] |
Shamshad, A., Azhari, M.N., Isa, M.H., Hussin, W.M.A.W., Parida, B.P., 2008. Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in Peninsular Malaysia. Catena 72, 423-432. https://doi.org/10.1016/j.catena.2007.08.002.
|
[52] |
Smith, R.E., Goodrich, D.C., Quinton, J.N., 1995. Dynamic, distributed simulation of watershed erosion:the KINEROS2 and EUROSEM models. Journal of Soil and Water Conservation 517-520.
|
[53] |
Terranova, O., Antronico, L., Coscarelli, R., Iaquinta, P., 2009. Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS:an application model for Calabria (southern Italy). Geomorphology 112, 228-245. https://doi.org/10.1016/j.geomorph.2009.06.009.
|
[54] |
Turpin, N., Bontems, P., Rotillon, G., Bärlund, I., Kaljonen, M., Tattari, S., Feichtinger, F., Strauss, P., Haverkamp, R., Garnier, M., Lo Porto, A., Benigni, G., Leone, A., Ripa, M.N., Eklo, O.M., Romstad, E., Bioteau, T., Birgand, F., Bordenave, P., Laplana, R., Lescot, J.M., Piet, L., Zahm, F., 2005. AgriBMPWater:systems approach to environmentally acceptable farming. Environmental Modelling and Software 20, 187-196. https://doi.org/10.1016/j.envsoft.2003.09.004.
|
[55] |
Wan, I., 1996. Urban Growth Determinants for the State of Kelantan for the State's Policy Makers, p. 7.
|
[56] |
Wischmeier, W.H., Smith, D.D., 1978. Predicting Rainfall Erosion Losses-a Guide to Conservation Planning.
|
[57] |
Yusof, M.F., Azamathulla, H.M., Abdullah, R., 2014. Prediction of soil erodibility factor for Peninsular Malaysia soil series using ANN. Neural Computing and Applications 24, 383-389. https://doi.org/10.1007/s00521-012-1236-3.
|
[58] |
Zhou, W., Wu, B., 2008. Assessment of soil erosion and sediment delivery ratio using remote sensing and GIS:a case study of upstream Chaobaihe River catchment, north China. International Journal of Sediment Research 23, 167-173. https://doi.org/10.1016/S1001-6279(08)60016-5.
|